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Regularized meshless method for antiplane piezoelectricity2

problems with multiple inclusions3

K.H. Chen1, J.H. Kao2 and J.T. Chen3
4

Abstract: In this paper, solving antiplane piezoelectricity problems with multi-5

ple inclusions are attended by using the regularized meshless method (RMM). This6

is made possible that the troublesome singularity in the MFS disappears by em-7

ploying the subtracting and adding-back technique. The governing equations for8

linearly electro-elastic medium are reduced to two uncoupled Laplace’s equations.9

The representations of two solutions of the two uncoupled system are obtained10

by using the RMM. By matching interface conditions, the linear algebraic system11

is obtained. Finally, typical numerical examples are presented and discussed to12

demonstrate the accuracy of the solutions.13

Keywords: antiplane shear, piezoelectricity, regularized meshless method, method14

of fundamental solutions, subtracting and adding-back techniques, electric field,15

displacement field, inclusion.16

1 Introduction17

In recent years, the significant progress in the development of piezoelectric ma-18

terials or structures has been made by the research community [Bleustein (1968),19

Chung and Ting (1996), Honein; Honein and Herrmann (1992), Honein and Honein20

(1995), Pak (1992), Sladek; Sladek and Zhang (2007), Sladek; Sladek; Zhang;21

Garcia-Sanche and W " u nsche (2006), Sze; Jin; Sheng and Li (2003), Wu and Syu22

(2006)]. It is well known that piezoelectric materials undergo deformation when23

subject to electric field because of the electro-mechanical coupling phenomenon.24

Bleustein (1968) investigated the antiplane piezoelectric dynamics problem and25

discovered the existence of Bleustein wave. Pak (1992) has considered a more26
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general case by introducing a piezoelectric inclusion, which in the limiting case of27

vanishing elastic and piezoelectric constants, become a permeable hole containing28

free space with electric fields. He obtained an analytical solution by using the alter-29

native method. Later, Honein and Honein (1995) have visited the problem of two30

circular piezoelectric fibers subjected to out-of-plane displacement and in-plane31

electric fields. On the other hand, Chung and Ting (1996) have used basic solu-32

tion [Stroh (1962)] approach for solved the problem of an elliptic hole in a solid33

of anisotropic material. Zhong and Meguid (1997) employ the complex variable34

method to treat the partially-debonded circular inhomogeneity problems in mate-35

rials under antiplane shear and inplane electric field. In 1997, Chen and Chiang36

solved for 2D problems of an infinite piezoelectric medium containing a solitary37

cavity or rigid inclusion of arbitrary shape, subjected to a coupled antiplane me-38

chanical and inplane electric load at the matrix by using the conformal mapping39

technique. In recent years, Chao and Chang (1999) studied the stress concentra-40

tion and tangential stress distribution on double piezoelectric inclusions by using41

the complex variable theory and the method of successive approximations. Wu;42

Chen and Meng (2000) employ conformal mapping and the theorem of analytic43

continuation to solve the problem of two piezoelectric circular cylindrical inclu-44

sions in the infinite piezoelectric medium. Based on the method of fundamental45

solutions (MFS) [Alves and Antunes (2005), Godinho; Tadeu and Amado (2007),46

Chen; Golberg and Hon (1998), Fairweather and Karageorghis (1998), Kupradze47

and Aleksidze (1964), Poullikkas; Karageorghis and Georgiou (1998), Reutskiy48

(2005), Tsangaris; Smyrlis and Karageorghis (2004) Young; Tsai; Lin and Chen49

(2006)], we will develop a novel meshless method to solve antiplane piezoelec-50

tricity problems with multiple inclusions without the troublesome singularity is51

embedded in the linear algebraic system.52

The MFS is one important method of the meshless methods [Atluri; Liu and Han53

(2006), Han and Atluri (2004), Li and Atluri (2008), Liu; Han; Rajendran and54

Atluri (2008), Sladek; Sladek and Atluri (2004), Sladek; Sladek; Solek and Wen55

(2008), Sladek; Sladek; Solek; Wen and Atluri (2008), Sze; Jin; Sheng and Li56

(2003)] and belongs to a boundary method of boundary value problems, which can57

be viewed as a discrete type of indirect boundary element method. The method is58

relatively easy to implement. It is adaptive in the sense that it can take into account59

sharp changes in the solution and in the geometry of the domain [Chen; Kuo; Chen60

and Cheng (2000), Chen; Chen; Chen; Lee and Yeh (2004)] and can easily treat61

with complex boundary conditions [Karageorghis and Georgiou (1998)]. A survey62

of the MFS and related methods over the last thirty years has been found [Kupradze63

and Aleksidze (1964)]. However, the MFS is still not a popular method because of64

the debatable artificial boundary distance of source location in numerical imple-65
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mentation especially for a complicated geometry. The diagonal coefficients of in-66

fluence matrices are divergent in the conventional case when the fictitious boundary67

is far away from the physical boundary. It results in an ill-posed problem when the68

fictitious boundary approaches the physical boundary since the condition number69

for the influence matrix becomes very large.70

We have developed a modified MFS, namely regularized meshless method (RMM),71

to overcome the drawback of MFS [Chen; Kao; Chen; Young and Lu (2006), Young72

Chen and Lee (2006)]. The method eliminates the well-known drawback of equiv-73

ocal artificial boundary. The subtracting and adding-back techniques [Chen; Kao;74

