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Degenerate scales of an eccentric annulus and an infinite plane with two identical circular holes in the boundary 

integral equation method (BIEM) are analytically derived and numerically implemented in this paper. To analyti- 

cally study the degenerate scale of the BIE, the closed-form fundamental solution of the two-dimensional Laplace 

equation, ln r , is expanded by a degenerate (separate) kernel in terms of the bipolar coordinates. It is proved 

that unit radius of the outer circle dominates the degenerate scale of eccentric annulus. An analytical formula of 

degenerate scale for the infinite plane with two identical circular boundaries was also derived at the first time. In 

addition, null fields of the domain and complementary domain for the ordinary and degenerate scales are both 

shown, respectively. Finally, comparison with available results and the BEM data are well done. 
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. Introduction 

Boundary integral equation method (BIEM)/boundary element
ethod (BEM) is efficient and accurate for solving two-dimensional
roblems governed by the Laplace equation, the Navier equation or the
iharmonic equation. However, the Dirichlet type problem of a special
omain may yield a nonunique solution once the single-layer kernel is
sed. This special size is called the degenerate scale. The degenerate
cale is related to Gamma contour [1] , logarithmic capacity [2] , crit-
cal value [3] and transfinite boundary [4] but the concepts are the
ame. Therefore, how to predict the degenerate scale appearing in the
IEM/BEM is very important and is not trivial in the development of
he BEM. For this reason, many researchers paid attention to this issue
n recent years [5–7] . 

When the real size is at a degenerate scale in the BIEM/BEM im-
lementation, it results in a singular influence matrix due to a weakly
ingular kernel (U). In other words, the occurrence of the degenerate
cale is inherent in the integral equation. Hence, the degenerate scale is
ot physically realizable but is mathematically interpretable. From the
iewpoint of mathematics, there are two ways to understand the degen-
rate scale. One is the non-uniqueness solution in the BIEM/BEM. The
ther is the unit logarithmic capacity corresponding to the conformal
adius in the complex analysis [8] . When the logarithmic capacity is
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qual to 1, the corresponding scale is a degenerate one. There were an-
lytical formulae of the logarithmic capacity for the fourteen geometry
hapes presented by Landkof [9] . Dijkstra [10] numerically examined
he value of the degenerate scale for some geometry shapes [6] by us-
ng the BEM. However, the derivation of the analytical formulae was not
iven in Landkof’s book [9] . Later, Rumely [2] employed the conformal
apping to analytically derive the logarithmic capacity for many shapes

uch as the circle, the ellipse and the disjoint circles. However, the re-
ation between the logarithmic capacity and the degenerate scale was
ot addressed in their books [2,9] . Until 2013, Kuo et al. [11] employed
he Riemann conformal mapping to link the unit logarithmic capacity
nd the degenerate scale. One way to understand the degenerate scale
hich results in the non-uniqueness solution in the BIEM/BEM is the

ange deficiency of the integral operator of a weakly singular kernel,
n r . 

Chen et al. [12] employed the degenerate kernel and the circulant
o analytically study the degenerate scale of circular and annular ge-
metries in the continuous and discrete systems, respectively. Later, the
umerical demonstration was achieved in an eccentric annulus case by
hen and Shen [13] . But the analytical expressions were not provided.
n annular region has also been considered for the harmonic equa-

ion by He et al. [14] , Liu and Lean [15] . Possible degenerate scales
ere studied in both continuous and discrete systems. However, the
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Fig. 1. Degenerate scale of several shapes of domain. 
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irculant property fails in the non-circular or non-annular case. There-
ore, Chen et al. [16] used the BEM to numerically investigate the degen-
rate scale of an ellipse and found that there exist two degenerate scales
n the plane elasticity. Related works were done by Chen and his cowork-
rs [17–19] . Besides, Chen et al. [20] also extended the BIEM/BEM to
tudy the degenerate scale for a circular thin plate (biharmonic equa-
ion). Regarding the multiply-connected domain, it is found that the
egenerate scale depends on the outer boundary contour [21,22] . Chen
nd Shen [13] also numerically demonstrated that the degenerate scale
f an eccentric annulus depends on the unit radius of the outer circle.
owever, no analytical proof was done to the best of authors ’ knowl-
dge. Here, we would present it by using the bipolar coordinates for an
ccentric annulus. 

