
Elimination of spurious eigenfrequency in the boundary 

element method using CHEEF technique 
Y. T. Lee1, I. L. Chen2 and J. T. Chen3 

 
1Graduate Student, Department of Harbor and River Engineering, National 

Taiwan Ocean University, Keelung, 202, Taiwan 
2Associate Professor, Department of Naval Architecture, National Kaohsiung 

Institute of Marine Technology, Kaohsiung, 811, Taiwan 
3Professor, Department of Harbor and River Engineering, National Taiwan 

Ocean University, Keelung, 202, Taiwan 
 

Abstract 
It was found that the imaginary-part BEM for eigenproblems results in 

spurious eigensolutions. By adding the constraints from the null-field integral 
equation, the CHEEF method (Combined Helmholtz Exterior integral 
Equation Formulation) is proposed to eliminate spurious eigenfrequencies. 
The circular cavity is demonstrated to check the validity of the proposed 
method. 
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摘要 
使用虛部核函數之邊界元素法來求解 Helmholtz 特徵值問題時，會有假根
問題產生。為了解決假根問題，我們提出了一套 CHEEF法來過濾假根。由於缺
少實部的束制條件，可由零場外域積分方程取得額外的束制條件來補足不足的束

制條件。本文以一個圓形的例子來驗證 CHEEF法之可行性。 
關鍵字: 虛部邊界元素法; CHEEF; 奇異值分解法; 假根 
 

1. Introduction 
Based on the integral equations for the eigenproblem, the BEMs have been 

utilized to solve the interior and exterior problems for a long time. By 
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employing the complex-valued BEM [1], the eigenvalues and eigenmodes for 
the eigenproblem can be determined. However, complex-valued computation 
is time consuming and not simple. Nowak and Neves [2] proposed a multiple 
reciprocity method (MRM) in the real-valued computation only. To avoid 
complex-valued computation, the simplified method by using only the 
real-part or imaginary-part kernel was presented by De Mey [3]. Later, 
Hutchinson also utilized the real-part kernel to solve the membrane [4] and 
plate eigenproblems [5]. Although the complex-valued computation was 
avoided, they must face the occurrence of spurious eigenvalues. Shaw [6] 
commented that only the real-part formulation was incorrect since the 
eigenequation must satisfy the real-part and imaginary-part equations at the 
same time. Niwa et al. [7] also stated that “One must take care to use the 
complete Green's function for outgoing waves, as attempts to use just the real 
(singular) or imaginary (regular) part separately will not provide the 
complete spectrum”. Hutchinson [8] replied that the claim of incorrectness 
was perhaps a little strong since the real-part BEM does not miss any true 
eigenvalue although the solution is contaminated by spurious ones  
according to his numerical experience. However, no proof was provided. 
Chen and his coworkers [9] have derived the true and spurious eigenvalues 
for circular problems by using the degenerate kernels and circulants. 
Hutchinson [8] proposed detection technique by examining the modal shapes. 
Nevertheless, this technique may fail in some cases which have been 
discussed by Chen et al. [10]. A systematical technique to sort out spurious 
solution is not trivial. The complex-valued BEM may waste too much 
unnecessary calculation. However, either real-part or imaginary-part BEM 
results in spurious eigenvalues [10, 11]. A more efficient method using 
CHEEF concept will be addressed here for imaginary-part BEM according to 
the successful experience of real-part BEM [11]. 

In this paper, we will employ the CHEEF method to filter out the 
spurious eigenvalues for eigenproblems in the boundary element method. 
The position where to place the CHEEF point efficiently will be studied 
analytically and verified numerically. The optimum number of extra 
equations for the CHEEF points will also be discussed at the same time. After 
combining the influence matrix with the CHEEF equations, the SVD 
technique will be utilized to determine the eigenvalues, multiplicity and 
boundary modes. The boundary modes can be easily extracted from the right 
unitary matrix in SVD. The circular cavity will be demonstrated analytically 
and numerically to check the validity of the proposed method. 



