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The method of fundamental solutionsfor
two-dimensional exterior acoustics
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ABSTRACT

In this paper, the method of fundamental solutions is applied to solve for to exterior acoustic
radiation problem. By using the fundamental solution, the coefficients of influence matrices are easily
determined according to a two-point function. This method also results in the irregular frequency as
well as the boundary element method does. The position of irregular frequency depends on the
location where sources are located. To avoid this numerical instability, Burton & Miller technique is
employed to deal with the problem. Based on the circulant properties and degenerate kernels, an
analytical study in discrete sy stem of acylinder radiator is demostrated.

Burton & Mil/|

1. Introduction

The method of fundamental solutions is a
technique for the numerical solution of certain eliptic
boundary value problems. It can be viewed as an
indirect boundary element method. Like the boundary
element method, it can be easily formulated when a
fundamental solution of the differential equation in
question is known. The basic idea is to approximate
the solution by a linear combination of fundamental
solutions with sources located outside the problem
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domain. The coefficients of the linear combination are
determined so that the approximate solution satisfies
the boundary conditions. Poullikkas et al. (2002)
employed MFS
electrostatics, only a few sources were adopted.
Cisilino and Sensde (2002) developed a simulated
annealing algorithm for the Laplace equation to decide
the optimal position of source points by using the MFS.
The drawback of the method is complicated in
computation and the benefit of the MFS is lost.
Ramachandran (2002) adopted the SVD technique, by
truncating the nearly zero singular value, to cure the
ill-posed problem in the MFS. Kondapalli et al. (1992)
applied the MFS to acoustic scattering in fluids and
solids. One can consult the review paper of the MFS
approach by Fairweather (1998).

to solve three-dimensiona



One of the problems frequently addressed in
BEM

frequencies for exterior acoustics. Kondapalli pointed

is the problem of irregular (fictitious)
out that the difficulty of fictitious frequency appearsin
the BEM is not present in the MFS. We may wonder
whether the irregular frequency problem will occur or
not in the MFS. The fictitious frequencies do not
represent any kind of physical resonance but are due to
the numerical method, which has not a unique solution
at some eigenfrequencies for a corresponding interior
problem (Ursell, 1981; Ohmatsu, 1983; Lee and
Sclavounos, 1989; Dokumaci, 1990; Lee et a, 1996;
Malenica and Chen,1998). It was found that BEM
results in fictitious eigenvalues, which are associated
with the interior frequency of the Dirichlet problem.
The genera derivation was provided in a continuous
system (Chen,1998), and a discrete system using a
circulant (Chen and Kuo, 2000). Following the
retracted BEM formulation (Hwang and Chang, 1991),
it was found that the position of irregular frequency
depends on the source location. The MFS and the
retracted BEM can be seen as the similar indirect
method instead of the difference of lump source and
distributed source.

In order to obtain the unique solution that is
known to exist analytically, severa approaches for
BEM that provide additional constraints to the original
system of equations have been proposed. Burton &
Miller (1971) proposed an integral equation that was
vaid for al wave numbers by forming a linear
combination of the singular integral equation and its
normal derivative. However, the calculation for the
hypersingular integration is required using the Burton
& Miller approach. To avoid this computation, an
alternative method, CHIEF, was proposed by Schenck
(1968; Benthien and Schenck, 1997). Many
researchers (Seybert and Rengargian, 1989; Wu and
Lobitz, 1991; Juhl, 1994; Poulin, 1997; Chen et d,
2000) applied the CHIEF method to deal with the
problem of fictitious frequencies. Schenck used the
CHIEF method, which employs the boundary integral
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equations by collocating the interior point as an
auxiliary condition to make up deficient constraint
condition. If the chosen point is on the node of the
associated interior problem, then this method fails.
This paper will focus on the study of the occurring
mechanism of fictitious-frequency. An analytical study
in a discrete system for a circular cylinder is
conducted using the degenerate kernel and circulants.
The relation between the retracted BEM and the MFS
will be constructed.

2. The MFS formulation for
exterior acoustics

The boundary value problem one wish to solve
can be stated as follows: The acoustic pressure u(x)
must satisfy the Helmholtz equation,

N2u(x) + k2u(x) =0, xI D, )

in which k:V% is the wave number and w is the
angular frequency and D isthe domain of interest.