Corfdir and Bonnet [23] studied the Laplace problem of degenerate
cale for a half-plane domain. In their paper, they claimed that the de-
enerate scale depends on the type of the boundary condition on the
ine bounding the half-plane. The degenerate scale only occurs for the
eumann boundary condition. On the contrary, it does not appear for

he Dirichlet type. The half-plane problem can be transformed into an
nfinite-plane problem with the symmetric or the anti-symmetric Dirich-
et boundary condition. Later, Chen [24] employed a null-field BIEM to
tudy the same problem. Numerical results [24] also support the finding
n [23] . However, from the viewpoint of using the indirect BIEM/BEM,
he influence matrices constructed by the weakly singular kernel (ln r )
or those two infinite-plane problems are the same. For two holes in
he infinite plane, they may have the same degenerate scale no mat-
er that it is symmetric or anti-symmetric Dirichlet boundary conditions
ince the influence matrices are the same. In those two papers [23, 24] ,
oth of them employed the image method to construct the correspond-
71 
ng Green’s function. The boundary condition on the line bounding the
alf-plane can be satisfied in advance by using the Green’s function in
heir BEM formulations. In this way, the degenerate scale is free for the
irichlet condition on the line bounding the half-plane. In this paper,
e adopted the usual kernel (ln r ) in our BEM formulation for all kinds of
oundary conditions. This is the reason why we will examine the present
esult and those of the two papers. This finding also verifies again that
he degenerate scale depends on the kernel function in the BEM/BIEM. 

In addition, the null and nonzero fields for ordinary and degenerate
cales are also the main focus of the present study. Chen et al. [25] an-
lytically studied the field of both interior and exterior domains for an
lliptical case. They found that the trivial boundary potential may re-
ult in a nontrivial boundary flux when the geometric size is at a de-
enerate scale. It means that the fields inside and outside the domain
re null and nonzero for a domain at the degenerate scale, respectively.
his phenomenon is not physically realizable and is opposite to the phe-
omenon of ordinary scale. In 2012, Chen et al. [26] employed the null-
eld BIEM in conjunction with the degenerate kernel to revisit the same
roblem. The same result was obtained. Later, Kuo et al. [6] used the
EM to numerically examine the null and nonzero fields for regular N-
on domains including right triangle, square, regular 5-gon and regular
-gon. All numerical phenomena about degenerate scales obtained by
he BEM agreed with the analytical prediction. Furthermore, true and
purious eigensolutions also have similar behavior of null and nonzero
odes. Chen et al. [27] employed both BEM and the null-field BIEM to
umerically demonstrate and analytically examine the null and nonzero
odes for circular, elliptical, annular and confocal elliptical membranes.
ot only true eigenmodes but also spurious eigenmodes were addressed.
owever, all the studies of degenerate scale and spurious eigenmodes
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Fig. 2. Numerical evidences for the degenerate scale of three cases in BEM. (a) A circle 

(degenerate scale, a = 1). (b) An eccentric annulus (degenerate scale, a = 1). (c) An infinite 

plane with two identical circular holes (degenerate scale, a = 0.48513, 𝛾 = 2). 
ere focused on simply-connected domains. In this paper, we will ex-
end to multiply-connected and infinite domains. 

For the nine familiar shapes in Fig. 1 , we had analytically studied
he former six shapes (Circle [12] , ellipse [25,26] , eccentric annulus
13] , regular N-gons [6] ). In this paper, the degenerate scale of an infi-
ite plane containing two identical circular holes is analytically derived
y using the null-field BIEM. In our approach, we employ the bipolar
oordinates to naturally describe the geometry of the mentioned prob-
em. The closed-form kernel functions and boundary densities are ex-
anded in terms of degenerate kernels and the eigenfunction expansion,
espectively. In this way, all boundary contour integrals are exactly ob-
ained. Therefore, the analytical derivation of the degenerate scale can
e achieved. In addition, a special case of a circular domain and an
ccentric annulus are also revisited by using the bipolar coordinates.
egarding the above three cases, it is found that influence matrices of

he BEM may be singular for a certain scale as shown in the numerical
vidence of Fig. 2 . Finally, we also analytically derive and numerically
erify the nonzero field in the domain and the null field in the comple-
entary domain for the ordinary scale of these cases. It is found that

nalytical solutions match well numerical results obtained by using the
EM. For the special geometry, the infinite plane containing two rect-
ngles or two ellipses, the BEM is also implemented to compare with
vailable results in order to numerically demonstrate the existence of
egenerate scale for an infinite plane with two arbitrary cavities. 