Chen; Young and Lu (2006), Young; Chen and Lee (2005), Young; Chen and Lee75

(2006)] can regularize the singularity and hypersingularity of the kernel functions.76

This method can simultaneously distribute the observation and source points on the77

physical boundary even using the singular kernels instead of non-singular kernels78

[Chen; Chang; Chen and Lin (2002), Chen; Chang; Chen and Chen (2002)]. The79

diagonal terms of the influence matrices can be extracted out by using the proposed80

technique. Recently, a simple approach to derive the analytical formula of the di-81

agonal elements of the interpolation matrix of the regularized meshless method82

(RMM) for regular and irregular domain problems have been studied [Chen and83

Song (2009), Song and Chen (2009)].84

This paper is an extension work of the paper [Chen; Chen and Kao (2008)] for solv-85

ing the antiplane elasticity problem. The RMM is extended to solve the antiplane86

piezoelectricity problem and multiple inclusions with arbitrary shape are embedded87

in an infinite matrix in this paper. A general-purpose program was developed to88

solve antiplane piezoelectricity problems with arbitrary number of inclusions. The89

results are compared with analytical solutions and those of the method of succes-90

sive approximations [Chao and Chang (1999)]. Furthermore, the tangential electric91

field distribution and stress concentration for different ratios of piezoelectric mod-92

ule will be studied through several examples to show the validity of our method.93

2 Governing equation and boundary conditions94

Consider piezoelectric inclusions embedded in an infinite domain as shown in Fig.95

1. The inclusions and matrix have different material properties. The matrix is sub-96

jected to a remote antiplane shear, σzy = τ∞, and a remote inplane electric field,97

Ey = E∞. A uniform electric field can be induced in piezoelectric material by ap-98

plying a potential field E = E∞.99

For this problem, the out-of-plane elastic displacement w and the electric potential
φ are only functions of x and y, such that

w = w(x,y), φ = φ(x,y). (1)
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Figure 1:  Problem sketch 
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Figure 1: Problem sketch

The equilibrium equations [Chao and Chang (1999)] for the stresses and the electric
displacements are

∂σzx/∂x+∂σzy/∂y = 0, ∂Dx/∂x+∂Dy/∂y = 0, (2)

where σzx and σzy are the shear stresses, while Dx and Dy are the electric dis-
placements. For linear piezoelectric materials, the constitutive relations [Chao and
Chang (1999)] are written as

σzx = c44γzx− e15Ex, σzy = c44γzy− e15Ey,

Dx = e15γzx + ε11Ex, Dy = e15γzy + ε11Ey,
(3)

in which γzx and γzy are the shear strains, Ex and Ey are the electric fields, c44 is
the elastic modulus, e15 denotes the piezoelectric modulus and ε11 represents the
dielectric modulus. The shear strains γzx and γzy and the electric fields Ex and Ey

are obtained by taking gradient of the displacement potential w and the electric
potential φ by the following relations:

γzx = ∂w/∂x, γzy = ∂w/∂y,

Ex =−∂φ/∂x, Ey =−∂φ/∂y.
(4)
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Substituting Eqs. (3) and (4) into (2), we can obtain the following governing equa-
tions:{

c44∇2w+ e15∇2φ = 0

e15∇2w− ε11∇2φ = 0
(5)

From Eq. (5), we can obtain the equations as

∇2w = 0, ∇2
φ = 0, (6)

where ∇2 is the Laplacian operator. The continuity conditions across the matrix-
inclusion interface are written as

wi = wm, σ
i
zr = σ

m
zr , (7)

φ
i = φ

m, Di
r = Dm

r , (8)

where the superscripts i and m denote the inclusion and material, respectively. The100

loading is remote shear.101

3 Review of conventional method of fundamental solutions102

By employing the RBF technique [Chen and Tanaka (2002), Cheng (2000)], the
representation of the solution in Eq. (6) for multiple inclusions problem as shown
in Fig. 1, can be approximated in terms of the strengths α j of the singularities at s j

as

u(xi) =
N

∑
j=1

T (s j,xi)α j =
N1

∑
j=1

T (s j,xi)α j +
N1+N2

∑
j=N1+1

T (s j,xi)α j + · · ·

+
N

∑
j=N1+N2+···+Nm−1+1

T (s j,xi)α j, (9)

and

t(xi) =
N

∑
j=1

M(s j,xi)α j =
N1

∑
j=1

M(s j,xi)α j +
N1+N2

∑
j=N1+1

M(s j,xi)α j + · · ·

+
N

∑
j=N1+N2+···+Nm−1+1

M(s j,xi)α j, (10)

where u(xi) can be denoted as w(xi) or φ(xi), t(xi) = ∂u(xi)/∂nx, T (s j,xi) is RBF,
xi and s j represent ith observation point and jth source point, respectively, α j
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are the jth unknown coefficients (strength of the singularity), N1,N2, · · · ,Nm are
the numbers of source points on m numbers of boundaries of inclusions, respec-
tively, while N is the total numbers of source points (N = N1 +N2 + · · ·+Nm) and
M(s j,xi) = ∂T (s j,xi)/∂nxi . After BCs are satisfied at the boundary points, the co-

efficients
{

α j
}N

j=1 are determined. The chosen bases are the double layer potentials
[Chen; Kao; Chen; Young and Lu (2006), Young; Chen and Lee (2005)] as

