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Abstract 
The subject of scattering flexural wave in a thin plate 

with multiple inclusions subject to the incident wave is 
studied in this paper. A semi-analytical approach is 
proposed to solve this problem which can be 
decomposed into several internal inclusion problems 
and an external plate problem under the incident wave. 
The intensity of radiation field in the associated 
external problem can be derived by using the null-field 
integral formulation. The dynamic moment concentr- 
ation factor (DMCF) around the circular inclusions, as 
well as the far field scattering pattern is determined. 
The numerical results for an infinite plate with one 
inclusion are compared with the available analytical 
solutions to verify the validity of the proposed method. 
For the cases of small wave number, the quasi-static 
results of an infinite plate with one or multiple circular 
inclusions are compared with static data of finite 
element method (FEM) using ABAQUS. Numerical 
results indicate that the DMCF of two inclusions is 
apparently larger than that of one when two inclusions 
are close to each other. Fictitious frequency appearing 
in the external problem can be suppressed by using the 
more number of Fourier series terms. The effects of 
space between inclusions on both the DMCF and the 
far scattering pattern are also investigated. It shows that 
the space between scatters has the opposite effect on the 
near field in comparison with the far field. 
Keywords: scattering, flexural wave, dynamic moment 

concentration, far field scattering pattern, 
null-field boundary integral equation 

1. Introduction 
Plates with multiple circular inclusions are 

commonly observed in engineering structures. These 
inclusions, or inhomogeneous materials, usually take 
place in shapes of discontinuity such as thickness 
reduction, due to corrosion, or strength degradation, to 

delamination. Dynamic loadings under the 
circumstance always result in stress concentration with 
ensuing loading capacity reduction and fatigue failure. 

The deformation and corresponding stresses induced 
by dynamic force are inducted throughout the structure 
by means of wave propagation. At the near field of the 
inhomogeneity i.e., scatter, flexural wave reflected in 
all directions recursively interacts with the incident 
wave. It turns out that the scattering of the stress wave 
results in dynamic stress concentration [1]. On the other 
hand, certain applications of the far field scattering 
flexural response can be obtained in vibration analysis 
or structural health-monitoring system. 

Nishimura and Jimbo [2] are two pioneer 
investigators to analytically study dynamic stress 
concentration. They calculated the stresses in the 
vicinity of a spherical inclusion in the elastic solid 
under harmonic force. Pao [3] studied the scattering of 
flexural waves and dynamic stress concentrations 
around a circular hole, and proposed an analytical 
solution. Since then, most research has focused on the 
scattering of elastic wave and dynamic stress 
concentration and has led to a rapid development of 
analytical or numerical approach such as wave function 
expansion method, complex variable method, boundary 
integral equation method (BIEM) and boundary 
element method (BEM) [1].  

Leviatan et al. [4] presented a source-model 
technique for the analysis of the scattering of a 
time-harmonic flexural wave in a thin elastic plate by a 
small patch made of material other than that of the plate. 
However, the fictitious sources are located at a certain 
distance away from the boundary of the patch. By using 
the flux conservation relation and optical theorem, 
Norris et al. [5] considered the scattering of flexural 
waves by circular inclusions with different plate 
properties and obtained numerical results. Squire et al. 
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[6] applied the wave function expansion method to 
study the scattering properties of a single coated 
cylindrical anomaly located in a thin plate on which 
flexural waves propagate. Wang [7] presented a 
theoretical and experimental investigation of the 
scattering behavior of extensional and flexural plate 
waves by a cylindrical inhomogeneity. Peng [8] 
investigated flexural wave scattering and dynamic 
stress concentration in a heterogeneous plate with 
multiple cylindrical patches by using acoustical wave 
propagator technique. The predicted result of the 
principal stress was compared with the exact analytical 
solution in a thin plate without patches. Nevertheless, 
predicted results of dynamic stress concentration were 
not verified by any independent method. Recently, one 
monograph is devoted to discussing the multiple 
scattering in acoustics, electromagnetism, seismology 
and hydrodynamics [9].   

From literature reviews stated previously, few papers 
except [8] have been published to date reporting the 
scattering of flexural wave in plate with more than one 
inclusion. Recently, we proposed a semi-analytical 
null-field integral equation method for eigensolution of 
a circular plate with multiple circular holes [10]. The 
advantage of this approach is employing the degenerate 
kernel to avoid calculating principal values, which is of 
great difficulties in the case of plate. The introduction 
of degenerate kernel in companion with Fourier series 
was proved to yield the exponential convergence [11] 
instead of the linear algebraic convergence in BEM. 
Furthermore, Kobayashi and Nishimura [12] pointed 
out that the integral equation method seems to be most 
effective to deal with two-dimensional steady-state 
flexural wave problems.  

