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Mathematical analysis of the true and spurious eigensolutions
for freevibration of plateusing real-part BEM

Sheng-Yih Lin', Ying-Te Lee', Kue-Hong Chen?, Jeng-Tzong Chen®

Abstract

In this paper, a real-part BEM for solving the eigenfrequencies of plates is proposed for saving
half effort in computation instead of using the complex-valued BEM. By employing the real-part
fundamental solution, the spurious eigensolutions in conjunction with the true eigensolution are
obtained for free vibration of plate. To verify this finding, the circulant is adopted to analytically
derive the true and spurious eigenequation in the discrete system of acircular plate. In order to obtain
the eigenvalues and boundary modes at the same time, the singular value decomposition (SVD)
technique is utilized. For the continuous system, mathematical analysis for the spurious eigensolution
was done by using the degenerate kernel and Fourier series. Good agreement among the analytical
solutions (continuous and discrete systems) is made. The clamped circular plate is demonstrated
analytically and numerically to see the validity of the present method.
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1. Introduction

For the simply-connected problems of interior
acoustics, either the real-part or imaginary-part BEM
results in spurious eigensolutions [8]. Tai and Shaw
[24] first employed BEM to solve membrane
vibration using complex-valued kernel. De Mey
[11, 12], Hutchinson and Wong [15] employed only



the real-part kernel to solve the membrane and plate
vibrations to avoid the complex-valued computation
in sacrifice of occurrence of spurious eigensolutions.
Kamiyaet al. [18, 19] and Yeih et al. [27] linked the
relation of MRM and real-part BEM independently.
Wong and Hutchinson [17] have presented a direct
BEM involving displacement, slope, moment and
shear force. They were able to obtain numerica
results for simply-connected and clamped plates by
employing only the read-part BEM with obvious
computational gains. However, this saving leads to
the spurious eigenvalues in addition to the true ones
in free vibration analysis. One has to investigate the
mode shapes in order to identify and regject the
spurious ones. Shaw [24] commented that only the
real-part the
eigensolution must  satisfy and

incorrect  since
the real-part

the same

approach was

imaginary-part equations at time.
[16] that

incorrectness was perhaps a little strong since the

Hutchinson replied the clam of
real-part BEM can obtain al the true eigensolutions
although the solution is contaminated by spurious
ones according to his experience. If we need to look
for the eigenmode as well as eigenvalue as usually,
the sorting for the spurious eigensolutions pay a
small price by identifying the mode shapes. Chen et
al. [8] commented that the spurious modes can be
reasonable which may mislead the judgement of the
true and spurious ones, since the true and spurious
modes may have the same nodal line for the different
eigenvalues. This is the reason why Chen et al. have
developed many systematic techniques, dual
formulation [8], domain partition [4], SVD updating
technique [6], CHEEF method [5], for sorting out the
true and the spurious eigensolutions. Niwa et al. [23]
aso stated that “"One must teke care to use the
complete Green's function for outgoing waves, as
attempts to use just the real or imaginary part
(regular part) separately will not provide the
complete spectrum”. As quoted from Hutchinson [16],
this criticism is not correct since the real-part BEM
does not lose any true eigenvalues. The reason is that
the real and imaginary-part kernels satisfy the Hilbert
transform. Complete eigenspectrum is imbedded in

either one, real or imaginary-part kernel. The Hilbert
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transform is the constraint in the frequency domain
corresponding to the casual effect in the time-domain
fundamental solutions. The physical meaning of the
real-part kernel is the standing wave [13]. Tai and
Shaw [25] claimed that spurious eigenvalues are not
present if the complex-valued kernel is employed for
the eigenproblem. However, it is true only for the
case of problem with a simply-connected domain.
For  multiply-connected  problems,  spurious
eigenequation occur even though the complex-valued
BEM isutilized [9, 10].

