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Abstract In this paper, a systematic approach is proposed to deal with engineering problems containing circular 
boundaries. The mathematical tools, degenerate kernels and Fourier series, are utilized in the null-field integral 
formulation. The kernel function is expanded to the degenerate form and the boundary density is expressed into 
Fourier series. By collocating the null-field point on the real boundary, the singularity is novelly avoided. Five gains 
of well-posed model, singularity free, boundary-layer effect free, exponential convergence and mesh-free approach 
are achieved. By matching the boundary condition, a linear algebraic system is obtained. After obtaining the 
unknown Fourier coefficients, the solution can be obtained by using the integral representation. This systematic 
approach can be applied to solve the Laplace, Helmholtz, bi-Helmholtz and biharmonic problems. Besides, the 
circular inclusions as well as the electro-elastic coupling of piezoelectricity are addressed. Finally, several examples, 
including Stokes’ flow, elasticity and piezoelectricity, are demonstrated to show the validity of present formulation. 
 
INTRODUCTION  
Engineering analysis can be formulated as mathematical models of the boundary value problems. In order to solve 
the boundary value problems, researchers and engineers have paid more attention on the development of boundary 
integral equation method (BIEM), boundary element method (BEM) and meshless method than domain type 
methods, finite element method (FEM) and finite difference method (FDM). Among various numerical methods, 
BEM is one of the most popular numerical approaches for solving boundary value problems. Although BEM has 
been involved as an alternative numerical method for solving engineering problems, five critical issues are of 
concern. 
(1) Treatment of singularity and hypersingularity It is well known that BEM are based on the use of fundamental 
solutions to solve partial differential equations. These solutions are two-point functions which are singular as the 
source and field points coincide. Most of the efforts have been focused on the singular boundary integral equation 
for problems with ordinary boundaries. In the past, several regularizations for hypersingularity were offered to 
handle it in direct and indirect ways. In the present approach, we employed the degenerate kernel to represent the 
two-point fundamental solution for problems with circular boundaries. The singularity and hypersingularity 
disappeared in boundary integral equation after describing the potential into two parts. The idea of changing real 
boundary to fictitious boundary (fictitious BEM) or putting the observation point outside the domain (null-field 
approach) can remove the singular and hypersingular integrals. However, they result in an ill-posed matrix which 
will be elaborated on later. 
(2) Boundary-layer effect Boundary-layer effect in BEM has received attention in the recent years. In real 
applications, data near boundary can be smoothened since maximum principle always exists for potential problems. 
Nevertheless, it also deserves study to know how to manipulate the nearly singular integrals in applied mathematics. 
Many regularization techniques can be found in the literature. How to eliminate the boundary-layer effect in BEM is 
vital for researchers. 
(3) Convergence rate Undoubtedly, BEM is very popular for boundary value problems with general geometries 
since it requires discretization on the boundary only. Regarding to constant, linear and quadratic elements, the 



discretization scheme does not take the special geometry into consideration. It leads to the slow convergence rate. 
For example, Fourier series is suitable for boundary densities on circular boundaries while the spherical harmonic 
function is always employed to approximate the boundary density on surface of sphere. Although previous 
researchers have employed the Fourier series expansion, no one has ever introduced the degenerate kernel in 
boundary integral equations to tackle their problems. Mathematicians have proved that the exponential convergence 
instead of the algebraic convergence in the BEM can be achieved by using the degenerate kernel and Fourier 
expansion. 
(4) Ill-posed model As mentioned previously in the first issue, to avoid directly calculating the singular and 
hypersingular integrals by using null-field approach or fictitious BEM yields an ill-condition system. The influence 
matrix is not diagonally dominated and needs preconditioning. To approach the fictitious boundary to the real 
boundary or to move the null-field point to the real boundary can make the system well-posed. However, singularity 
appears in the meantime. We may wonder is it possible to push the null-field point on the real boundary but free of 
facing the singular or hypersingular integrals. The answer is yes and can be found in this paper. 
(5) Mesh on boundary is still necessary. 
To develop a BEM with several advantages, singularity free, the suppression of boundary-layer effect, exponential 
convergence, well-posed model and mesh-free is the main motivation of this paper. 
Engineering problems with circular boundaries are often encountered, e.g. missiles, aircraft, naval architecture, etc., 
either to reduce the weight of the whole structure or to increase the range of inspection as well as piping purposes. 
Analytical approach using bi-polar coordinate [1] was developed for two-hole problems. Complex variable 
techniques were also employed for the annular case. For a problem with several holes, many numerical methods, e.g. 
finite element method (FEM) and boundary element method (BEM), were resorted to solve. To develop a systematic 
approach for engineering problems with circular boundaries is not trivial. 
Null-field integral equation approach is used widely for obtaining the numerical solutions to engineering problems. 
Various names, e.g. T-matrix method [2] and extended boundary condition method (EBCM) [3], have been coined. 
A crucial advantage of this method consists in the fact that the influence matrix can be computed easily. Although 
many works for acoustic and water wave problems have been done, we focus on the solid mechanics here. 
In this paper, we review the recent development of the null-field integral equation approach [4-10] for boundary 
value problems (BVPs) with circular boundaries. The key idea is the expansion of kernel functions and boundary 
densities in the null-field integral equations. Vector decomposition technique using the adaptive observer system is 
required for nonlocal cases. Applications to the Laplace, Helmholtz, biharmonic and bi-Helmholtz problems are 
addressed. Not only interior problems but also exterior cases are solved. Emphases on the inclusion problems as well 
as piezoelectricity studies are done. Several examples were demonstrated to see the validity of the new formulation. 