T (s j,xi) =
−< (xi− s j),n j >

r2
i j

, (11)

M(s j,xi) =
2 < (xi− s j),n j >< (xi− s j),ni >

r4
i j

−
< n j,ni >

r2
i j

, (12)

where < , > is the inner product of two vectors, ri j is
∣∣s j− xi

∣∣, n j is the normal103

vector at s j, and ni is the normal vector at xi.104

It is noted that the double layer potentials have both singularity and hypersingu-105

larity when source and field points coincide, which lead to difficulty in the con-106

ventional MFS. The fictitious distance between the fictitious (auxiliary) boundary107

and the physical boundary, d, needs to be chosen deliberately. To overcome the108

abovementioned shortcoming, s j is distributed on the physical boundary, by using109

the proposed regularized technique as written in Section 4.110

4 Regularized meshless method111

The antiplane piezoelectricity problem with multiple inclusions is decomposed into112

two parts as shown in Fig. 2.113

One is the exterior problem for matrix with hole subjected to the far-displacement114

field and far-electric field, the other is the interior problem for each inclusion. The115

two boundary data of matrix and inclusion satisfy the interface conditions in Eqs.116

(7) and (8). Furthermore, the exterior problem for matrix with holes subjected to a117

far-displacement field and far-electric field can be superimposed by two systems as118

shown in Fig. 3.119

One is an infinite domain with no hole subjected to a far-displacement field and120

far-electric field, the other is the matrix with holes. The representations of the two121

solutions for the interior problem (w(xI
i
) and φ(xI

i
)) and exterior problem (w(xO

i
)122

and φ(xO
i
)) are formulated by using the RMM as follows:123

4.1 Interior problem124

When the collocation point xi approaches the source point s j, the kernels in Eqs.
(9) and (10) become singular. Eqs. (9) and (10) for the multiple-inclusions problem
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Figure 2:  Decomposition of the problem 
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Figure 2: Decomposition of the problem

need to be regularized by using the regularization of subtracting and adding-back
techniques [Chen; Kao; Chen; Young and Lu (2006), Young; Chen and Lee (2005)]
as follows:

u(xI
i ) =

N1

∑
j=1

T (sI
j,x

I
i )α j + · · ·+

N1+···+Np

∑
j=N1+···+NP−1+1

T (sI
j,x

I
i )α j + · · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

T (sI
j,x

I
i )α j +

N

∑
j=N1+···+Nm−1+1

T (sI
j,x

I
i )α j

−
N1+···+Np

∑
j=N1+···+NP−1+1

T (sI
j,x

I
i )αi, xI

i ∈ Bp, p = 1,2,3, · · · ,m (13)

where u(xI
i ) can be denoted as w(xI

i
) and φ(xI

i
) in which the superscript I denotes

the interior domain, xI
i is located on the boundaries Bp (p = 1,2,3, · · · ,m), and

N1+···+Np

∑
j=N1+···+Np−1+1

T (sI
j,x

I
i ) = 0, xI

i ∈ Bp, p = 1,2,3, · · · ,m. (14)
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Figure 3: Decomposition of the problem of Fig. 2 (a)

The detailed derivations of Eq. (14) are given in the reference [Young; Chen and
Lee (2005)]. Therefore, we can obtain

u(xI
i )=

N1

∑
j=1

T (sI
j,x

I
i )α j +· · ·+

i−1

∑
j=N1+···+Np−1+1

T (sI
j,x

I
i )α j +

N1+···+Np

∑
j=i+1

T (sI
j,x

I
i )α j +· · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

T (sI
j,x

I
i )α j +

N

∑
j=N1+···+Nm−1+1

T (sI
j,x

I
i )α j

−

[
N1+···+Np

∑
j=N1+···+NP−1+1

T (sI
j,x

I
i )−T (sI

i ,x
I
i )

]
αi, xI

i ∈ Bp, p = 1,2,3, · · · ,m. (15)
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Similarly, the boundary flux is obtained as

t(xI
i ) =

N1

∑
j=1

M(sI
j,x

I
i )α j + · · ·+

N1+···+Np

∑
j=N1+···+Np−1+1

M(sI
j,x

I
i )α j + · · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

M(sI
j,x

I
i )α j +

N

∑
j=N1+···+Nm−1+1

M(sI
j,x

I
i )α j

−
N1+···+Np

∑
j=N1+···+NP−1+1

M(sI
j,x

I
i )αi, xI

i ∈ Bp, p = 1,2,3, · · · ,m. (16)

where t(xI
i ) = ∂u(xI

i )/∂nxi and

N1+···+Np

∑
j=N1+···+Np−1+1

M(sI
j,x

I
i ) = 0, xI

i ∈ Bp, p = 1,2,3, · · · ,m. (17)