In this paper, the spurious eigensolution for the
plate eigenproblem will be studied in the real-part
BEM. First of all, the true and spurious eigenvalues
will be examined for the simply-connected plate
using the real-part BEM. Since any two equations in
the plate formulation (4 equations) can be chosen, 6
(C;) options can be considered. The occurring
mechanism for the spurious eigensolution in the
simply-connected plate problem will be studied
analyticaly in the continuous and discrete systems.
For the continuous system, degenerate kernels for the
fundamental solution and the Fourier series
expansion for boundary densities will be employed to
derive the true and spurious eigenequations
analytically for a circular plate. For the discrete
system, the degenerate kernels for the fundamental
solution and circulants resulting from the circular
boundary will be employed to determine the spurious
eigensolution. One example will be designed to
check the validity of the present formulation.

2. Boundary integral equations
for plate eigenproblems

The governing equation for the free flexural
vibration of a uniform thin plate is written as follows:

VAu(x) = u(x), xeQ @)
*ph

where u is the lateral displacement, A* = o

A is the frequency parameter, @ is the circular

frequency, p is the surface density, D is the
o Eh’®
flexura rigidity expressed as D = ——-
12(1-v7)

terms of Young's modulusE , Poisson ratio v, the
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plate thicknessh , and Q is the domain of the thin 0O(s,x) = K,(U(s,x)) (11)
plate. The integral equations for the domain point can M (s,X) = K, (U(s,X)) (12
be derived from the Rayleigh-Green identity as V(s,X) = K,(U(s,X) (13)
follows [20]: where K,() , K,() ad K,() mean the
u(x) = j {-U (s, X)v(s) + O(s, X)m(s) ) operators which are defined as follows:
—M (s, X)0(s) +V (s,X)u(s)} dB(s), xeQ @ a()
K, ()= n (14)
0(x) = [ {-U, (5. 0(9) + O, (s )m(s) a3 "
-M,(s,¥)0(s) +V, (s, x)u(s)} dB(s), xeQ 3()
Kn() =W2 () +@1-v)—5 (15)
M) = [ {-U (8 0%(8) +©,(s)m(s) @ on
—M,.(8,X)0(s) +V,, (s, x)u(s)} dB(s), xeQ 2. 20
o) (16)
V) = [ {U, (5, 0%(8) + O, (5, )m(s) - n n
—M,(5,X)0(s) +V, (s, x)u(s)} dB(s), xeQ where n and t are the norma vector and
where B is the boundary, u, 6, m and v tangential vector, respectively. The operators K, ("),
mean the displacement, slope, normal moment, Kn() and K,() can be applied to U, ©, M

effective shear force, sand x are the source and
field points, respectively, U, ®©, M and V

and V kernels. The kernel functions can be

kernel functions will be elaborated on later. By &pr &
moving the point to the boundary, Egs.(2)-(5) reduce i i
g the p Y, Egs.(2)-(5) U(s,x):Re[g(HgmmHgZ)(mr))] 17
to
au(¥)= —P.V.'[U (s, X)v(s) dB(s) + PV. I (s, x)m(s) dB(s) O(s,x) = VX 18
B B (6) ' on, 9
_pv. I M (s, X)0(s) dB(S) + P.v.J'V(s, X)u(s) dB(s), xeB
B B
2
M0 =wUE)+a-nT2S0 g
nS
@ 0(x) = —P.V.J.Ug(s, X)V(s) dB(s) + PV -_[@)a(s x)m(s) dB(s)
B B
(1 2 2
i oV (s,X) 0 ,0°U(s,x)
PV.| M, (s,X)0(s) dB(s) + PV.| V,(s,X)u(s) dB(s), xeB V(s X)=——+1-V)—(—
L jB (s,%) an, a-v) ats( ot ) (20)

@ @ (i
" m(x):—P.V.J.BUm(s,x)v(s) dB(s)+PV.IB®m(s,x)m(s) B9 where Hg”(Ar) and Hg’(iAr) are the zeroth

—PV.IMm(s,x) o dB(s)+P.V.'[Vm(sx)u(s) dB(9, xeB C) order Hankel and modified Hankel functions,
B B

r=ls-x and i*=-1 , respectively. The

av(x):—P.V.J.UV(s, OV dB(s)+P.v.J' 0,(50m(S) () displacement, slope, normal moment and effective
B B