This paper extends the null-field integral approach to 
the external plate problem to solve scattering of flexural 
waves by multiple circular inclusions in a thin plate. A 
linear algebraic system can be constructed by uniformly 
collocating points on the boundary and taking finite 
terms of Fourier series. The displacement and 
corresponding section force are calculated by using 
boundary integral equations for the domain point after 
determining the Fourier coefficients of unknown 
boundary density. For the multiply-connected plate 
problem, the slope (bending angle) and moment in the 
normal and tangential directions are determined with 

scrutiny in the adaptive observer system. Therefore, the 
operator of transformation matrix for the slope and 
moment is employed to deal with this problem. The 
results for an infinite plate with one circular inclusion 
are compared with the analytical solutions [5, 6] to 
verify the validity of the proposed method. For the 
cases of small wave number, the results for multiple 
inclusions will be compared with those of FEM using 
ABAQUS [13] to demonstrate the generality of the 
proposed method. In the end, the effect of central 
distance between inclusions on the DMCF and the far 
scattering pattern are also investigated by using the 
proposed method. 

2. Problem statement and boundary 
integral formulation 

2.1 Problem statement  
The governing equation of the flexural wave for a 

uniform infinite thin plate with randomly distributed 
circular inclusions as shown in Figure 1 is written as 
follows: 

4 4( ) ( ),u x k u x x Ω∇ = ∈  (1) 
where 4∇  is the biharmonic operator, u is the 
out-of-plane elastic displacement, 4 2

0 /k ω ρ h D= , 
k ( 2π /wave length) is the wave number of elastic wave, 
ω  is the circular frequency, 

0ρ  is the volume density, 
3 2D Eh /12(1-μ )= is the flexural rigidity, E denotes the 

Young’s modulus, μ  is the Poisson’s ratio,  h is the 
plate thickness and Ω  is the domain of the thin plate. 

2.2 Boundary integral equation for the collocation 
point in the domain 

The integral representation for the plate problem can 
be derived from the Rayleigh-Green identity [14] as 
follows: 

( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( )
B B

B B

u x U s x s dB s s x m s dB s

M s x s dB s V s x u s dB s

Θ

θ

= −

+ −

∫ ∫

∫ ∫

v  
(2) 

where B is the boundary of the domain Ω , u(x) is the 
displacement, s  and x  mean the source and field 
points, respectively. ( , )U s x , ( , )s xΘ , ( , )M s x  and 

( , )V s x in Eqs.(2) are kernel functions. The kernel 
function ( , )U s x  in Eq. (2),  

2

1 2( , ) ( ) ( ) ( )
8 0 0 0U s x Y kr iJ kr K kr ,

k D π
⎡ ⎤
⎢ ⎥= − +
⎢ ⎥⎣ ⎦

 (3)

is the fundamental solution [14] which satisfies 
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4 4( , ) ( , ) ( )U s x k U s x δ s x∇ − = −  (4)
where )( x-sδ  is the Dirac-delta function, ( )Y k0 r  
and ( )K k0 r  are the zeroth-order of the second-kind 
Bessel and modified Bessel functions, respectively, 

( )0 rJ k  is the zeroth-order of the first-kind Bessel 
function, xsr −≡  and 12 −=i . The other three 
kernel functions, ( , )Θ s x , ( , )M s x  and ),( xsV , in 
Eq.(2) can be obtained by applying the following slope, 
moment and effective shear operators defined by 

( )
ΘK

n
∂ ⋅

=
∂

 (5)

( )( ) (1 )K D
n

⎡ ⎤∂ ⋅⎢ ⎥=− ∇ ⋅ + −⎢ ⎥∂⎢ ⎥⎣ ⎦

2
2

M 2
μ μ

 
(6)

( ) (1 ) ( )K D
n t n t

⎡ ⎤⎞⎛ ⎞⎛∂ ∂ ∂ ∂ ⎟⎟⎜ ⎜⎢ ⎥⎟⎟=− ∇ ⋅ + − ⋅⎜ ⎜ ⎟⎟⎢ ⎥⎜ ⎜ ⎟⎟⎜ ⎟⎜∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

2
V μ

 
(7)

to the kernel ( )xs,U  with respect to the source point, 
where /∂ ∂n and� / t∂ ∂ are the normal and tangential 
derivatives, respectively, 2∇  means the Laplacian 
operator.  