The detailed derivations of Eq. (14) are also given in the reference [Young; Chen
and Lee (2005)]. Therefore, we obtain

t(xI
i ) =

N1

∑
j=1

M(sI
j,x

I
i )α j + · · ·+

i−1

∑
j=N1+···+Np−1+1

M(sI
j,x

I
i )α j

+
N1+···+Np

∑
j=i+1

M(sI
j,x

I
i )α j + · · ·+

N1+···+Nm−1

∑
j=N1+···+Nm−2+1

M(sI
j,x

I
i )α j

+
N

∑
j=N1+···+Nm−1+1

M(sI
j,x

I
i )α j−

[
N1+···+Np

∑
j=N1+···+NP−1+1

M(sI
j,x

I
i )−M(sI

i ,x
I
i )

]
αi,

xI
i ∈ Bp, p = 1,2,3, · · · ,m. (18)

4.2 Exterior problem125

When the observation point xO
i locates on the boundaries Bp (p = 1,2,3, · · · ,m),

Eq. (13) becomes

u(xO
i ) =

N1

∑
j=1

T (sO
j ,xO

i )α j + · · ·+
N1+···+Np

∑
j=N1+···+NP−1+1

T (sO
j ,xO

i )α j + · · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

T (sO
j ,xO

i )α j +
N

∑
j=N1+···+Nm−1+1

T (sO
j ,xO

i )α j

−
N1+···+Np

∑
j=N1+···+NP−1+1

T (sI
j,x

I
i )αi, xOorI

i ∈ Bp, p = 1,2,3, · · · ,m, (19)
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where u(xO
i ) can be denoted as w(xO

i
) and φ(xO

i
) in which the superscript O denotes

the exterior domain, xO
i is also located on the boundaries Bp (p = 1,2,3, · · · ,m).

Hence, we obtain

u(xO
i ) =

N1

∑
j=1

T (sO
j ,xO

i )α j + · · ·+
i−1

∑
j=N1+···+Np−1+1

T (sO
j ,xO

i )α j

+
N1+···+Np

∑
j=i+1

T (sO
j ,xO

i )α j + · · ·+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

T (sO
j ,xO

i )α j

+
N

∑
j=N1+···+Nm−1+1

T (sO
j ,xO

i )α j−

[
N1+···+Np

∑
j=N1+···+NP−1+1

T (sI
j,x

I
i )−T (sO

i ,xO
i )

]
αi,

xOorI
i ∈ Bp, p = 1,2,3, · · · ,m. (20)

Similarly, the boundary flux is obtained as

t(xO
i ) =

N1

∑
j=1

M(sO
j ,xO

i )α j + · · ·+
N1+···+Np

∑
j=N1+···+Np−1+1

M(sO
j ,xO

i )α j + · · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

M(sO
j ,xO

i )α j +
N

∑
j=N1+···+Nm−1+1

M(sO
j ,xO

i )α j

−
N1+···+Np

∑
j=N1+···+NP−1+1

M(sI
j,x

I
i )αi, xOorI

i ∈ Bp, p = 1,2,3, · · · ,m, (21)

where t(xO
i ) = ∂u(xO

i )/∂nxi . Hence, we obtain

t(xO
i ) =

N1

∑
j=1

M(sO
j ,xO

i )α j + · · ·+
i−1

∑
j=N1+···+Np−1+1

M(sO
j ,xO

i )α j

+
N1+···+Np

∑
j=i+1

M(sO
j ,xO

i )α j + · · ·+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

M(sO
j ,xO

i )α j

+
N

∑
j=N1+···+Nm−1+1

M(sO
j ,xO

i )α j−

[
N1+···+Np

∑
j=N1+···+NP−1+1

M(sI
j,x

I
i )−M(sO

i ,xO
i )

]
αi,

xOorI
i ∈ Bp, p = 1,2,3, · · · ,m. (22)

According to the dependence of the normal vectors for inner and outer boundaries
[Young; Chen and Lee (2005)], their relationships are{

T (sI
j,x

I
i ) =−T (sO

j ,xO
i ), i 6= j

T (sI
j,x

I
i ) = T (sO

j ,xO
i ), i = j

(23)
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M(sI

j,x
I
i ) = M(sO

j ,xO
i ), i 6= j

M(sI
j,x

I
i ) = M(sO

j ,xO
i ), i = j

(24)

where the left and right hand sides of the equal sign in Eqs. (23) and (24) denote126

the kernels for observation and source point with the inward and outward normal127

vectors, respectively.128

By using the proposed technique, the singular terms in Eqs. (9) and (10) have been129

transformed into regular terms (−

[
N1+N2+···+Np

∑
j=N1+N2+···+NP−1+1

T (sI
j,x

I
i )−T (sI or O

i ,xI or O
i )

]
130

and −

[
N1+···+Np

∑
j=N1+···+Np−1+1

M(sI
j,x

I
i )−M(sI or O

i ,xI or O
i )

]
) in Eqs. (15), (18), (20) and131

(22), respectively, where p = 1,2,3, · · · ,m. The terms of
N1+···+Np

∑
j=N1+···+NP−1+1

T (sI
j,x

I
i )132

and
N1+···+Np

∑
j=N1+···+Np−1+1

M(sI
j,x

I
i ) are the adding-back terms and the terms of T (sI or O

i ,xI or O
i )133

and M(sI or O
i ,xI or O

i ) are the subtracting terms in the two brackets for regulariza-134

tion. After using the abovementioned method of regularization of subtracting and135

adding-back techniques [Chen; Kao; Chen; Young and Lu (2006), Young; Chen136

and Lee (2005)], we are able to remove the singularity and hypersingularity of the137

kernel functions.138

5 Derivation of influence matrices for arbitrary domain problems139

5.1 Interior problem (Inclusion)140

From Eqs. (15) and (18), the linear algebraic system can be obtained as:


u1
...

uN

=


[
T I

11

]
· · ·

[
T I

1N

]
...