_p,v.J'BMv(s, X)0(S) dB(s)+P.V._[BV\,(s, Xu(s) dB(S), xe B ®) shear force are derived by
0(x) = K, (u(x)) (21)
where PV. denotes the principa value, and m(x) = K, (u(x)) (22)
a =% for a smooth boundary point. The kernel V0 =K. (uC3) (23)
Once the field point x locates outside the domain,
function U(s,x) is the real-part of the fundamental the null-fidd BIEs based on the direct method of

solution U (s,x) which satisfies Eqs.(2)-(5) yield

VAUC(S, X)—A,AUC(S, X) :5(X—S) (10) OZIB{_U (S, X)V(S)+®(S, X)m(S)

The three kernels, @(S, X) , M (S, X) and V(S, X) , -M (S, X)H(S)+V(S, X)U(S)} dB(S), xe Q° (24)

are defined asfollows :
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0= jB{—u , (S, XV(S) + O, (S, X)M(S)
M, (5,%8(8) +V, (5, )u()} dB(9),

(29)
xeQ°

0= jB{ U (s, X)V(S) +©,,(5,x)m(s)
M ,,(8,X)6(8) +V,,(sX)u(9)} dB(S),

(26)

xeQ°
0= L{‘Uv(s' X)V(S) + O, (s, X)M(s)
~ M, (5,08() +V, (. )u(s)} dB(9),

(27)

xeQ*®
where QF is the complementary domain of Q.
Note that the null-field BIEs are not singular, since
x and s never coincide.

When the boundary is discretized into 2N
constant elements, the linear algebraic equations of

Egs.(2)-(5) can be obtained as follows:

UKW} +[M){6} =[O]{m} +[VI{u} (28)
U, {4 +[M, {6} =[0,){m} +[V,{u} (29)
U +[M {6} =[O, [{m} + [V, {u} (30)
U {} +[M {6} = [O,{m} +[V,]{u} (31)

where [U], [6], [M], [V], [Uy]. [©,], [M,],
Vol o Unls [On], [Ma], Vel U], [6)],

[M,] and [V,] are the sixteen influence matrices
with a dimension 2Nx2N, {u}, {6}, {m} and
{v} are the vectors of boundary data with a

dimension 2N x1.

3. Mathematical analysisfor the
true and spurious
eigensolutions

In order to obtain the true and spurious
eigensolutions for plate vibration using the rea-part
BEM, the degenerate kernel is adopted to analytically
derive the true and spurious eigenequations in the
continuous and discrete systems of a circular plate.
For the continuous system, mathematical analysis for
the spurious eigensolution was done by using the
degenerate kernel and Fourier series. For the discrete
system, mathematical analysis for the spurious
eigensolution was done by using the degenerate
kernel and circulants. The clamped circular plate is
demonstrated analytically in the continuous and the
discrete systems, respectively, in the following
subsections.

3.1 Continuous system by using
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degenerate kernels and Fourier
series
For the clamped circular plate (u=0 and
6=0) with a radius a , we can obtain the
eigenequation in the continuous formulation. The
moment and shear force, m(s) and v(s) aong the
circular boundary, can be expanded into Fourier

series by

m(S) = P+ Y(P, cos(n) + G, cos(ng)) (32

v(s) = & + 2(&;‘ cos(ng) +b, cos(ng))  (33)

where 47) isthe angle on the circular boundary, a,,,

b and q, are the undetermined Fourier

Pn
coefficients. Substituting Egs.(32) and (33) into

n 1

Egs.(24) and (25) yields,

0= [ (s @+ 2 (3 cos(g) b, cos(ng)]

. ~ ~ (34)
+0(s, )Py + Z (Pn cos(ng) + g, cos(ng))]dB(s)
n=1
0= [ {(-Uy(s0la0+ iﬁl(an cos(ng) + b, cos(ng)]
. _ (35
+0y(s, [P + Z(Dn cos(ng) + d,, cos(ng))]dB(s)
n=1
The kernel functions, U(s,x) , ©O(sx) ,