2.3 Null-field integral equations 
The null-field integral equations regarding displace- 

ment and slope can be derived from boundary integral 
equation and by collocating the field point outside the 
domain. They are expressed as follows: 
0 ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( )
B B

B B

U s x s dB s s x m s dB s

M s x s dB s V s x u s dB s

Θ

θ

= −

+ −

∫ ∫

∫ ∫

v
 (8) 

0 ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( )
B B

B B

U s x s dB s s x m s dB s

M s x s dB s V s x u s dB s

θ θ

θ θ

Θ

θ

= −

+ −

∫ ∫

∫ ∫

v

(9) 

where  CΩ  is the complementary domain of Ω . It is 
noted that once kernel functions are expressed in proper 
degenerate forms, which will be described in the next 
subsection, the collocation points can be exactly located 
on the real boundary, that is x∈ BC ∪Ω . 

2.4 Degenerate kernels and Fourier series for 
boundary densities  

In the polar coordinates, the field point and source 
point can be expressed as ( φρ , ) and ( θR, ), 
respectively. By employing the addition theorem [15], 
the kernel function ),( xsU is expanded in the series 
form as follows: 

( )

( )

2
0

2
0

1( , ) { ( ) ( )
8

2 ( ) ( )}

1( , ) { ( ) ( )
8

2 ( ) ( )}

I
m m m

m

m m

E
m m m

m

m m

U s x ε J kρ Y kR
k

               I λρ K kR cos m θ φ  , ρ R
π

U s x ε J kR Y kρ
k

                I kR K kρ cos m θ φ  , ρ R
π

∞

=

∞

=

=

⎡ ⎤+ − <⎣ ⎦

=

⎡ ⎤+ − ≥⎣ ⎦

∑

∑

 

(10)

where  mε  is the Neumann factor ( mε =1, m=0 ; mε = 
2, m=1,2, ,∞) and the superscripts "I" and "E" 
denote the interior and exterior cases for ),( xsU  
degenerate kernels to distinguish ρ<R  and ρ>R , 
respectively as shown in Figure 2. The degenerate 
kernels ( , )s xΘ , ( , )M s x  and ( , )V s x  in the null-field 
boundary integral equations can be obtained by 
applying the operators of Eqs.(5)-(7) to the degenerate 

( , )U s x  kernel with respect to the source point s.  
In order to fully utilize the geometry of circular 

boundary, the displacement ( )u s , slope ( )sθ , moment 
( )m s  and shear force ( )v s  along the circular 

boundaries in the null-field integral equations can be 
expanded in terms of Fourier series, respectively, as 
shown below: 

( ) ( cos sin ),0

M

c cn sn
n 1

u s u u n u n s Bθ θ
=

= + + ∈∑ , (11)

0
1

( ) ( cos sin ),
M

c cn sn
n

s n n s Bθ θ θ θ θ θ
=

= + + ∈∑ , (12)

0
1

( ) ( cos sin ),
M

c cn sn
n

m s m m n m n s Bθ θ
=

= + + ∈∑ , (13)

0
1

( ) ( cos sin ),
M

c cn sn
n

s n n s Bθ θ
=

= + + ∈∑v v v v , (14)

where  0cu , cnu , snu , 0cθ , cnθ , snθ , 0cm , cnm , 

snm , 0cv , cnv  and snv are the Fourier coefficients 
and M is the number of Fourier series terms. 

3 Adaptive observer system and transform- 
ation of tensor components 
Consider an infinite thin plate with multiple circular 

inclusions as shown in Fig. 1. Since the direct boundary 
integral equations are frame indifferent (i.e. rule of 
objectivity), the origin of the observer system can be 
adaptively located on the center of each circle under 
integration. Figure 3 shows the circular boundary 
integration in the adaptive observer system. The 
dummy variable in the circular contour integration is 
the angle (θ) instead of radial coordinate (R). By using 
the orthogonal property between degenerated kernels 
and Fourier series in adaptive system, all the improper 
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boundary integrals in Eqs.(8)-(9) can be transformed to 
series sum and then be determined analytically free of 
principal value sense. 

