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The method of fundamental solutions for 
two-dimensional exterior acoustics 

I-Lin Chen1  Kue-Hong Chen2  Chin-Shen Wu3  Jeng-Tzong Chen4 

ABSTRACT 

In this paper, the method of fundamental solutions is applied to solve for to exterior acoustic 
radiation problem. By using the fundamental solution, the coefficients of influence matrices are easily 
determined according to a two-point function. This method also results in the irregular frequency as 
well as the boundary element method does. The position of irregular frequency depends on the 
location where sources are located. To avoid this numerical instability, Burton & Miller technique is 
employed to deal with the problem. Based on the circulant properties and degenerate kernels, an 
analytical study in discrete sy stem of a cylinder radiator is demostrated. 

基本解法解二維外域聲場問題 

陳義麟  陳桂鴻   吳清森   陳正宗  

摘要 

本文中以提出基本解法來解二維外域輻射聲場的問題。藉由基本解，影響係數矩陣由二點

函數輕易的得到。這個方法會有虛擬頻率的問題，這就與採用邊界元素法解外域聲場所產生的

虛擬頻率問題一般。但是不規則頻率的產生位置則與所佈源點的位置有關。為了避免這個數值

不穩定的問題，Burton & Miller的技巧可用來避免虛擬頻率的發生。藉由循環矩陣及退化核

函數，一個對於圓柱的輻射聲場問題，我們以離散系統成功的解析證明此論點。 

1. Introduction 
The method of fundamental solutions is a 

technique for the numerical solution of certain elliptic 

boundary value problems. It can be viewed as an 

indirect boundary element method. Like the boundary 

element method, it can be easily formulated when a 

fundamental solution of the differential equation in 

question is known. The basic idea is to approximate 

the solution by a linear combination of fundamental 

solutions with sources located outside the problem  
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domain. The coefficients of the linear combination are 

determined so that the approximate solution satisfies 

the boundary conditions. Poullikkas et al. (2002) 

employed MFS to solve three-dimensional 

electrostatics, only a few sources were adopted. 

Cisilino and Sensale (2002) developed a simulated 

annealing algorithm for the Laplace equation to decide 

the optimal position of source points by using the MFS. 

The drawback of the method is complicated in 

computation and the benefit of the MFS is lost. 

Ramachandran (2002) adopted the SVD technique, by 

truncating the nearly zero singular value, to cure the 

ill-posed problem in the MFS. Kondapalli et al. (1992) 

applied the MFS to acoustic scattering in fluids and 

solids. One can consult the review paper of the MFS 

approach by Fairweather (1998). 
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One of the problems frequently addressed in 

BEM is the problem of irregular (fictitious) 

frequencies for exterior acoustics. Kondapalli pointed 

out that the difficulty of fictitious frequency appears in 

the BEM is not present in the MFS. We may wonder 

whether the irregular frequency problem will occur or 

not in the MFS. The fictitious frequencies do not 

represent any kind of physical resonance but are due to 

the numerical method, which has not a unique solution 

at some eigenfrequencies for a corresponding interior 

problem (Ursell, 1981; Ohmatsu, 1983; Lee and 

Sclavounos, 1989; Dokumaci, 1990; Lee et al, 1996; 

Malenica and Chen,1998). It was found that  BEM 

results in fictitious eigenvalues, which are associated 

with the interior frequency of the Dirichlet problem. 

The general derivation was provided in a continuous 

system (Chen,1998), and a discrete system using a 

circulant (Chen and Kuo, 2000). Following the 

retracted BEM formulation (Hwang and Chang, 1991), 

it was found that the position of irregular frequency 

depends on the source location. The MFS and the 

retracted BEM can be seen as the similar indirect 

method instead of the difference of lump source and 

distributed source. 