U,(s,x) and ©,(s,x), can be expanded by using

the expansion formulae

D Y2V In(Ap) oSG ~4). o> p

Yo(r) =" o (36)
D Yul2P)In(p) oSG ~4). p> p
D Kn(Ap)m(2p) cosmg=4)), > p

Ko(r) =™ _ 37)
D K40 m(2p) cosmp—4)), > p

where J,, and |, denote the first kind of the
mth-order Bessel and modified Bessel functions,
Y, and K, denote the second kind of the
mth-order Bessel and modified Bessel functions. The

superscripts i "and " e " denote the interior

point (;>p) and the exterior point (;<p ),



s= (;N_ﬁ) and x=(p,¢) arethe polar coordinates

of s and x , respectively. In this case,

p=p=aand dB(s)=adg . Similaly, the other
kernels can also be expanded into degenerate forms.
By using the degenerate kernels into Eqgs.(34) and
(35) and by employing the orthogonality condition of
the Fourier series, the Fourier coefficients a,, b,,
p, and q, sdtisfy

27 © —_
= D), (ia) - K, ()l (] cos{mi— )

[30 + Y (&, cos(ng) + b, cos(ng)ladg
n=1

(38)

27 ]~ , , -
=[5 D ¥ala) ;) - K, et (] costmi ~ )

m=—c0

[Po + Y (Pn cos(ng) + d, cos(ng)]a dg

n=1
[ e HZC[YA (22)3,(42) - K (28)! p (22)] cos(m§ - 9)

[80 + Y (&, CoS(ng) + b, cos(ng)]adg
AU (39)
1 Gl -

-[5 DG, e - K, (2 e cosm — )

m=—x

[Po + Y (Pn cos(ng) + q, cos(ng)]adg

n=1

According to Eq.(38), we have

_1Y,(18)J,(4a) - K, (1a)l ,(1a) a
"2 Y, (2a)d)(Aa8) - K, (2a)l (Aa) "

(40)

1 Y,(1a)d,(1a) - K, (4a)l 4 (1a)
"2 Y, (28)d,(Aa) - K, (Aa)l | (Aa)

(41)

Similarly Eq.(39) yields,

_ 1 Y,(Aa)d, (1) - K (1)l , (Aa) a
"IN (Aa)d ) (Aa) - K (Za)l h(2a) "

(42)

1 Y,(1a)d,(1a) - K, (4a)l 4 (1a)
"2 Y, (28)d 4 (Aa) - K, (Aa)l  (Aa)

To seek nontrivial data for the generalized

coefficients of a,, b,, p, ad q,, we can

obtain the eigenequation by using either Egs.(40) and
(42) or Egs.(41) and (43)

1Y, (1a)J,(1a)-K, (1a)l ,(1a)

AY,(1a)d} (1a)- K, (1a)l](1a)

_ 1Y (18)d, (1) - K/ (4a)l, (1a)
~ AY/(1a)d! (1a)- K| (1a)l! (1a)

(44)

After recollecting the terms, Eq.(44) can be
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simplified to

(K. (Aa)Y, (18) - K, (1a)Y,,, (12)]

{1,.0a)3, @) +1,(a)d, ,(a)y =0

The former part in Eq.(45) inside the middle bracket
is the spurious eigenequation while the latter part
inside the big bracket is the true eigenequation after
comparing the exact solution [22].

3.2Discrete system by using
degenerate kernel and circulants

For the clamped circular plate (u=0 and
6 =0) with a radiusa, Egs.(28) and (29) can be
rewritten as
0=[UKv} +[®{m}
0=[U,{v} +[O,]{m}

(46)
(47)
By assembling Eqgs.(46) and (47) together, we have

\
[Sl\/l]{m}—o (48)

where

u o
[SM]—{U ®} (49)

v
For the existence of nontrivial solution of {m} , the

determinant of the matrix versus eigenvalue must be
zero, i.e,

det[SM]=0 (50)
Since the rotation symmetry is preserved for a
circular boundary, the influence matrices for the
discrete system are found to be circulants with the
following forms into Eq.(46), we have

Zz oz oz
2N-1 Z 4 Zon-2
[U]= Ine Lna D

z
(51)

Z Z, Z; Zyng Z, 2Nx2N
The coefficients of each element can be obtained by

using degenerate kernel

(meD)ag _ _ _ _
zn=[ "7 TU@padlads~Uladnadanrs,
m*E)M

(52)



where Aa:zz_iN[' gm = mAEﬁ By introducing the

following bases for circulants, 1, [C,,]", [C,\]°,
[Co P oeees [Co 12, We can expand matrix [U]
into