2. Imaginary-part BEM in conjunction with CHEEF technique 

for 2-D acoustic eigenproblem 

The governing equation for an eigenproblem is the Helmholtz equation 
as follows: 

.,0)()( 22 Dxxuk ∈=+∇  (1) 
where 2∇  is the Laplacian operator, D is the domain of the cavity and k is 
the wave number which is the angular frequency over the speed of sound. 
The boundary conditions can be either the Dirichlet or Neumann type. Based 
on the dual formulation (singular and hypersingular formulation), the 
boundary integral equation for smooth boundary points are represented as 
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where C.P.V., R.P.V. and H.P.V. denote the Cauchy principal value, the 
Riemann principal value and Hadamard principal value, respectively; x is the 

field point and s is the source point, 
sn
sust

∂
∂

=
)()( , ),( xsU  is the fundamental 

solution, 
sn
xsUxsT

∂
∂

=
),(),( , 

xn
xsUxsL

∂
∂

=
),(),(  and 

xs nn
xsUxsM

∂∂
∂

=
),(),(

2

, B 

denotes the boundary enclosing D. Here, we choose only the imaginary-part 
fundamental solution for the kernel function. The closed form of 
imaginary-part fundamental solution is shown below: 
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where )()1(
0 krH  and )(0 krJ  denote the zeroth order of the first kind Hankel 

function and Bessel function, respectively, and Im denotes the imaginary part. 
Eqs. (2) and (3) are reduced to 
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By discretizing the boundary into 2N constant elements, Eqs (5) and (6) are 
written as 
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where the ][ IU , ][ IT , ][ IL  and ][ IM  matrices are the corresponding 
influence coefficient matrices resulting from the U , T, L and M kernels, 
respectively. Null-field integral equation of CHEEF point yields 
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For the Neumann problem, Eqs. (7) and (8) merge to 
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By employing the SVD technique for [C], we can plot the minimum singular 
value versus the wave number (k) and find the eigenvalue from the drop 
location. The analytical results of eigenequation, boundary eigen mode and 
null-field integral equation are summarized in Tables 1 and 2 for 
imaginary-part UT and LM BEMs, respectively. 
 

3. Numerical example 
We considered a circular cavity with radius 1 m subjected to Neumann 

boundary condition to check the validity of the CHEEF method. Twelve 
elements were adopted in the boundary element mesh. Fig. 1 shows the 
minimum singular value ( 1σ ) versus the wave number (k) where the true and 
spurious eigenvalues are obtained using the imaginary-part UT BEM.  Fig. 2 
shows the the minimum singular value ( 1σ ) versus the wave number (k) 
where only the true eigenvalues are obtained using the imaginary-part UT 
BEM in conjunction with CHEEF method. 
 

4. Conclusions 
The CHEEF method in conjunction with the SVD technique was 

proposed to determine the true eignevalues. If the CHEEF points were 
properly chosen, the spurious eigenvalues can be sorted out. A circular case 
was demonstrated to see the validity of the present formulation. 
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Table 1 True and spurious eigenequations using the imaginary-part UT BEM 

 Eigenequation 
Boundary 
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Null-field integral equation 
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0)( =kaJ n  
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0)cos())()(( =′ φρ nkaJkJC nnn  (LM)Dirichlet 

Problem Spurious 
0)( =kaJ n  
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0)cos())()(( =′ φρ nkaJkJC nnn  (UT)
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Table 2 True and spurious eigenequations using the imaginary-part LM BEM 

 Eigenequation 
Boundary 

Eigenmode 

Interior Mode ),( φρu
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Null-field integral equation 

True   
0)( =kaJ n  
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Problem Spurious 
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0)cos())()(( =′′ φρ nkaJkJC nnn  (LM)

where LL,2,1,0=n  
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Fig. 1 The minimum singular value 1σ  
versus the wave number k by using UT 
formulation. 

Fig. 2 The minimum singular value 1σ  
versus the wave number k by using UT 
formulation with two CHEEF points. 



 