In order to obtain the unique solution that is 

known to exist analytically, several approaches for 

BEM that provide additional constraints to the original 

system of equations have been proposed. Burton & 

Miller (1971) proposed an integral equation that was 

valid for all wave numbers by forming a linear 

combination of the singular integral equation and its 

normal derivative. However, the calculation for the 

hypersingular integration is required using the Burton 

& Miller approach. To avoid this computation, an 

alternative method, CHIEF, was proposed by Schenck 

(1968; Benthien and Schenck, 1997). Many 

researchers (Seybert and Rengarajan, 1989; Wu and 

Lobitz, 1991; Juhl, 1994; Poulin, 1997; Chen et al, 

2000) applied the CHIEF method to deal with the 

problem of fictitious frequencies. Schenck used the 

CHIEF method, which employs the boundary integral 

equations by collocating the interior point as an 

auxiliary condition to make up deficient constraint 

condition. If the chosen point is on the node of the 

associated interior problem, then this method fails.  

This paper will focus on the study of the occurring 

mechanism of fictitious-frequency. An analytical study 

in a discrete system for a circular cylinder is 

conducted using the degenerate kernel and circulants. 

The relation between the retracted BEM and the MFS 

will be constructed. 

2. The MFS formulation for 
exterior acoustics 

The boundary value problem one wish to solve 

can be stated as follows: The acoustic pressure u(x) 

must satisfy the Helmholtz equation, 
,,0)()( 22 Dxxukxu ∈=+∇  (1) 

in which ck ω=  is the wave number and ω  is the 

angular frequency and D is the domain of interest. 

The acoustic field, potential and flux, can be 

described by linear combinations of fundamental 

solutions 
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where U(s,x) is the fundamental solution which 
satisfies 
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in which δ  is the Dirac delta function, and  x and s 
are the collocation and source points, respectively, as 
shown in Fig.1,  
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in which xsr −≡  is the distance between the 

source and collocation points; in  is the ith 

component of the normal vector at s; )1(
0H  denotes 
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the first kind of the zero-th order Hankel  function, 

and iii xsy −≡ , i= 1, 2. 

We consider an infinite cylinder with the 

Dirichlet boundary conditions 
,,)( Bxuxu ∈=  (7) 

where B is the boundary. Matching the boundary 

conditions for x on the 2N boundary points into Eq.(2), 

yields 
}]{[}{ AUu B= , (8) 

where the subscript B denotes the boundary and {A} is 

the vector of undetermined coefficients. Eq.(8) can be 

rearranged to 
}.{][}{ 1 uUA B

−=  (9) 

By substituting Eq.(9) into Eq.(2), we obtain the field 

pressure 
}{]][[}{ 1 uUUu B

−=  (10) 

For the Neumann boundary conditions, 

Bxtxt ∈= ,)( , (11) 

substitution the boundary conditions for x on the 2N 

boundary points into Eq.(3) yields 
}]{[}{ ALt B=  (12) 

Eq.(12) can be rearranged to 
}.{][}{ 1 tLA B

−=  (13) 

By substituting Eq.(13) into Eq.(2), we obtain the field 

pressure for the Neumann boundary condition 

}.{]][[}{ 1 tLUu B
−=  (14) 

3. Analytical study for the 
cylinder radiator using 

circulants in the discrete 
system  

For the circular case, we can express ),( φρ=x  

and ),( θRs = in terms of polar coordinate. The two 

kernels can be expressed in terms of degenerate 

kernels as shown below: 
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where the superscripts “i” and “e” denote the interior 

ρ>R  and exterior domains ρ<R , respectively. 

Since the rotation symmetry is preserved for a 

circular boundary, the two influence matrices in 

Eqs.(2)-(3) are denoted by [U] and [L] of the circulant 

with the elements 
),,;,( ijij RKK φρθ=  (17) 

where the kernel K can be U or L, iφ  and jθ  are the 

angles of observation and source points, respectively. 