. . .
...[

T I
N1

]
· · ·

[
T I

NN

]



α1
...

αN

 , q ∈ w or φ , (25)


t1
...

tN

=


[
MI

11

]
· · ·

[
MI

1N

]
...

. . .
...[

MI
N1

]
· · ·

[
MI

NN

]



α1
...

αN

 , q ∈ w or φ , (26)
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where w and φ denote the out-of-plane elastic displacement and in-of-plane electric
potential, respectively, and

[
T I

11

]
=


A11 T (sI

2,x
I
1) · · · T (sI

N1
,xI

1)
T (sI

1,x
I
2) A22 · · · T (sI

N1
,xI

2)
...

...
. . .

...
T (sI

1,x
I
N1

) T (sI
2,x

I
N1

) · · · ANN


N1×N1

, (27)

where

A11 =−

[
N1

∑
j=1

T (sI
j,x

I
1)−T (sI

1,x
I
1)

]
,

A22 =−

[
N1

∑
j=1

T (sI
j,x

I
2)−T (sI

2,x
I
2)

]
,

ANN =−

[
N1

∑
j=1

T (sI
j,x

I
N1

)−T (sI
N1

,xI
N1

)

]
.

[
T I

1N

]
=


T (sI

N1+···+Nm−1+1,x
I
1) T (sI

N1+···+Nm−1+2,x
I
1) · · · T (sI

N ,xI
1)

T (sI
N1+···+Nm−1+1,x

I
2) T (sI

N1+···+Nm−1+2,x
I
2) · · · T (sI

N ,xI
2)

...
...

. . .
...

T (sI
N1+···+Nm−1+1,x

I
N1

) T (sI
N1+···+Nm−1+2,x

I
N1

) · · · T (sI
N ,xI

N1
)


N1×Nm

,

(28)

[
T I

N1

]
=

T (sI
1,x

I
N1+···+Nm−1+1) T (sI

2,x
I
N1+···+Nm−1+1) · · · T (sI

N1
,xI

N1+···+Nm−1+1)
T (sI

1,x
I
N1+···+Nm−1+2) T (sI

2,x
I
N1+···+Nm−1+2) · · · T (sI

N1
,xI

N1+···+Nm−1+2)
...

...
. . .

...
T (sI

1,x
I
N) T (sI

2,x
I
N) · · · T (sI

N1
,xI

N)


Nm×N1

,

(29)

[
T I

NN

]
=

 A11 · · · T (sI
N1+···+Nm−1+1,x

I
N)

...
. . .

...
T (sI

N ,xI
N1+···+Nm−1+1) · · · ANN


Nm×Nm

, (30)
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where

A11 =−

[
N

∑
j=N1+···Nm−1+1

T (sI
j,x

I
N1+···+Nm−1+1)−T (sI

N1+···+Nm−1+1,x
I
N1+···+Nm−1+1)

]
,

ANN =−

[
N

∑
j=N1+···Nm−1+1

T (sI
j,x

I
N)−T (sI

N ,xI
N)

]
.

[
MI

11

]
=


A11 M(sI

2,x
I
1) · · · M(sI

N1
,xI

1)
M(sI

1,x
I
2) A22 · · · M(sI

N1
,xI

2)
...

...
. . .

...
M(sI

1,x
I
N1

) M(sI
2,x

I
N1

) · · · ANN


N1×N1

, (31)

where

A11 =−

[
N1

∑
j=1

M(sI
j,x

I
1)−M(sI

1,x
I
1)

]
,

A22 =−

[
N1

∑
j=1

M(sI
j,x

I
2)−M(sI

2,x
I
2)

]
,

ANN =−

[
N1

∑
j=1

M(sI
j,x

I
N1

)−M(sI
N1

,xI
N1

)

]
.

[
MI

1N

]
=


M(sI

N1+···+Nm−1+1,x
I
1) M(sI

N1+···+Nm−1+2,x
I
1) · · · M(sI

N ,xI
1)

M(sI
N1+···+Nm−1+1,x

I
2) M(sI

N1+···+Nm−1+2,x
I
2) · · · M(sI

N ,xI
2)

...
...

. . .
...

M(sI
N1+···+Nm−1+1,x

I
N1

) M(sI
N1+···+Nm−1+2,x

I
N1

) · · · M(sI
N ,xI

N1
)


N1×Nm

,

(32)

[
MI

N1

]
=

M(sI
1,x

I
N1+···+Nm−1+1) M(sI

2,x
I
N1+···+Nm−1+1) · · · M(sI

N1
,xI

N1+···+Nm−1+1)
M(sI

1,x
I
N1+···+Nm−1+2) M(sI

2,x
I
N1+···+Nm−1+2) · · · M(sI

N1
,xI

N1+···+Nm−1+2)
...

