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q Motivation and literature review
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q Present approach
|

o) = [, 20668 Ol O

|
w06 () — fB K (s, X)tb(s)dB(S)

1

/
Degenerate Rernel  Fundamental solution

l l

No principal value CPV and HPV

Advantages of degenerate Rernel
1. No principal value
2. Well-posed

3. No boundary-layer effect

4. Exponetial convergence  °



Engineering problem with arbitrary
geometries

|

Straight boundary

____________

(Legendre polynomial)

Circular boundary

Em'ptic boundary

(Fourier series)

(Mathieu function)




* Motivation and literature review

Analytical methods for solving Laplace
problems with circular holes

Conformal mapping

Bipolar coordinate

Special solution

Chen and Weng, 2001,
“Torsion of a circular
compound bar with
imperfect interface’,
ASME Journal of
Applied Mechanics

Lebedev, Skalskaya and
Uyand, 1979, “Work,
problem in applied
mathematics”, Dover
Publications

Honein, Honein and
Hermann, 1992, “On
two circular inclusions
in harmonic problem”,
Quarterly of Applied

Mathematics

MSVILAR Limited to doubly connected domain
|




q Fourier series approximation
|

Ling (1943) - torsion of a circular tube

Caulk et al. (1983) - steady heat conduction with
circular holes

Bird and Steele (1992) - harmonic and biharmonic
problems with circular holes

MogilevskRaya et al. (2002) - elasticity problems
with circular boundaries




* Contribution and goal
|
However, they didn’t employ the null-field

integral equation and degenerate Rernels to
fully capture the circular boundary,
although they all employed Fourier series
expansion.

To develop a systematic approach for
solving Laplace problems with multiple
holes 1s our goal.

MSYVILAR
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Boundary integral equation and null-field
iIntegral equation

3

Interior case ' Exterior case
U(s,x)=In|x—g=Inr

i N T(s,X) = VX

: 8ns
A 0 t(s) = 210

l on

D* :

27ru(x):fBT(s,x)u(s)dB(s)—fBU(s,x)t(s)dB(s), xeD

MSY LA R Null-field integral equation
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Expansions of fundamental solution and
boundary density

|

@egenemte Rernel - fundamental solution

U'(R,0;p,6)=InR— i% %)mcosm(é’—(b), R> p
U (s, X) = ;
Ue(R,e;p,gb):Inp Z% %)mcosm(e—gb), p>R

Fourier series expansions - boundary density
M
u(s) = a, +Z(a cosnd+b_sinnd), seB

t(s) = po+2(p cosnd +q,sinnd), seB

HRE,HTOWU 13



Separable form of fundamental solution
(1D)

3

i=1 |

Separable property U(s,x) =

U(s,x) z ai (S)bi (X), X>3$ : T(s,X%)
107’ I_Zl_ ________ I 0.4 ?
— 0.4 3
continuous discontinuous
F————=—==- : o ———— 1|
—(S— > X! —, s>X
1 > (s—X), s> X | , > :
U(SlX)ZEr:*l' — — ll T(S,X):i ———————————— a
Z(X—s), Xx>s| o X>s,
MSVLAR |2 R |
|
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Separable form of fundamental solution
(2D)
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q Boundary density discretization
|

Fourier series EX . constant element

VAR B

Present method Conventional BEM
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1 Adaptive observer system

O
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© collocation point
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Vector decomposition technique for
* potential gradient

I I True normal direction
\d

- ou(x)
on

- ou(x)
ot

.- = .M, (5:0u(s)dB() — [ L, (5. X)t(s)dB(s), x €D

:fBM¢(s,x)u(s)dB(s)—j; L, (s, x)t(s)dB(s), x€ D

Non-concentric case:
10U (s, X)

oU (s, x)er_

L (s,X) =
(5 dp p 0¢

s
CoS(5 — ¢ +€)

0T (s,%) —1, 19T(s,x)|
=", cos(¢ €)+p 9o

M (s,X) cos(%—<+€)

Special case (concentric case): (=¢§

_ oU (s, X) ~ OT(s,X)

Lp (S’X) Mp(s’x) - 8/0

HHHHHHHH
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q Linear algebraic equation
|

Uit} =[THu}

where Index_ of collocation circle
w P
U Uyl - U r\r b
u)=| e Ufl UfN {th= :
Uwo U U /tN\
Index_of routing circle <— Column vector of Fourier coefficients
MSYLAR (Nth routing circle)
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Flowchart of present method

— f ‘@’ @’ P B(S) Potential gradient

e S

| Degenerate Rernel Fourier series | | Vector

| | decomposition

| Adaptive |

: observer system : Potential of

L ———— V- - . —_——— —-———— — — . domain point
Analytical Collocation point and matching B.C. ]