By superimposing 2N lumped strength along the 

boundary, we have the influence matrices, 
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where the element of the first row can be obtained by 
).,( ijij xsKa =−  (19) 

The matrix [K] in Eq.(18) is found to be a 

circulant since the rotational symmetry for the 

influence coefficients is considered. By introducing 

the following bases for the circulants, I, 1
2 )( NC ,  

2
2 )( NC ,… , and 12

2 )( −N
NC , we can expand [K] into 
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where I is a unit matrix and 
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Based on the circulant theory, the eigenvalues for the 

influence matrix, [K], are found as follows: 
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where lλ  and lα  are the eigenvalues for [K] and 

][ 2NC , respectively. It is easily found that the 

eigenvalues for the circulant ][ 2NC  are the roots for 

12 =Nα  as shown below: 
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Substituting Eq.(23) into Eq.(22), we have 
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According to the definition for ma in Eq.(19), we have 
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Substituting Eq.(19) into Eq.(26) for the case U of K  

for 0=φ  without loss of generality, the Reimann 

sum of infinite terms reduces to the following integral 
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where 
N2

2π
θ =∆ . By using the degenerate kernel for 

U(s,x) in Eq.(15) and the orthogonal conditions of 
Fourier series, Eq.(27) reduces to 
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where lµ  is the eigenvalues of [L] matrix. The 

determinants for the two matrices are obtained by 

multiplying all the eigenvalues as shown below: 

NNU λλλλ 2
110 )(]det[ −= L  (30) 

NNL µµµµ 2
110 )(]det[ −= L  (31) 

Since the two matrices [U] and [L] are all symmetric 
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For the Dirichlet problem of the Eqs.(9) and (28), the 

possible fictitious frequencies occur at the position 

where k satisfies 
NNlkRJkH ll ),1(,,1,0,0)()()1( −±±== Lρ  (35) 

Since the term of )()1( ρkH l is never zero for any value 

of k, the k value satisfying Eq.(35) implies 

.0)( =kRJ l  (36) 

For the Neumann problem of the Eqs.(13) and (29), 

the possible fictitious frequencies occur at the position 

where k satisfies 
NNlkRJkH ll ),1(,,1,0,0)()()1( −±±==′ Lρ  (37) 

Since the term of )()1( ρkH l′ is never zero for any value 

of k, the k value satisfying Eq.(37), implies 
.0)( =kRJ l  (38) 

It is shown that the MFS also results in the irregular 

frequency no matter what the boundary condition is as 

well as the boundary element does. The irregular 

frequency also appears at the eigenvalue of interior 

problem where the fictitious boundary is connected by 

the source locations instead of the real boundary in the 

direct BEM.  

4. Burton & Miller method 
In the exterior acoustics of Helmholtz equation by 

using the dual BEM, Burton & Miller utilized the 
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product of hypersingular equation with an imaginary 

constant to the singular equation to deal with fictitious 

frequency which results from the non-uniqueness 

solution problem. We can extend this concept to the 

MFS approach as shown below: 
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where ϕ  is the density of mixed potential. By using 

the degenerate kernel and circulant, for the Dirichlet 
problem the possible fictitious frequencies occur at the 
position where k satisfies,  
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Since the terms of )()1( ρkH l
and ))()(( kRJ

k
i

kRJ ll ′+ are 

never zero for any value of k, the unique solution is 
obtained all wave numbers. Similarly, for the 
Neumann problem, the possible fictitious frequencies 
occur at the position where k satisfies, 
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Since the term of )()1( ρkH l′ is never zero for any value 

of k, the unique solution is obtained all wave numbers. 

5. Conclusions 
In this paper, the mechanism why fictitious 

frequencies occur in the MFS has been examined by 

considering radiation problem of a cylinder. Based on 

the circulant properties and degenerate kernels, an 

analytical scheme in discrete system of a cylinder was 

achieved. The results from this study indicated that the 

irregular frequency also appears at the eigenvalue of 

interior problem where the boundary is connected by 

the source locations instead of the real boundary in 

direct BEM. The position of irregular frequency 

depends on the source location R. The Burton & Miller 

technique was demonstrated to filter out the fictitious 

frequency analytically. 
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