For the case of multiple inclusions, it is inevitable 
that the source and field points locate on different 
circular boundaries. The calculated boundary data such 
as the slope, moment and effective shear force should 
be transformed to the direction where the specified 
boundary conditions are given. As shown in Figure 4, 

iφ  is the angle of the collocation point xi with respect 
to oi , which is center of the circle under integration, 

cφ  is that with respect to oj, which is center of the 
circle on which collocation point is located. According 
to the transformation law for the components of tensor, 
we have 

( ) ( )( ) ( )
,

( ) ( )( ) ( )
n r

t θ

cos δ sin δ
-sin δ cos δ

⋅ ⋅⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥⋅ ⋅⎣ ⎦⎣ ⎦ ⎣ ⎦

 (15)

2 2

2 2

2 2

2
2

nn rr

tt

r

( ) cos ( ) sin ( ) sin( )cos( ) ( )
( ) sin ( ) cos ( ) sin( )cos( ) ( ) ,
( ) sin( )cos( ) sin( )cos( ) cos ( ) sin ( ) ( )

θθ

θ

δ δ δ δ
δ δ δ δ

δ δ δ δ δ δnt

⎡ ⎤⋅ ⋅⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥⋅ = − ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⋅ − − ⋅⎣ ⎦ ⎣ ⎦⎣ ⎦

(16)

Based on Equations (15) and (16), the general rotated 
slope, normal bending and tangential bending moment 
kernels can be obtained by following operators: 

( ) ( )( ) ( )R
ΘK cos δ sin δ

n t
∂ ⋅ ∂ ⋅

= +
∂ ∂

 (17)

1 1

1

R
N

( )K D ( )sin ( ) ( ) cos( )( )
n

( )sin( )( )
n t

⎧⎪ ∂ ⋅⎪⎡ ⎤=− + − ∇ ⋅ + −⎨⎢ ⎥⎣ ⎦⎪ ∂⎪⎩
⎫⎞⎛ ⎪∂ ∂ ⋅ ⎟⎪⎜ ⎟+ − ⎜ ⎬⎟⎜ ⎟⎜ ⎪∂ ∂⎝ ⎠⎪⎭

2
2 2

2
2

                                                    2

μ μ δ δ μ

δ μ
(18)

1 1

1

R
T

( )K D ( )cos ( ) ( ) cos( )( )
n

( )sin( )( )
n t

⎧⎪ ∂ ⋅⎪⎡ ⎤=− + − ∇ ⋅ + −⎨⎢ ⎥⎣ ⎦⎪ ∂⎪⎩
⎫⎞⎛ ⎪∂ ∂ ⋅ ⎟⎪⎜ ⎟− − ⎜ ⎬⎟⎜ ⎟⎜ ⎪∂ ∂⎝ ⎠⎪⎭

2
2 2

2
2

                                                    2

μ μ δ δ μ

δ μ
(19)

where ic -φφδ = . When the angle cφ  equals to the 
angle iφ  or the angle difference δ  equals to zero, 
Eqs.(17) and (18) are simplified to the Eqs.(5) and (6). 
The expressions of rotated degenerate kernels,  

( , )U s xθ , ( , )s xθΘ , ( , )M s xθ , ( , )V s xθ , ( , )mU s x , 
( , )m s xΘ and ( , )mM s x , can be obtained by applying the 

operators of Eqs.(17)-(19) to the degenerate kernel 
( , )U s x , ( , )s xΘ , ( , )M s x  and ( , )V s x with respect 

to the field point x. 

4 Linear algebraic system 
Consider an infinite plate containing H nonover- 

lapping circular inclusions shown in Figure 3 where oj 
( j =1, 2, ,H) is the position vector of each circular 
inclusion, Rj denotes the radius of the jth circular region, 

jx is the collocation point on the jth circular boundary 
and Bj is the boundary of the jth circular inclusion. 
Since the four null field integral equations [10] in the 
plate formulation are provided, there are 6 ( 4

2C ) options 
of choosing any two equations to solve the problems. 
For the purpose of computational efficiency, Equations 
(8) and (9) are used to analyze the plate problem. By 
uniformly collocating N (=2M+1) points on each 
circular boundary in Eqs. (8) and (9), we have 

{

}
1

0 ( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( ) ( ), ,
j

H

j B

j

U s x s s x m s

M s x s V s x u s dB s x B

Θ

θ

=

= −

+ − ∈

∑ ∫ v  
(20)

{

}
1

0 ( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( ) ( ), .
j

H

j B

j

U s x s s x m s

M s x s V s x u s dB s x B

θ θ

θ θ

Θ

θ

=

= −

+ − ∈

∑ ∫ v
(21)