...
. . .

...
M(sI

1,x
I
N) M(sI

2,x
I
N) · · · M(sI

N1
,xI

N)


Nm×N1

,

(33)
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[
MI

NN

]
=

 A11 · · · M(sI
N1+···+Nm−1+1,x

I
N)

...
. . .

...
M(sI

N ,xI
N1+···+Nm−1+1) · · · ANN


Nm×Nm

, (34)

where

A11 =−

[
N

∑
j=N1+···Nm−1+1

M(sI
j,x

I
N1+···+Nm−1+1)−M(sI

N1+···+Nm−1+1,x
I
N1+···+Nm−1+1)

]
,

ANN =−

[
N

∑
j=N1+···Nm−1+1

M(sI
j,x

I
N)−M(sI

N ,xI
N)

]
.

5.2 Exterior problem (Matrix)141

Eqs. (20) and (22) yield
u1
...

uN

=


[
T O

11

]
· · ·

[
T O

1N

]
...

. . .
...[

T O
N1

]
· · ·

[
T O

NN

]



α1
...

αN

 , q ∈ w or φ , (35)


t1
...

tN

=


[
MO

11

]
· · ·

[
MO

1N

]
...

. . .
...[

MO
N1

]
· · ·

[
MO

NN

]



α1
...

αN

 , q ∈ w or φ , (36)

in which

[
T O

11

]
=


A11 T (sO

2 ,xO
1 ) · · · T (sO

N1
,xO

1 )
T (sO

1 ,xO
2 ) A22 · · · T (sO

N1
,xO

2 )
...

...
. . .

...
T (sO

1 ,xO
N1

) T (sO
2 ,xO

N1
) · · · ANN


N1×N1

, (37)

where

A11 =−

[
N1

∑
j=1

T (sI
j,x

I
1)−T (sO

1 ,xO
1 )

]
,

A22 =−

[
N1

∑
j=1

T (sI
j,x

I
2)−T (sO

2 ,xO
2 )

]
,

ANN =−

[
N1

∑
j=1

T (sI
j,x

I
N1

)−T (sO
N1

,xO
N1

)

]
.
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[
T O

1N

]
=


T (sO

N1+···+Nm−1+1,x
O
1 ) T (sO

N1+···+Nm−1+2,x
O
1 ) · · · T (sO

N ,xO
1 )

T (sO
N1+···+Nm−1+1,x

O
2 ) T (sO

N1+···+Nm−1+2,x
O
2 ) · · · T (sO

N ,xO
2 )

...
...

. . .
...

T (sO
N1+···+Nm−1+1,x

O
N1

) T (sO
N1+···+Nm−1+2,x

O
N1

) · · · T (sO
N ,xO

N1
)


N1×Nm

,

(38)

[
T O

N1

]
=

T (sO
1 ,xO

N1+···+Nm−1+1) T (sO
2 ,xO

N1+···+Nm−1+1) · · · T (sO
N1

,xO
N1+···+Nm−1+1)

T (sO
1 ,xO

N1+···+Nm−1+2) T (sO
2 ,xO

N1+···+Nm−1+2) · · · T (sO
N1

,xO
N1+···+Nm−1+2)

...
...

. . .
...

T (sO
1 ,xO

N) T (sO
2 ,xO

N) · · · T (sO
N1

,xO
N)


Nm×N1

,

(39)

[
T O

NN

]
=

 A11 · · · T (sO
N1+···+Nm−1+1,x

O
N)

...
. . .

...
T (sO

N ,xO
N1+···+Nm−1+1) · · · ANN


Nm×Nm

, (40)

where

A11 =−

[
N

∑
j=N1+···Nm−1+1

T (sI
j,x

I
N1+···+Nm−1+1)−T (sO

N1+···+Nm−1+1,x
O
N1+···+Nm−1+1)

]
,

ANN =−

[
N

∑
j=N1+···Nm−1+1

T (sI
j,x

I
N)−T (sO

N ,xO
N)

]
.

[
MO

11

]
=


A11 M(sO

2 ,xO
1 ) · · · M(sO

N1
,xO

1 )
M(sO

1 ,xO
2 ) A22 · · · M(sO

N1
,xO

2 )
...

...
. . .

...
M(sO

1 ,xO
N1

) M(sO
2 ,xO

N1
) · · · ANN


N1×N1

, (41)

where

A11 =−

[
N1

∑
j=1

M(sI
j,x

I
1)−M(sO

1 ,xO
1 )

]
,

A22 =−

[
N1

∑
j=1

M(sI
j,x

I
2)−M(sO

2 ,xO
2 )

]
,

ANN =−

[
N1

∑
j=1

M(sI
j,x

I
N1

)−M(sO
N1

,xO
N1

)

]
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[
MO

1N

]
=


M(sO

N1+···+Nm−1+1,x
O
1 ) M(sO

N1+···+Nm−1+2,x
O
1 ) · · · M(sO

N ,xO
1 )

M(sO
N1+···+Nm−1+1,x

O
2 ) M(sO

N1+···+Nm−1+2,x
O
2 ) · · · M(sO

N ,xO
2 )

...
...

. . .
...