The acoustic field, potential and flux, can be
described by linear combinations of fundamental
solutions

u(x) =§U(S],X)A(SJ), 2

t(x) = g L(s;, )A(s) . (3)

where U(s,x) is the fundamental solution which
satisfies

N°U(s,x) + kU (s,x) = 2od (x - 9) 4

inwhich d is the Dirac delta function, and xand s

are the collocation and source points, respectively, as

shown in Fig.1, WEN , (=T and
L

X

L(s,x) =

As,) is the generalized unknowns a s;, 2N is the

number of collocation points. Thetwo kernels are,
U(s0 =52 HE () ®
r

L(s,X) = % H.® (kr) (6)

in which r°|s-x is the distance between the
ith
component of the normal vector a s, H® denotes

source and collocation points; n, is the



the first kind of the zero-th order Hankel function,
and y°s-x,i=12
We consider an infinite cylinder with the
Dirichlet bounda{y conditions
u(x)=u, xI B,

@)

where B is the boundary. Matching the boundary
conditions for x on the 2N boundary points into Eq.(2),
yields

{G=[U.{A, ®

where the subscript B denotes the boundary and { A} is
the vector of undetermined coefficients. Eq.(8) can be
rearranged to

{A=[Us]™{T}. ©)

By substituting Eq.(9) into Eq.(2), we obtain the field
pressure

{u} =[U][U,] 4T} (10)
For the Neumann boundary conditions,
t(x) =t, xI B, (11

substitution the boundary conditions for x on the 2N
boundary pointsinto Eq.(3) yields

{t} =[L.{A (12)
Eq.(12) can be rearranged to
{A=[L] T} (13

By substituting Eq.(13) into Eq.(2), we obtain the field
pressure for the Neumann boundary condition
{u} =[U][L,] ¥} (14)
3. Analytical study for the
cylinder radiator using
circulants in the discrete
system

For the circular case, we can express x=(r ,f)
and s=(R,q)in terms of polar coordinate. The two
kernels can be expressed in terms of degenerate
kernels as shown below:

[ 3
:::U'(R,q,r,o): a
U(s,x):i é .
US(RQT 0= Q- x

n=-¥

- zip H o (kR (ke )cosing) R >r

m=-¥

(15)

H,kr)J,(kRcosg) r >R
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T 3
iL'Raro=q
L =1 i
;Le(R,q,r,Q = a%Hﬁ(kr)Jn(kR)cos(nq) r>R

n=-¥

P H (kRIF( ) cospa) R 1

m=-¥

(16)

where the superscripts “i” and “€’ denote the interior
R>r and exterior domains R<r , respectively.

Since the rotation symmetry is preserved for a
circular boundary, the two influence matrices in
Eqs.(2)-(3) are denoted by [U] and [L] of the circulant

with the elements

K, =K(Rq,;r.f), 17

wherethekernel K canbeU or L, f, and q; are the
angles of observation and source points, respectively.
By superimposing 2N lumped strength along the
boundary, we have the influence matrices,

g a a & aZN.lg

éaQN—l & a azN—zl]
[K]=§a2N.z Ay B amg (18)

e a

§a & & Ayus B (hyo

where the element of the first row can be obtained by
aj-i :K(S.,Xi). (19)

]

The matrix [K] in Eqg.(18) is found to be a
circulant since the rotational symmetry for the
influence coefficients is considered. By introducing

the following bases for the circulants, 1, (C,,)*,
(C,n)%,...,and (C,,)>"*, wecan expand [K] into
[K]=a0| + a‘l(CZN) ot azm—l(CzN)2er (20)
where | isaunit matrix and
@ 10 - Oy
01 - 0f
- 1]
[Cal=§ ¥ (21)
& L:J
él O 0 OgZN'ZN

Based on the circulant theory, the eigenvalues for the
influence matrix, [K], are found as follows:
| | T8 taa teee aZN-laIZN-l'

| =0,£%---,x(N- 1),N

where |, and a, are the eigenvalues for K] and

(22)

[C,] . respectively. It is easily found that the
eigenvalues for the circulant [C,,] are the roots for
a® =1 as shown below:



20
a, =e2N, 1=0+1+2.,#N-1N 23)
or 1=012.,2N-1
Substituting Eq.(23) into Eq.(22), we have
| 24-1 w21 i%
= a= e 2N
S (24)

| =0+1+2,...+(N- 1),N

According to the definition for a,,, in Eq.(19), we have

a,=a,. ., mMm=0%---2N-1 (25)
Substitution of Eq.(25) into Eq.(24) yields
%1 m -m
I =a,+(-D'ay +a @"+a™ Ma,
i (26)
= 4 cos(miDg)a,,, | =0,£1,....+(N - 1),N
m=0

Substituting Eq.(19) into Eq.(26) for the case U of K
for f =0 without loss of generality, the Reimann
sum of infinite terms reduces to the following integral

I, = lim & cos(miDi U (mDg 0}

< 0 cos(a)U (a,0)] R

By using the degenerate kernel for

(27)

»

where | _» .