In the jB  integration, the origin of the observer 
system is adaptively located at the center jo  from 
which the degenerate kernels and Fourier series are 
described. The selection of interior or exterior 
degenerate kernel depends on  or R Rρ ρ< > , 
respectively, according to the observer system. By 
using orthogonal property, a linear algebraic system can 
be written as follows: 

11 11 12 12 1H 1H 1

11 11 12 12 1H 1H 1

21 21 22 22 2H 2H 2

21 21 22 22 2H 2H 2

H1 H1 H 2 H 2 HH HH H

H1 H1 H 2 H 2 HH HH H

U U U

U U U

U

U m

U

U m

θ θ θ θ θ θ

θ θ θ θ θ θ

θ

θ θ θ θ θ θ

Θ Θ Θ

Θ Θ Θ

Θ Θ Θ

Θ Θ Θ

Θ Θ Θ

Θ Θ Θ

⎡ ⎤ ⎧− − −
⎢ ⎥ ⎪

− − −⎢ ⎥
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥ ⎨− − −⎢ ⎥
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

v

m

U U v

U U

U U v

U U

11 11 12 12 1H 1H

11 11 12 12 1H 1H

21 21 22 22 2H 2H

21 21 22 22 2H 2H

H1 H1 H 2 H 2 HH HH

H1 H1 H 2 H 2 HH HH

M V M V M V

M V M V M V

M V

M V

M V

M V

θ θ θ θ θ θ

θ θ θ θ θ θ

θ

θ θ θ θ θ θ

⎫
⎪

⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

⎡ ⎤− − −
⎢ ⎥
− − −⎢ ⎥

⎢ ⎥
− − −⎢

⎢= − − −⎢
⎢
⎢
− − −⎢
⎢
− − −⎢⎣ ⎦

M V M V

M V M V

M V M V

M V M V

1

1

2

2

H

H

u

u

u

θ

θ

θ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎥ ⎪ ⎪
⎪ ⎪⎥ ⎨ ⎬⎥ ⎪ ⎪⎥ ⎪ ⎪⎥ ⎪ ⎪⎥ ⎪ ⎪⎥ ⎪ ⎪⎥ ⎩ ⎭

 

(22)

For brevity, a unified form [ ijU ] ( 1,2,3, ,i H=  and 
1,2,3, ,j H= ) denote the response of ( , )U s x  kernel 

at the ith circle point due to the source at the jth circle. 
Otherwise, the same definition is for [ ijΘ ], [ ijM ], [ ijV ], 
[ ijUθ

], [ ij
θΘ ], [ ijMθ ] and [ ij

θV ] kernels. The explicit 
expressions for sub-vectors [ iu ], [ iθ ], [ im ] and [ iv ] 
can be described as follows: 
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(23) 

The explicit expressions for the sub-matrices of [ ijU ], 
[ ijΘ ], [ ijM ], [ ijV ], [ ijUθ ], [ ij

θΘ ], [ ijMθ ] and [ ijVθ ] can be 
written as shown below: 

0 1 1 1 1 1 1 1 1 1 1

0 2 2 1 2 2 1 2 2 2 2

0 1 1

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

ij ij ij ij
C C S MS

ij ij ij ij
C C S MS

ij

ij ij ij ij
C N N C N N S N N MS N N N N

K K K K
K K K K

K

K K K K

ρ φ ρ φ ρ φ ρ φ
ρ φ ρ φ ρ φ ρ φ

ρ φ ρ φ ρ φ ρ φ
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

(24)

where K can be either one of U , Θ , M , V , Uθ , Θθ , 

θM and θV . The notations 
kφ  and kρ ( 1,2,3, ,k N= ) 

shown in Fig. 3 are the angle and radius of the k-th 
collocation point on the i-th circular boundary with 
respect to the center of the j-th circular boundary (the 
origin of the observer system) and the element of the 
sub-matrices can be determined by  

2

0
( , ) ( , ; , ) cos( )( ),ij

nC k k j j k k j j jK K R n R d         n=0,1,2, ,M,
π

ρ φ θ ρ φ θ θ= ∫
 (25)

2

0
( , ) ( , ; , ) sin( ) ( ),ij

nS k k j j k k j j jK K R n R d         n=1,2, ,M
π

ρ φ θ ρ φ θ θ= ∫
 (26)