Linear algebraic equation

— Fourier coefficients
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|

Comparisons of conventional BEM and
the present method

Boundary
density Auxiliary | Formulation| Observer | Singularity
discretization system system
Constant, Boundary | Fixed
Conventional|  Linear, Fundamental| integral | observer | CPV, RPV
BEM (Algebraic solution equation | system | and HPV
Convergence)
Fourier series Null-field | Adaptive No
Present Expansion | Degenerate | integral | observer | principal
)i method | (Exponential | Rernel equation | system value
g e Lonvergence)
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q Numerical examples
|

Laplace equation (EABE 2005, CMES 2005)
Eigen problem

Exterior acoustics

Biharmonic equation (JAM, ASME 2005)

HHHHHHHH

26



q Laplace equation

Steady state heat conduction problems
Electrostatic potential of wires

Flow of an ideal fluid pass cylinders

A circular bar under torque

An infinite medium under antiplane shear
Half-plane problems
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q Steady state heat conduction problems

Case 2

28



q Case 1: Isothermal line

I 2
2

L L L L TR L L L

wwwwwwwww
1111111111111

\ / - Exact solution

| (Carrier and Pearson )

BEM-BEPO2D .. D

(N=21)

FEM-ABAQUS
(1854 elements)

Present method
(M=10)
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Relative error of flux on the small circle

Relat ive error of flux on the small circle (%)

w

—&— BEM-BEPO2D (N=21)
—6— Present method (M=10)

Trefftz method (N.=21)

—Ar— MFS (N,=21) (8,=3.0, 8,=0.7)
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Convergence test - Parseval's sum for
q Fourier coefficients
|

2m M
@arseval’s sum fo f?(0)dg =2ma,’ + 7> (a,>+b,?)
n=1

e -
3 6 =
v %
o) T 28
o 3
o 10— »
rff @
o
T T T T T 7 R e e e
4 6 20
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q Laplace equation

Steady state heat conduction problems
Electrostatic potential of wires

Flow of an ideal fluid pass cylinders

A circular bar under torque

An infinite medium under antiplane shear
Half-plane problems
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q Electrostatic potential of wires

Two parallel cylinders held positive

2|

and negative potentials

H R E

u=1 u=-1
P
/ \
| !
\ /
N _ -
u=-1 u=1
PN
/ \
| !
\ /
N _ -
u=1 u=-1

Hexagonal electrostatic potential
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- Contour plot of potential

M S%tﬁg@ion (Lebedev et al.) Present method (M=10)
|
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1 Contour plot of potential

L%@S data (1991)

MSV
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Present method (M=10)



q Laplace equation

Steady state heat conduction problems
Electrostatic potential of wires

Flow of an ideal fluid pass cylinders

A circular bar under torque

An infinite medium under antiplane shear
Half-plane problems
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|

Flow of an ideal fluid pass two parallel
cylinders

2

V>is the velocity of flow far from the cylinders
7Y is the incident angle
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Velocity field in different incident angle
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q Laplace equation

Steady state heat conduction problems
Electrostatic potential of wires

Flow of an ideal fluid pass cylinders

A circular bar under torque

An infinite medium under antiplane shear
Half-plane problems
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q Torsion bar with circular holes removed

The warping function ¥
Vip(x)=0, xeD

Boundary condition

Z—SO =X, sinf, —y,cosf, on B,
n

where

X = bcos@, Y. = bsin@
N N

40



Dashed line: exact solution
Solid line: first-order solution

g.05 0.0

e {
0.0 |

CaulR’s data (1983)
ASME Journal of Applied Mechanics
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Present method (M=10)

Axial displacement with two circular holes
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Torsional rigidity

OO
OO0
' OO

N=2c/R=0 N=2¢c/R=1/5 N=6.c/R=1/5
alR=2/7b/R=3/7 alR=1/5b/R=3/5 alR=1/5b/R=3/5
Caulk(First-order
. 0.8739 0.8741 0.7261
approximate)
Exact BIE
2G , 0.8713 0.8732 0.7261
(gt "] formmlation N ~
" Ling’s results 0.8809 (08003 ) 7 0.7305
The present N~—
0.8712 0.8732 0.7245
method
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q Laplace equation

Steady state heat conduction problems
Electrostatic potential of wires

Flow of an ideal fluid pass cylinders

A circular bar under torque

An infinite medium under antiplane shear

Half-plane problems
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‘ Infinite medium under antiplane shear

The displacement W’
VW' (x)=0, xeD
Boundary condition

W) _Tsing on B,

on i
Total displacement

wW=wW —+w>
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Shear stress o ,, around the hole of
radius a, (x axis)

g i ]
[ i d/al=0.01 |
| — - = da=01 1]
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M Sv%%’@ﬂpp[iel%atﬁematics Present method (M=20)
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Shear stress o ,, around the hole of

radius a,
| Stress approach Analytical Displacement approach
Steele’s data (1992) Pres sent method (M=20) Honein's data (1992) Present method (M=20)
4.647  13.13% ! ’;“ ; 5.349 0.02% 5.348 | \\,5345 0.06%
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q Laplace equation

Steady state heat conduction problems
Electrostatic potential of wires

Flow of an ideal fluid pass cylinders
A circular bar under torque

An infinite medium under antiplane shear

Half-plane problems
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q Half-plane problems

Dirichlet boundary condition

(Lebedev et al.)