[U]=2ol +Z[Con 1" + 2o[Con ]2 + o+ Zoya[Con 1PN (B3)

where

010

o O

[Cal=l; ;- (54)

100

2Nx2N

Based on the similar properties for the matrices of
[U] and [C,,], wehave
=z +za, +zal ..+ 2, 2, (55)
(=012,..,2N-1
where 4! and «a, aretheeigenvaluesfor [U]
and [C,, ], respectively. It is easily found that the
eigenvalues for the circulants [C,, ], are the roots

for «?N =1 asshown below:

27l

a,=e?™, (=0%1+2,.tN-1N (56)
or (=012.2N-1

The eigenvector for the circulant [C,,] is

1
a/’

2N-1
o,
¢ 2Nx1

Substituting Eq.(56) into Eq.(55), we have

2N-1 2N-1 2t

] _ m_ 2N
uol=>zo'=)ze,
P> (0
(=0£1%2,....£(N-1),N
According to the definition for z, in Eq.(52), we
have

Z. =%y, M=012..2N-1 (59)

Substitution of Eq.(59) into Eq.(58) yields
N-1
A =2 (D 2+ Y (@ +a ™)z,
m=1
2N-1

=Y cos(mAg)z,, ¢=0x122,...:(N-1),N
m=0

Substituting Eq.(52) into Eq.(60) for ¢=0 without

(60)
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loss of generality, the Reimann sum of infinite terms

reduces to the following integral
2N-1 _ _ _
Y = lim Zcos(mmqﬁ)[—u (@ a0)]ars
, m=0 (61)
~ L cos((4)[-U (a, 4, a.0)]a dg
By using the degenerate kernel for U(s,x) and the
orthogonal conditions of Fourier series, Eq.(61)

reducesto

wj__ 7 _
V= E Rl va K v Gal

£=0£1+2,...£(N-1),N
Similarly, we have

o] _ 7@

o= el (2a) - K, (Za)l (a)] 63)

0=0+142,...+(N-1),N

W= _ " vi3a)d (1a)—K' (Aa)l (1a
W =S GR, va) K A
(=012, £(N-1),N
K = 7 1vi(3a) 3 (Aa) - K (Aa)l | (A&
A VG LHCL RS THES) B
(=012, £(N-1),N
where 2!, «"7 and ! are the eigenvalues of

[6], [U,] and [©,] matrices, respectively. Since
the four matrices [U], [©], [U,] and [©,] are

al symmetric circulants, they can be expressed by

[U]=oz 0™
(1 0 o - o0 0 0]
o 4 o - o0 0 0
T I
-0 O 0 ﬂisl O O O ot (66)
o o o -4 o 0
0o 0o o0 - o0 M, o
0 0 0 -« 0 0 a1
[0] = dTed ™t
(47 0 o 0 0o 0]
o 49 o 0 0 0
[C)
-0 0 0 y%ll O O O ot 67)
0 0 o0 w0 0
0 0 o 0 4, ©
0 0 o0 - 0 0 4§



[Up] = 02,07
[T 0 o o o0 0]
o &Y o 0 0 0
o o MY .. o 0 0
=@ : : :1 : : : : |t (68)
0 0 O &, o 0
U
0 o0 o My o
Lo o 0 (e
(0] = 0Zg, @7
(el 0 o 0 0 0]
o «£9 o 0 0 0
o o &9 .. 0o 0o o0
=@ : :1 .. : : c ot (69)
0 0 o Y 0 0
0 0 o 0o «QUy o
Lo o0 o 0 K7 |
where
oot
N

1 0

1

2r 2r 2r(2n-1)

1 cos(==) sin(==) AL
STl o)

sint

2N
ar 4r 4r(2n-1) 4r(N-1) 4N
1 s Sy cog 2D GrN-D

o o) : 2N snt 2N

0 1
27(N-1) 2N
N

27(2N-1) -y, 27(2N-1)(N -1) 2:(2N-Y(N-1) 2:(N-DN
2N 2N 2N 2N 2N

1

(70)
By employing Eqgs.(66)-(69) for Eq.(49), we have
- oz, 0" Or 07
[SM]= Pz, " DT, O (71)