5 Techniques for solving scattering 
problems of inclusions 
For an infinite thin plate with multiple inclusions 

subject to incident flexural wave, the systems for 
surrounding plate, or matrix, and each inclusion can be 
represented, respectively, as 

ij ij ij ij

ij ij ij ij

M M M Mr r
j j
r rM M M M
j jθ θ θ θ

U Θ M Vv θ
m uU Θ M V

⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪− −⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥+⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪− −⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦
=0  (27)

j j j j

j j j j

I I I I
j

I I I I
j jθ θ θ θ

v θU Θ M V
m uU Θ M V

⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫− −⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥+⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪− −⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

j =0  (28)

where the subscript j denotes the jth inclusion ; the 
superscript M and I denote the matrix and inclusion, 
respectively; the superscript r denotes radiation from 
the boundary of the matrix. The displacement 

ju , slope 

jθ , moment jm  and shear force 
jv  are continuous 

across each circular interface 
jB . For the scattering 

problem, it can be further decomposed into two parts, 
(a) incident wave field and (b) radiation field, as shown 
in Fig. 5. For satisfying the boundary continuity 
conditions, the radiation boundary condition in part (b) 
is 

= −r i
j j ju u u  (29)

= −r i
j j jθ θ θ  (30)
= −r i

j j jm m m  (31)
r i
j j jv v v= −  (32)

where the subscript i denotes the incidence part. By 
substituting Equations (29)-(32) into Eq. (27) and then 
combining with Eq.(28), the system for an infinite plate 
containing two inclusions, for instance, can be 
represented as 

11 11 11 11 12 12 12 12

11 11 11 11 12 12 12 12

1 1 1 1

1 1 1 1

21 21 21 21 22 22 22 22

21 21 21 21 22 22 22 22

0 0 0 0
0 0 0 0

M M M M M M M M

M M M M M M M M
θ θ θ θ θ θ θ θ

I I I I

I I I I
θ θ θ θ

M M M M M M M M

M M M M M M M M
θ θ θ θ θ θ θ θ

U Θ M V U Θ M V
U Θ M V U Θ M V
U Θ M V
U Θ M V

U Θ M V U Θ M V
U Θ M V U Θ M V

− − − −
− − − −

− −
− −
− − − −
− − − −

2 2 2 2

2 2 2 2

1

1 1

1

1

2 2

2 2

2

2

0
0

0 0 0 0 0
0 0 0 0 0

v

m

v

m

I I I I

I I I I
θ θ θ θ

v f
m f
θ
u
v f
m f
θU Θ M V
uU Θ M V

⎡ ⎤ ⎧ ⎫⎧ ⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪− − ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪− − ⎪ ⎪ ⎪⎩ ⎭ ⎩⎣ ⎦

1

⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

 

(33)

13 13 13 1311 11 11 11
1 1 1 1 1 3 3 3 3

M M M Mv M i M i M i M i i i i if U v Θ m M θ V u U v Θ m M θ V u= − + − + − + − (30)
13 13 13 1311 11 11 11

1 1 1 1 1 3 3 3 3
M M M Mm M i M i M i M i i i i i

θ θ θ θ θ θ θ θf U v Θ m M θ V u U v Θ m M θ V u= − + − + − + − (31)
31 31 31 31 33 33 33 33

3 1 1 1 1 3 3 3 3
M M M M M M M Mv i i i i i i i if U v Θ m M θ V u U v Θ m M θ V u= − + − + − + − (32)

31 31 31 31 33 33 33 33
3 1 1 1 1 3 3 3 3

M M M M M M M Mm i i i i i i i i
θ θ θ θ θ θ θ θf U v Θ m M θ V u U v Θ m M θ V u= − + − + − + − (34)

After calculating the displacement, slope, moment and 
effective shear force along the boundary, the radiation 
field can be solved by employing the boundary integral 
equation for the domain point. The scattering field is 
determined by superimposing radiation field and 
incident field. The tangential bending moment ( )tM x  
can be determined by applying the operator of Eq.(19) 
to the resulted scattering field with respective to the 
field point. 