NULL-FIELD INTEGRAL EQUATION APPROACH FOR BOUNDARY VALUE PROBLEMS 

Suppose there are N  randomly distributed circular boundaries bounded to the domain D  and enclosed 
with the boundary, kB  ( 0, 1, 2, ,k N= " ) as shown in Fig. 1. We define 

  

Figure 1: Sketch of null-field and domain points in conjunction with the adaptive observer system 
(left: collocation on the boundary point, right: collocation on the interior point) 
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In mathematical physics, boundary value problems can be modelled by the governing equation, 

(x) 0u =L , x D∈ , (2) 
where L  may be the Laplace, Helmholtz, biharmonic or bi-Helmholtz operator, (x)u  is the potential 
function and D  is the domain of interest. For the 2-D Laplace and Helmholtz problem, the integral 
equation for the domain point can be derived from the third Green’s identity, we have 
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where s  and x  are the source and field points, respectively, / nt u= ∂ ∂ , B  is the boundary, xn  
denotes the outward normal vector at the field point x  and the kernel function (s, x)U , is the 
fundamental solution, and the other kernel functions, (s, x)T , (s, x)L  and (s, x)M , are defined in the 
dual boundary integral method (BIEM) [10]. It is noted that more potentials are needed in Eqs. (3) and (4) 
for biharmonic and bi-Helmholtz cases [6, 19]. 
By moving the field point to the boundary, the Eqs. (3) and (4) reduce to 
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where . . .C PV , . . .R PV  and . . .H PV  denote the Cauchy principal value, Riemann principal value and 
Hadamard principal value, respectively. By collocating the field point x outside the domain (including 
boundary), the null-field integral equations yield 
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by choosing appropriate forms of degenerate kernels, where cD  is the complementary domain. 

EXPANSIONS OF THE FUNDAMENTAL SOLUTION AND BOUNDARY DENSITY 

Instead of directly calculating the . . .C PV , . . .R PV  and . . .H PV  in Eqs.(5) and (6), we obtain the linear 
algebraic system from the null-field integral equations of Eqs.(7) and (8) through the kernel expansion. 
Based on the separable property, the kernel function (s, x)U  can be expanded into the separable form by 
dividing the source and field point: 
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where the (x)A  and (x)B  can be found for the Laplace [4, 7-9], Helmholtz [5], biharmonic [6] and 
bi-Helmholtz [19] operators and the superscripts “ i ” and “ e ” denote the interior ( s x≥ ) and exterior 
( x s> ) cases, respectively. To classify the interior and exterior regions, Fig. 2 shows for one, two and 
three dimensional cases. For the degenerate form of T , L  and M  kernels, they can be derived 
according to their definitions. 



 
Figure 2: The degenerate kernel for the one, two and three dimensional problems 

We apply the Fourier series expansions to approximate the potential u  and its normal derivative t  on 
the kB  circular boundary 
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where k
na , k

nb , k
np  and k

nq  ( 0,1, 2,n= ") are the Fourier coefficients and kθ  is the polar angle 
measured with respect to the x -direction. 
After collocating the null-field points in the null-field integral equation of Eq. (7), the boundary integrals 
through all the circular contours are required. It is worth noting that the origin of the observer system is 
located on the center of the corresponding circle under integration to entirely utilize the geometry of 
circular boundary for the expansion of degenerate kernels and boundary densities. Figure 1 shows the 
boundary integration for the circular boundaries in the adaptive observer system. 
By collocating the null-field point xk  on the kth  circular boundary for Eq. (7) in Fig. 1, we have 
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where N  is the number of circular boundaries including the outer boundary and the inner boundaries. 
Therefore, a linear algebraic system is obtained 