HHHHHHHH

Mixed-type boundary condition
(Lebedev et al.)
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Dirichlet problem

Isothermal line

Present method (M=10)
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q Mixed-type problem

Isothermal line

Present method (M=10)
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1 Numerical examples

» Laplace equation

= Eigen problem
m Exterior acoustics

» Biharmonic equation
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* Problem statement
|

Simply-connected domain

Multiply-connected domain
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‘ Example 1

dMsv LA

‘r HRE,HTOU
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The former five true eigenvalues by using
different approaches

K, K, K, K, K,
FEM
(ABAQUS) 2.03 2.20 2.62 3.15 3.71
BEM
(Burton & Miller) 2.06 2.23 2.67 3.22 3.81
BEM
(CHIER) 2.05 2.23 2.67 3.22 3.81
BEM
(null-field) 2.04 2.20 2.65 3.21 3.80
BEM
(fictitious) 2.04 2.21 2.66 3.21 3.80
Present method 2.05 2.22 2.66 3.21 3.80
Analytical 2.05 2.23 2.66 3.21 3.80

M S\ solution[19]
= N1L>
|

HRE,HTOU



The former five eigenmodes by using

present method, FEM and BEM

Present
method
S N,@, ,©III|
Ak -

HHHHHHHH
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1 Numerical examples

» Laplace equation
» Eigen problem
m Exterior acoustics

» Biharmonic equation
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Sketch of the scattering problem (Dirichlet
condition) for five cylinders

3

ekr‘A 4
V2 +k2)u(x)=0,xeD
u=0 ‘UZO /A,/"
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|

2.5
2

1.5 ‘
1

0.5

The contour plot of the real-part solutions
of total field for

K=rm

|/ -h\/

\\SC
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0

1 2

(b) Multlple DtN method (N 50)
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The contour plot of the real-part solutions
of total field for k =87

contour levels at -2.5+j*5/9, j=0,....9

2ol
2 2t
1.5 150
1 1k
0.5 05F
0 ol
-0.5 05
3 L
-15 sk
2 Ll
233 2 1 0 1 2 3 25
(a) Present method (M=20)
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Fictitious frequencies

————— Present method (M=20)
BEM(N=60)




1 Numerical examples

» Laplace equation

» Eigen problem
m Exterior acoustics

» Biharmonic equation
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q Plate problems

Geometric data:
0,=(0,0), R, =20; O, =(-14,0),R, =5;
0,=(5,3),R,=2; 0,=(510), R, =4.

Essential boundary conditions:
u(s)=0 and 4(s)=0 on B

u(s)=sin@ and 4(s)=0on B

u(s)=-1 and 6(s)=0on B,
u(s)=1 and 4(s)=0on B,

M S \Ydird e Becle, 1991)

H R E

, HTOU
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2

101)

q Contour plot of displacement

d and Steele (1991)

Bir

Present method (N
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FEM (ABAQUS)
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q Stokes flow problem

Governing equation: V'u(x)=0, xeQ
Angular velocity: @, =1
Boundary conditions:
u(s)=u, and 4(s)=0.5 on B
u(s)=0 and 6(s)=0 on B, (Stationary)
e
(R, —R)

Eccentricity: ¢ =

64



Comparison for

=05

MSYLAR

HRE,HTOU

0.0748 —

0.0744 —

0.074 —

0.0736

L]l BIE (Kelmanson)
O Present method
— Analytical solution

(160)

(28)

Algebraic convergen

(36)
Exponential convergence

(44)

IcE

(640)

L (=)

e
80 160 240 320 400 480 560
DOF of BIE (Kelmanson)

| | | | | |
80 160 240
DOF of present method

320

640
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Contour plot of Streamline for

3

~ Kamal (Q=0.0738)

=05

Kelmanson (Q=0.0740, n=160)
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q Conclusions
|

A systematic approach using degenerate Rernels,
Fourier series and null-field integral equation has
been successfully proposed to solve Laplace

Helmholtz and Biharminic problems with circular
boundaries.

Numerical results agree well with available exact
solutions, Caulk’s data, Onishi’s data and FEM
(ABAQUS) for only few terms of Fourier series.

MSYLAR
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q Conclusions
|

Engineering problems with circular boundaries which
satisfy the Laplace Helmholtz and Biharminic problems
can be solved by using the proposed approach in a more
efficient and accurate manner.

Free of boundary-layer effect
Free of singular integrals
Well posed

Exponetial convergence

MSVLA[@

HHHHHHH
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q The End

Thanks for your Rind attentions.
Your comments will be highly appreciated.
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