5.1 Dynamic moment concentration factor 
An incident flexural wave is represented by 

0 0( cos( ) sin( ))( )
0

ik x yiu e φ φ+  (35)

where ( )
0
iu is the amplitude of incident wave, k is the 

wave number and 0φ  is the incident angle. Under the 
polar coordinates, the bending moment and effective 
shear force induced by the incident wave can be 
determined by substituting Eq. (43) into Eqs.(6) and (7). 
By setting the amplitude of incident wave ( )

0 1iu = , 
the amplitude of moment produced by the incident 
wave is 

2
0M Dk=  (36)

The dynamic moment concentration factor (DMCF) 
can be determined as 

0/tDMCF M M=  (37)

5.2 The scattered far field amplitude 
For the most part of scattering applications, it is 
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interesting to measure the scattered field far away from 
the scatter. On the other hand, the asymptotic behavior 
or uniqueness of fundamental solutions (or kernel 
factions) is an important issue for the numerical 
computation. Therefore, we examine the behavior of 
the scattered response in the far field. The scattered far 
field amplitude ( )f θ  [5] in our approach is defined as 

( ) lim 2 / ( )rf a u
ρ

θ ρ ρ
→∞

= ⋅  (38)

where ( )ru ρ  is the out-of-plane elastic displacement 
of radiation field, ρ  is the radius of the field point and 
a is the radius of inclusion. 

6 Numerical results and discussions 
The following numerical simulation utilizes the 

proposed method for finding dynamic moment 
concentration factor (DMCF) around circular inclusions 
as well as the far field scattered amplitude. For the 
cases of small wave number, the same plate problem is 
independently solved by using FEM (the ABAQUS 
software) for comparison. In all cases, the thickness of 
plate is 0.002m unless otherwise specified. The 
general-purpose triangular shell element, S3, of 
ABAQUS was used to model the plate element. 
According to theoretical manual of ABAQUS [13], 
these elements do not suffer from transverse shear 
locking even though the thickness of the plate is merely 
0.002 m. 

An infinite plate with one inclusion of radius a, as 
shown in Fig. 6, subject to incident flexural wave with 

0 0φ =  was firstly considered. Figure 7 shows the 
DMCF on the circular boundary, at / 2π , versus the 
dimensionless wave number by using different number 
of terms of Fourier series. It indicates that the required 
number of terms to convergence increases as the 
incident wave number becomes larger.  

In the limit of zero wave number [1] like ka = 0.005, 
the excitation of incident wave is equivalent to the 
static loading with moment 0xxM M=  and 

0yyM vM=  
at the four sides. For comparison, a 16m×16m plate 
containing one inclusion with radius 1m subject to 
static bending moments, .xxM 1 0=  and .yyM 0 3=  at 
the four sides was considered in the FEM model where 
32138 triangle elements was generated.  Figures 8(a) 
and 8(b) show the polar plot of dynamic moment 
concentration factors on the circular boundary of the 

matrix and inclusion, respectively, by using the present 
method and FEM. Good agreements can be observed. 

Figure 9 shows the far field scattering patterns for a 
flexible inclusion with h1=h/2 at dimensionless wave 
numbers ka = 0.1, 1.0, 3.0 and 5.0. As ka increases, the 
scattering pattern inclines toward forward scattering 
and the associated scattering amplitude also get 
increasing. Figure 10 shows the far field backscattering 
amplitude versus the dimensionless wave number. The 
surrounding plate is steel of thickness 0.025m and solid 
line stands for hole, dash line for rigid inclusion and 
dash-dot line for inclusion with thickness 0.0125m. The 
rigid inclusion means the clamped boundary condition 
around the circular boundary. The proposed results 
shown in figure 10 match well with those reported in 
[5]. It can be found that the amplitude for the radiation 
(or scattering) response in the far field is O ( 1/ 2ρ− ) to 
satisfy the radiation condition. 

To demonstrate the flexural scattering by multiple 
inclusions, two identical inclusions were considered in 
Figure 11, where L is the central distance. In the 
following simulation, the dimensionless central 
distance L/a will be used. For L/a = 2.1, Figure 12 
shows the DMCF on the upper circular boundary of 
inclusion, at / 2π− , versus the dimensionless wave 
number by using different number of Fourier series 
terms. The results using fewer Fourier series terms such 
as M = 4, 6 show some peaks at ka = 3.2, 4.6. They are 
found to be identical to the true eigenvalues, 3.196, 
4.610 [16], of the clamped circular plate with radius 
equaling to that of the inclusion. Actually they are the 
so-called fictitious frequencies of the external problem. 
It demonstrates that the increasing number of Fourier 
series terms can suppress the appearance of fictitious 
frequencies. 

For L/a = 2.1, figure 13 shows the distribution of 
DMCF on the upper circular boundary, including plate 
and inclusion, by using both the present method and 
FEM. It indicates that the maximum DMCF is larger 
than that of one, as shown in Figure 8, due to the 
narrow space between two inclusions. Figures 14 and 
15 show the far field scattering patterns for two flexible 
inclusions with h1=h/2 and L/a=2.1, 10.0, respectively, 
at ka = 0.1, 1.0, 3.0 and 5.0. After comparing with the 
results of one inclusion presented in Figure 9, the far 
field scattering amplitude of two inclusions is more or 
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less twice as large as that of one. In addition, the 
associated fluctuation along the angular direction of 
two inclusions is more evident than that of only one. 
Moreover, this trend becomes obvious as the 
dimensionless central distance increases. 