Eq.(71) can be reformulated into

® 0, X, @ ol
[SVI]_|:O (D:”:EUH Z@g:|{o (D:| (72)

Since @ is orthogonal (det|<1)|=det|<1>’1|=1), the

determinant of [SM ],y IS

ZU Z@
detf SM] = det
EUH 2

. (73)
= LW - en

(=—(N-1)

By employing Eqgs.(62)-(65) for Eq.(73), we have
det[SM]
N a2
= [:1;[71) W{ [V, (18)J,(1a) - K, (1a)l , (Aa)]
[Y/(18)J;(4a) - K} (1a)l ;(1a)]
-[Y,(18)J;(1a) - K, (4a)l(1a)]
[Y/(1a)J, (1a) - K} (2a)l, (1a)]}

(74)

To simplify Eq.(74), we have
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det{SM]
- 11 %{Km(za)v, (18)-K, (2a)Y,.,(2a)] (75)
r=—(N-1)

{I,.(1a)J,(18) +1,(18)J,.,(1a)}
Zero determinant in Eq.(75) implies that the
eigenequation is

[K,..(2)Y,(1a) - K, (1)Y, , (1&)]

{..(8)3,(2a) + 1, (ia)d, (i} =0 (O

After comparing with the exact solution for the
clamped circular plate [22], the exact eigensolution
for a continuous system can be obtained by
approaching N in the the discrete system to infinity.
The former part in Eq.(76) inside the middle bracket
is the spurious eigenequation while the latter part
inside the big bracket is the true eigenequation. The
result of Eq.(76) in the discrete system matches well
with Eq.(45) in the continuous system.

Since any two equations in the plate formulation
(Egs(2)-(5)) can be chosen, 6 (C;) options can be
considerd. If we choose different formulae for the
clamped circular plate, we can obtain the same true
eigensolution but different spurious eigensolution.
The occurrence of spurious eigensolution only
depends on the formulation instead of the boundary
condition. True eigensolution depends on the
boundary condition instead of the formulation. All
the resluts are shown in Table 1.

4. Conclusions

A real-part formulation has been derived for the
eigenproblem of the clamped plate. For a circular
plate, the true and spurious eigenvalues and
eigenequations were derived analytically by using the
degenerate kernel, Fourier series and circulants in
continuous and discrete systems. Since any two
equations in the plate formulation (4 equations) can
be chosen, 6 (Cg‘) options can be considerd. The
occurrence of spurious eigensolution only depends
on the formulation instead of the boundary condition,
while the true eigensolution is independent of the
formulation and is relevant to the boundary condition.
All the results are shown in Table 1. The clamped
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Table 1. Spurious eigenequations using the real-part BEMs

Egs. number Spurious eigenequation using the real-part BEM
u,8
K.Y, -KY,,=0
Egs.(2) and (3)
u,m

Egs.(2) and (4)

A-v)(K,Y,., —K,.Y,)=24pK,Y, =0

uv

Egs.(2) and (5)

Zz(l_ V)(K/Yul - Kf+1Yf) - ZApK Y,
+ ﬂzpz(K/ﬂYf + K/Y/+1) =0

6, m

Egs.(3) and (4)

+2p*(K,

A-V)K,You— K.Y =220 (K Y,
+K,Y,,1)=0

Y,

i

gV le(ﬂzK/Y/ +ﬂ“2p2K/+1Yr+1) _ZAZPZ ((K/qu + K/Y/A)
Egs.(3) and (5) +[20-(B-v)1* -22p L (1-D](K,Y,,, —K,,Y,) =0
404p(-1+ O[1-LA-v) - Ap]K)Y,
myv +[€4(1_ V)2 + /14P4 - 2((1_ V)(_l+ j’p)](K/YI+1 - K/+1Yr)
Eqs.(4) and (5) — 8= 4y + v = 22p(L-V)I(K Y., - K,,.Y)

~ 220 (L)~ YK Y + K, Y) + 22 p° (L VK, LY, = 0

where ¢=0,+1,+2+3......
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