M(sO
N1+···+Nm−1+1,x

O
N1

) M(sO
N1+···+Nm−1+2,x

O
N1

) · · · M(sO
N ,xO

N1
)


N1×Nm

,

(42)

[
MO

N1

]
=

M(sO
1 ,xO

N1+···+Nm−1+1) M(sO
2 ,xO

N1+···+Nm−1+1) · · · M(sO
N1

,xO
N1+···+Nm−1+1)

M(sO
1 ,xO

N1+···+Nm−1+2) M(sO
2 ,xO

N1+···+Nm−1+2) · · · M(sO
N1

,xO
N1+···+Nm−1+2)

...
...

. . .
...

M(sO
1 ,xO

N) M(sO
2 ,xO

N) · · · M(sO
N1

,xO
N)


Nm×N1

,

(43)

[
MO

NN

]
=

 A11 · · · M(sO
N1+···+Nm−1+1,x

O
N)

...
. . .

...
M(sO

N ,xO
N1+···+Nm−1+1) · · · ANN


Nm×Nm

, (44)

where

A11 =−

[
N

∑
j=N1+···Nm−1+1

M(sI
j,x

I
N1+···+Nm−1+1)−M(sO

N1+···+Nm−1+1,x
O
N1+···+Nm−1+1)

]
,

ANN =−

[
N

∑
j=N1+···Nm−1+1

M(sI
j,x

I
N)−M(sO

N ,xO
N)

]
.
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6 Derivation of influence matrices for piezoelectricity problems142

Substituting Eqs. (25), (26), (35) and (36) into Eqs. (7) and (8), the linear algebraic
system for antiplane piezoelectricity problem can be obtained as:
−
[
T I

w

] [
T O

w

]
0 0

0 0 −
[
T I

φ

] [
T O

φ

]
− ci

44
cm

44

[
MI

w

]
−
[
MO

w

]
− ei

15
cm

44

[
MI

φ

]
− em

15
cm

44

[
MO

φ

]
−
[
MI

w

]
− em

15
ei

15

[
MO

w

]
ε i

11
ei

15

[
MI

φ

]
εm

11
ei

15

[
MO

φ

]


4×4



{
α i

w

}
{αm

w }{
α i

φ

}{
αm

φ

}


4×1

=


−{w∞}
−{φ ∞}{

∂w
∂n

∞}
+ em

15
cm

44

{
∂φ

∂n

∞}
em

15
ei

15

{
∂w
∂n

∞}− εm
11

ei
15

{
∂φ

∂n

∞}


4×1

, (45)

where w and φ denote the out-of-plane elastic displacement and electric potential,143

respectively. The unknown densities (
{

α i
w

}
, {αm

w },
{

α i
φ

}
,
{

αm
φ

}
) in Eq. (45) can144

be obtained by implementing the linear algebraic solver and the stress concentration145

can be solved by using Eq. (3). To express clearly, the solution procedures is listed146

in Fig. 4.147

7 Numerical examples148

In order to show the accuracy and validity of the proposed method, the antiplane149

piezoelectricity problems with multiple inclusions subjected to the remote shear150

and the far-electric field are considered. Two examples contain single piezoelectric151

inclusion and two piezoelectric inclusions under antiplane shear, respectively.152

7.1 Single piezoelectric inclusion153

The single piezoelectric inclusion in a piezoelectric matrix is shown in Fig. 5.154

In this case, the remote shear, shear modulus, piezoelectric modulus, dielectric155

modulus and elastic modulus are τ = 5×107 Nm−2, ei
15 = 10.0 Cm−2, εm

11 = ε i
11 =156

1.51×10−8 CV−1m−1and cm
44 = ci

44 = 3.53×1010 Nm−2, respectively. Stress con-157

centrations versus different piezoelectric modulus ratio are shown in Figs. 6 and158

7, respectively. When E =−106V/m and em
15/ei

15 =−10 for negative poling direc-159

tion, the negative maximum stress concentration occurs in the matrix of θ = 0 as160

shown in Fig. 6. However, the positive maximum stress concentration occurs in the161

matrix of θ = π/2 as shown in Fig. 7. Contours of electric potential φ and shear162
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Figure 4:  Flowchart of solution procedures 
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continuity conditions of Eqs. (7) and (8) yields 
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Solve { }iwα , { }mwα , { }iφα , { }mφα  

Find the stress concentration (Eq. (3)) 

End 

Figure 4: Flowchart of solution procedures

stress σm
zy are plotted in Fig. 8 (a)∼(b), respectively. Good agreement is made after163

comparing with the analytical solution [Honein and Honein (1995)].164

7.2 Two piezoelectric inclusions165

Two piezoelectric inclusions in piezoelectric matrix are shown in Fig. 9.166
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Figure 5:  Problem sketch of single piezoelectric inclusion 
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Figure 5: Problem sketch of single piezoelectric inclusion

The remote loading and material constants are τ = 5× 107Nm−2, cm
44 = ci

44 =167

3.53×1010Nm−2, εm
11 = ε i

11 = 1.51×10−8CV−1m−1 and ei
15 = 10.0Cm−2, respec-168

tively. Stress concentrations σm
zθ

/τ versus different piezoelectric modulus ratios are169

plotted in Fig. 10. On the other hand, stress concentrations σm
zr/τ versus different170

piezoelectric modulus ratios are respectively plotted in Fig. 11. The negative max-171

imum stress concentration occurs in the matrix of θ = 0 and β = π/2 as shown in172