In summary, the space between scatters has the 
different effect on the near field and the far field, 
respectively. Specifically, the near field quantity, such 
as DMCF, increases as L/a decreases, as shown in 
figure 13, but the fluctuation of the far field scattering 
along the angular direction becomes evident when L/a 
increases, as shown in Figures 14 and 15. It implies that 
the multiple scattering can be simplified by using the 
single-scattering approximation in studying the near 
field problem when the spacing between scatters is 
large enough but the far field study can not follow this 
rule. 

7 Concluding remarks 
A semi-analytical approach to solve the problem of 

flexural wave scattering from multiple inclusions in an 
infinite thin plate was presented. Our studies focus on 
the issues of DMCF around the circular inclusion and 
the far field scattering pattern. Multiple scattering 
solution was derived by using the superposition 
technique and the null-field integral equation approach. 
The advantage of using the degenerate kernels is free of 
calculating the improper integrals by using principal 
values in the traditional boundary integral formulation. 
For an infinite plate with one inclusion, good 
agreement between the present method and analytical 
solution is observed. For the cases of small wave 
number, the proposed results for a plate with one or 
multiple circular inclusions match well with the static 
results from finite element method (FEM). Numerical 
results indicate that DMCF of two inclusions is 
apparently larger than that of one when two inclusions 
are close to each other. Moreover it indicates that the 
space between two inclusions has different effects on 
the near field and the far field. It is helpful for further 
study on the multiple scattering. Fictitious frequency of 
external problem can be suppressed by using the more 
number of Fourier series terms. As seen from the 
numerical results, the proposed method provides a 
semi-analytical solution for the problem of scattering 
flexural wave by multiple circular inclusions in an 
infinite thin plate subject to the incident wave, since its 

analytical solution is not yet available to date. 
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Figure 1 Problem statement for an infinite plate 
containing multiple circular inclusions subject to an 
incident flexural wave 

Figure 2 Degenerate kernel for U(s,x) 
 

Figure 3 Collocation point and boundary contour 
integration in the boundary integral equation for the 
plate by using the adaptive observer system 

Figure 4 Transformation of tensor components 

Figure 5 Decompositon of scattering plate problem 
with an inclusion into (a) aninternal inclusion problem 
(b) an external radiation plate problem (c) incident 
wave field 
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Figure 6 An infinite plate containing an inclusion 
subject to an incident flexural wave 

Figure 7 Dynamic moment concentration factor on the 
circular boundary ( / 2θ π= ) versus the dimension-  
less wave number by using different number of terms 
of Fourier series 

Figure 8 Distribution of dynamic moment concentration 
factors on the circular boundary of the matrix and 
inclusion by using the present method (M=4, ka=0.005) 
and FEM (ABAQUS, under equivalent static loading) 

Figure 9 Far field scattering pattern for a flexible 
inclusion with h1=h/2 at dimensionless wave numbers 
ka = 0.1, 1.0, 3.0 and 5.0 

Figure 10 Far field backscattering amplitude versus the 
dimensionless wave number. The surrounding plate is 
steel of thickness 0.025m, solid line for the hole, 
dashed line for the rigid inclusion and dash-dot line for 
the inclusion with thickness 0.0125m. 

Figure 11 An infinite plate containing two inclusions 
subject to an incident flexural wave with an incident 
angle 0φ  
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Figure 12 DMCF on the upper circular boundary 
( / 2θ π= − ) versus the dimensionless wave number by 
using different number of terms of Fourier series ( L/a 
= 2.1) 

Figure 13 Distribution of dynamic moment concentra- 
tion factors on the upper circular boundary of the 
matrix and inclusion by using the present method and 
FEM ( L/a = 2.1) 

Figure 14 Far field scattering pattern for two flexible 
inclusions with h1=h/2 and L/a=2.1 at dimensionless 
wave numbers ka = 0.1, 1.0, 3.0 and 5.0 

Figure 15 Far field scattering pattern for two flexible 
inclusions with h1=h/2 and L/a=10.0 at dimensionless 
wave numbers ka = 0.1, 1.0, 3.0 and 5.0 
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