[ ]{ } [ ]{ },=U t T u  (13) 

where [ ]U  and [ ]T  are the influence matrices with a dimension of ( 1)(2 1)N m+ +  by ( 1)(2 1)N m+ + , 
{ }u  and { }t  denote the column vectors of Fourier coefficients with a dimension of ( 1)(2 1)N m+ +  by 1 
in which m  indicates the truncated terms of Fourier series. For the circular-inclusion problem, 
multi-domain approach by taking the free body of each interface between the matrix and inclusions should 
be introduced. Therefore, an exterior problem for the matrix and several interior problems for each 
inclusion are needed to be solved by employing the null-field approach. The continuity of displacement 
and equilibrium of traction should be considered on the interface between the matrix and inclusions [8,9]. 
Then, the resulted linear algebraic system is obtained. After the boundary unknowns are solved, the field 
potential can be easily obtained according to Eq. (3). 

Illustrative examples 
1. Case 1: Infinite medium with two circular holes under the anti-plane shear (Laplace equation) A 
hole centered at the origin of radius 1a  and the other hole of radius 2 12a a=  centered on x  axis at 

1 2a a d+ +  are considered where d  denotes the nearest distance between the holes. In order to be 
compared with the Honein et al.’s results [11] obtained by using the Möbius transformation, the stress 
along the boundary of radius 1a  is shown in Fig. 3 and good agreement is made. 
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Figure 3: Stresses around the hole of radius 1a  

(Laplace equation) 
Figure 4: Displacement for the weakened circular bar by 

three holes (Laplace equation) 
 
2. Case 2: A circular bar with three circular holes under torsion (Laplace equation) A circular bar 
with three equal circular holes removed is under torque at the end [12, 13]. The contour plot of the axial 
displacement is shown in Fig. 4. Good agreement is made after comparing with the Caulk’s data [13]. 
Table 1 shows the comparison of the torsional rigidities G  of three cases with different geometries of 
circular holes. The present solutions show improvement over Ling’s results [12] in every case. The 
discrepancy in the second example in Table 1 may ascribe to the Ling’s lengthy calculation in error as 
pointed out by Caulk [13]. 

Table 1 Torsional rigidity in Ling’s examples 
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Caulk (First-order 
approximate) 0.8739 0.8741 0.7261 

Caulk (BIE 
formulation) 0.8713 0.8732 0.7261 

Ling’s results 0.8809 0.8093 0.7305 
( )4

0
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aμπ
 

Present method 
( 10m = ) 0.8712 0.8732 0.7244 

 

3. Case 3: A circular beam with two circular holes under bending (Laplace equation) Naghdi [14] and 
Bird and Steele [15] both calculated the stress concentration for the four equal-sized circular holes problem 
under bending. Bird and Steele [15] stated that the deviation by Naghdi’s data is 11%. The grounds for this 
discrepancy were not identified in their paper. Our numerical results are more agreeable to the Naghdi’s 
data as shown in Fig. 5. For the two equal-sized problems under bending, the stress concentration for 
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1/ 0.125d a =  is shown in Fig. 6. Our numerical results are well compared with the Bird and Steele’s data 
[15]. 
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Figure 5: Stress concentration versus b  for 0.12a = and 0 1.0a = .(Laplace equation) 

 

 
 

 
 
 

Figure 6: Contour of stress concentration for 
1/ 0.125d a =  (Laplace equation) 

Figure 7: Tangential stress distributions around the 
inclusion located at the origin (Laplace equation) 

 
4. Case 4: Infinite medium with three circular inclusions under the anti-plane shear (Laplace 
equation) Figure 7 shows that three identical inclusions subjected to the uniform shear stress zyσ τ∞

∞=  at 
infinity. The three inclusions form an equilateral triangle and are placed at a distance 12d a=  apart. We 
evaluate the hoop stress zθσ  in the matrix around the boundary of the inclusion located at the origin as 
shown in Fig. 7. Good agreement is obtained between the Gong’s results [16] and ours. It is obvious that 
the limiting case of circular hole 1 0 2 0( / /μ μ μ μ=  3 0/ 0.0)μ μ= = leads to the maximum stress 
concentration at 0θ= D , which is larger than 2  of a single hole due to the interaction effect. 