Fig. 10 when E = −106v/m and em
15/ei

15 = −10. However, the maximum stress173

concentration occurs in the matrix at θ = π/2 and β = π/2 as shown in Fig. 11.174

When E = 106v/m, em
15/ei

15 = −5 and β = π/2, the tangential electric field along175

the boundaries of the matrix distribution function of the different ratios d/r1 are176

shown in Fig. 12 (a)∼(c).177

It is interesting to find that the tangential electric field is not continuous at θ =178

π/2, when the inclusion approaches another inclusion. Stress concentrations of the179

different ratios of d/r1 at β = 0 versus piezoelectric modulus ratio are shown in180

Fig. 13. It is found that the stress concentration factor becomes larger, when the181

two inclusions approach each other inclusion. The results are well compared with182

those of the method of successive approximations [Chao and Chang (1999)].183

8 Conclusions184

In this study, we employ the RMM to solve piezoelectricity problems with multi-185

ple inclusions under antiplane shear and in-plane electric field. Only the boundary186

nodes on the physical boundary are required. The major difficulty of the coinci-187

dence of the source and collocation points in the conventional MFS is then circum-188
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Figure 6: Stress concentration σm
zθ

/τ result of single piezoelectric inclusion in
piezoelectric matrix for different piezoelectric module ratios and electric field

-10 -8 -6 -4 -2 0 2 4 6 8 10
em

15/ei
15

-2

0

2

4

6

σm
zr
/τ

RMM (E=106 V/m)
RMM (E=0 V/m)
RMM (E=-106 V/m)
analytical solution (E=106 V/m)
analytical solution (E=0 V/m)
analytical solution (E=-106 V/m)

 
 

x

y

Figure 7: Stress concentration σm
zr/τ result of single piezoelectric inclusion in

piezoelectric matrix for different piezoelectric module ratios and electric field
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Figure 8:  Contours result of single piezoelectric inclusion in piezoelectric matrix, (a) 
contours of constant for electric potential φ , (b) contours of constant for shear stress 

m
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Figure 8: Contours result of single piezoelectric inclusion in piezoelectric matrix,
(a) contours of constant for electric potential φ , (b) contours of constant for shear
stress σm
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Figure 8:  Contours result of single piezoelectric inclusion in piezoelectric matrix, (a) 
contours of constant for electric potential φ , (b) contours of constant for shear stress 
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7.2  Two piezoelectric inclusions 

Two piezoelectric inclusions in piezoelectric matrix are shown in Fig. 9. 
 

Figure 9: Problem sketch of two piezoelectric inclusions 
The remote loading and material constants are 7105×=τ Nm-2, 10

4444 1053.3 ×== im cc Nm-2, 
8

1111 1051.1 −×== im εε CV-1m-1 and 0.1015 =ie Cm-2, respectively. Stress concentrations τσ θ /m
z  

versus different piezoelectric modulus ratios are plotted in Fig. 10. On the other hand, 
stress concentrations τσ /m

zr  versus different piezoelectric modulus ratios are respectively 
plotted in Fig. 11. The negative maximum stress concentration occurs in the matrix of 

0=θ  and 2/πβ =  as shown in Fig. 10 when 610−=E v/m and 10/ 1515 −=im ee . However, 
the maximum stress concentration occurs in the matrix at 2/πθ =  and 2/πβ =  as shown 
in Fig. 11. 
When 610=E v/m, 5/ 1515 −=im ee  and 2/πβ = , the tangential electric field along the 
boundaries of the matrix distribution function of the different ratios 1/ rd  are shown in 
Fig. 12 (a)~(c). 
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Figure 9: Problem sketch of two piezoelectric inclusions

vented. Furthermore, the controversy of the fictitious boundary outside the physical189

domain by using the conventional MFS no longer exists. Although it results in the190

singularity and hypersingularity due to the use of double layer potential, the fi-191

nite values of the diagonal terms for the influence matrices have been determined192

by employing the regularization technique. The numerical results were obtained193

by applying the developed program to solve piezoelectricity problems through two194

examples. Numerical results agreed very well with the analytical solution [Honein195

and Honein (1995)] and those of the method of successive approximations [Chao196

and Chang (1999)].197
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Figure 10: Stress concentration σm
zθ

/τ result of double piezoelectric inclusions in
piezoelectric matrix for different piezoelectric module ratios and electric field
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Figure 11: Stress concentration σm
zr/τ result of double piezoelectric inclusions in

piezoelectric matrix for different piezoelectric module ratios and electric field
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Figure 12: Tangential electric field distribution along the boundaries of first inclusion for 
different ratios 1/ rd  with 2/πβ = , (a) 0.10/ 1 =rd , (b) 0.1/ 1 =rd , (c) 1.0/ 1 =rd  

 

Figure 12: T

angential electric field distribution along the boundaries of first inclusion for
different ratios d/r1 with β = π/2, (a) d/r1 = 10.0, (b) d/r1 = 1.0, (c) d/r1 = 0.1
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