PN
U(s,X) in Eq.(15) and the orthogonal conditions of
Fourier series, Eq.(27) reducesto

I, =-iNp *H® (kr)J, (kR)

(28)
| =0,#1,42,...2(N - 1),N
Similarly, we have
m =-iNp*HE" (k )3, (kR) (29
| =0+1+2,...+(N - 1),N )

where m is the eigenvalues of [L] matrix. The
determinants for the two matrices are obtained by
multiplying al the eigenvalues as shown below:
detlU] =1,(1,--1 )%l (30)
det[L] = m,(m -+ m_,)*m, (31)
Since the two matrices [U] and [L] are all symmetric
circulants, they can be expressed by
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do 0 O 0 0 ou
€ u
§0 I, O 0 0 OL:J
€ 01, 0 0 ou
e, . . S0
18] =F§: : : : LF (32)
€ u
éO 0 O Ini O 0 a
gO 0 0 - 0 |,(N_]) OH
g0 0 O 0 0 Ing
ém 0 O 0 0 ou
é 1]
(:30 m O 0 0 a
€ 0 m, 0 o ol
[L]=Fé: : : : N (<))
é v
g0 0 o0 m.a O 0
€ 0 o0 0 my.y O ‘
g0 0 0 0 0 mg
where
1
T
g 179 OZD 231(2"'1) QJD(N'D %N H
§ Eus(m) sm(%—N) Eum sm(m CDS(WN) E (34)
H cos(%) sm%N) cosREL D - sin2 8- o cosq‘:’—N) g
‘é o 2&7(2;:—1)) sint mizl)) 37(2%2—'3)('\"1) (N —zj)(N'l) 27(2';‘1)“1 E

For the Dirichlet problem of the Egs.(9) and (28), the
possible fictitious frequencies occur at the position

where k satisfies

H®(kr)J,(kR) =0,1 =021, #(N-1),N  (39)

Since the term of H® (kr ) is never zero for any value
of k, thek value satisfying Eq.(35) implies

J (kR) =0. (36)
For the Neumann problem of the Egs.(13) and (29),
the possible fictitious frequencies occur at the position

where k satisfies

HE (kr)J, (kR) = 0,1 =01, +(N-1),N  (37)

Since the term of H,¢" (kr ) is never zero for any value

of k, thek value satisfying Eq.(37), implies

J (kR = 0. (39)

It is shown that the MFS also results in the irregular
frequency no matter what the boundary condition is as
well as the boundary element does. The irregular
frequency also appears at the eigenvalue of interior
problem where the fictitious boundary is connected by
the source locations instead of the real boundary in the
direct BEM.

4. Burton & Miller method

In the exterior acoustics of Helmholtz equation by
using the dual BEM, Burton & Miller utilized the



product of hypersingular equation with an imaginary
constant to the singular equation to deal with fictitious
frequency which results from the non-uniqueness
solution problem. We can extend this concept to the
MFS approach as shown below:

-3 IRLACTEON
u(&)_q?(s""ﬂk TN A L)
o &U(s;,x) i T2U(s;, %)@
t(x) = C ] — ] ] )
(%) ailg T v Tnn. %(S,) “0)
where | is the density of mixed potential. By using

the degenerate kernel and drculant, for the Dirichlet
problem the possible fictitious frequencies occur at the
position where k satisfies,

HE (0 )0, (kR +3-38KR) =0,

I=0,#1,--,£(N- 1),N.
Since the terms of H® (ke yand

(41)

(3.0 +-aR)

never zero for any value of k, the unique solution is
obtained &l wave numbers. Similarly, for the
Neumann problem, the possible fictitious frequencies
occur at the position where k satisfies,
H® (kr )(J, (kR +--IAKR) =0,
k (42)

=041, %N - 1),N.

Since the term of H &9 (kr) is never zero for any vaue

of k, the unique solution is obtained al wave numbers.

5. Conclusions

In this paper, the mechanism why fictitious
frequencies occur in the MFS has been examined by
considering radiation problem of a cylinder. Based on
the circulant properties and degenerate kernels, an
analytical scheme in discrete system of a cylinder was
achieved. The results from this study indicated that the
irregular frequency also appears at the eigenvalue of
interior problem where the boundary is connected by
the source locations instead of the real boundary in
direct BEM. The position of irregular frequency
depends on the source location R. The Burton & Miller
technique was demonstrated to filter out the fictitious
frequency andyticaly.
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Fig.l The located position of source and
collocation point and definitionsof I ,Q , R