5. Case 5: Piezoelectric problem with two circular inclusions under the anti-plane shear and in-plane 
electric field (Laplace equation) As the two circular inclusions are arrayed perpendicular to the coupled 
loadings of electrics and mechanics, the contour of shear stress zyσ  are plotted in Fig.8. The contour of 
shear stress matches very well with the Wang and Shen’s results [17]. 
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Figure 8: Contour of shear stress /zyσ τ∞  
(Laplace equation) 

Figure 9: The first mode of eccentric membrane 
(Helmholtz equation) 

6. Case 6: Eigensolution for an eccentric membrane (Helmholtz equation) An eccentric case with radii 
1a  and 2a  ( 1 0.5a = , 2 2.0a = ) is considered as shown in Fig. 9. The boundary condition is subject to the 

Dirichlet type. The result matches well with those of FEM and BEM. 
7. Case 7: Eigensolution for an eccentric plate (bi-Helmholtz equation) An eccentric plate with radii 

1a  and 2a  ( 1 0.25a = , 2 1.0a = ) is considered as shown in Fig. 10. The plate is fixed on the outer 
boundary and free inside. The result matches well with those of FEM and BEM [19]. 

 

 
 

 

 
 

Figure 10: The first mode of eccentric plate 
(biHelmholtz equation) 

Figure 11: Contour of the real-part solution. 
(Helmholtz equation-exterior acoustics) 

8. Case 8: Five scatters of cylinders (Helmholtz equation-exterior acoustics) Plane wave scattering by 
five soft circular cylinders is solved by using the present method. The real-part solution in Fig.11 agrees 
well with that of multiple DtN method [20]. 
9. Case 9: A semi-cylindrical alluvial valley for the incident SH-wave (Helmholtz equation - half 
plane problem) A semi-cylindrical alluvial valley for the incident SH-wave is considered. Figure 12 
shows the surface displacement for vertical incidence ( 0γ = o ) of SH-wave versus the dimensionless 
frequency η . Agreement with the Trifunac’s result [21] is obtained. 
10. Case 10: Two semi-cylindrical alluvial valleys subject to the incident SH-wave (Helmholtz 
equation-half plane problem) Tsaur et al. [22] and Fang [23] both calculated the response of two 
semi-cylindrical alluvial valleys subject to the incident SH-wave. Tsaur et al. [22] pointed out that the error 
of Fang is due to abusing orthogonal properties. The amplitude versus /x a  is shown in Fig.13 for the 



 
 

 
 
 

 

-4 -3 -2 -1 0 1 2 3 4 5 6 7
x/a

0

2

4

6

8

A
m

pl
itu

de

 

Figure 12: Surface displacements for the vertical 
incidence versus the frequency η  (Helmhotlz 

equation-half plane problems) 

Figure 13: Amplitude versus two canyons subject 
to vertical incidence ( 0γ = o ) with 1η =  

(Helmhotlz equation-half plane problems) 

vertical incidence ( 0γ = o ). Good agreement is made after comparing our results with those of Tsaur et al. 
[22]. 
11. Case 11: An inclusion under the ground surface subject to the SH-wave (Helmholtz equation-half 
plane problem) Consider the half-plane problem with a circular inclusion under the ground surface subject 
to the SH-wave. Figure 14 shows the surface displacements of an inclusion problem under the ground 
surface subject to vertical incident SH-wave with 2η = . The surface displacements of the present method 
match well with the Tsaur’s data [24], but it deviates to Manoogian and Lee’s [25] result. The discrepancy 
was explained by Manoogian and Lee’s [25] due to the precision limit in the FORTRAN code in 1996. 
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Figure 14: Surface displacements of an inclusion 
problem under the ground surface with 2η =  and 

/ 1.5h a = ( / 1/ 6, / 2 /3I M I Mμ μ ρ ρ= = ) 
(Helmhotlz equation-half plane problems) 

Figure 15: Stream function of Stokes’ problem 
(biharmonic equation) 

 
 

12. Case 12: Stokes’ problem (biharmonic equation) An eccentric case of Stokes’ flow problem is 
considered. The inner cylinder is rotating with a constant angular velocity and the outer one is stationary. 
The stream function is shown in Fig. 15 and matches well with that of BEM [26, 27]. 



Conclusions 
A semi-analytical approach was proposed for solving BVPs with circular boundaries. Some recent results 
were reviewed. Although the BIE for the boundary point was employed, we need not to face the problems 
of . . .C PV  and . . .H PV  after introducing the degenerate kernel. Not only the singularity is transformed to 
the series sum but also the boundary-layer effect is eliminated. In order to verify the formulation, 
applications to the Laplace, Helmholtz, biharmonic and bi-Helmholtz problems were done. Five gains of 
well-posed model, singularity free, boundary-layer effect free, exponential convergence and mesh-free 
approach were achieved. Extension to other shapes, e.g. ellipse, as well as three dimensional problems is 
straightforward once the corresponding degenerate kernel is available. 
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