. Analytical derivation of the degenerate scale by using the 

ipolar coordinates 

A degenerate scale is a well-known phenomenon for researchers and
ngineers using the BEM/BIEM. It is a certain size of the domain which
esults in non-uniqueness solutions in the boundary integral equation
BIE) for solving interior two-dimensional Laplace problems subject to
he specified Dirichlet boundary condition. The Laplace equation subject
o the Dirichlet boundary condition is given below: 

 

2 𝑢 ( 𝐱) = 0 , 𝐱 ∈ 𝐷, (1)

 ( 𝐱) = 𝑢̄ ( 𝐱) , 𝐱 ∈ 𝐵, (2)

here D is the domain bounded by the boundary B and 𝑢̄ ( 𝐱) is the
pecified Dirichlet condition. The boundary integral formulation for the
aplace equation can be derived from Green’s third identity, 

 𝜋𝑢 ( 𝐱) = ∫𝐵 𝑇 ( 𝐬 , 𝐱) 𝑢 ( 𝐬 ) 𝑑𝐵( 𝐬 )− ∫𝐵 𝑈 ( 𝐬 , 𝐱) 𝑡 ( 𝐬 ) 𝑑𝐵( 𝐬 ) , 𝐱 ∈ 𝐷, (3)

or the domain point, where s and x are the source and field points,
espectively, 𝑡 ( 𝐬 ) = 

𝜕𝑢 ( 𝐬 ) 
𝜕 𝐧 𝐬 

, in which n s denotes the unit outward normal

ector at the source point s , and U ( s , x ) is the fundamental solution
hich satisfies 

 

2 𝑈 ( 𝐬 , 𝐱) = 2 𝜋𝛿( 𝐱 − 𝐬 ) , (4)

here 𝛿( x − s ) denotes the Dirac-delta function. The fundamental solu-
ion can be obtained as follows: 

( 𝐬 , 𝐱) = ln |𝐬 − 𝐱 | = ln 𝑟, (5)

here r is the distance between s and x , and the T ( s , x ) kernel function
s defined by 

 ( 𝐬 , 𝐱) = 

𝜕𝑈 ( 𝐬 , 𝐱) 
𝜕 𝐧 𝐬 

. (6)

Eq. (3) is also called the direct BIE. If the two kernel functions were
xpressed in terms of proper degenerate kernels, then the null-field
oundary integral equation would be 

 = ∫𝐵 𝑇 ( 𝐬 , 𝐱) 𝑢 ( 𝐬 ) 𝑑𝐵( 𝐬 )− ∫𝐵 𝑈 ( 𝐬 , 𝐱) 𝑡 ( 𝐬 ) 𝑑𝐵( 𝐬 ) , 𝐱 ∈ 𝐷 

𝑐 ∪ 𝐵, (7)

here D 

c is the complementary domain. Using the degenerate kernel to
epresent the closed-form fundamental solution, the discontinuous be-
avior of potential due to T ( s, x ) across the boundary can be expressed
72 
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Fig. 3. Sketch of three analytical cases and two numerical cases. 
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learly by each side. Therefore, the Cauchy principal value and bump
ontour [28] are not used and no free term is required in Eq. (7) . The
nfluence matrices for boundary points obtained by using both the do-
ain point BIE and null-field BIE are the same [29] . Here, three cases, a

ircular domain, an eccentric annulus and an infinite domain with two
73 
dentical circular holes are considered as shown in Fig. 3 (a)–(c). In order
o analytically derive the degenerate scale of a problem containing two
ircular boundaries, we employ the kernel function in the bipolar coor-
inates ( 𝜂, 𝜉). The closed-form fundamental solution, ln r , is expanded
nto the degenerate form by separating the source point and the field
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oint as shown below: 

( 𝐬 , 𝐱) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ln (2 𝑐) − 𝜂𝑠 − 

∞∑
𝑛 =1 

1 
𝑛 

[
𝑒 − 𝑛 ( 𝜂𝑥 − 𝜂𝑠 ) cos 

[
𝑛 ( 𝜉𝑥 − 𝜉𝑠 ) 

]
− 𝑒 − 𝑛 𝜂𝑥 cos ( 𝑛 𝜉𝑥 ) − 𝑒 − 𝑛 𝜂𝑠 cos ( 𝑛 𝜉𝑠 ) 

]
, 𝜂𝑥 ≥ 𝜂𝑠 ≥ 0 , 

ln (2 𝑐) − 𝜂𝑥 − 

∞∑
𝑛 =1 

1 
𝑛 

[
𝑒 − 𝑛 ( 𝜂𝑠 − 𝜂𝑥 ) cos 

[
𝑛 ( 𝜉𝑥 − 𝜉𝑠 ) 

]
− 𝑒 − 𝑛 𝜂𝑥 cos ( 𝑛 𝜉𝑥 ) 

− 𝑒 − 𝑛 𝜂𝑠 cos ( 𝑛 𝜉𝑠 ) 
]
, 𝜂𝑠 > 𝜂𝑥 > 0 , 

ln (2 𝑐) − 

∞∑
𝑛 =1 

1 
𝑛 

[
𝑒 − 𝑛 ( 𝜂𝑠 − 𝜂𝑥 ) cos 

[
𝑛 ( 𝜉𝑥 − 𝜉𝑠 ) 

]
− 𝑒 𝑛 𝜂𝑥 cos ( 𝑛 𝜉𝑥 ) 

− 𝑒 − 𝑛 𝜂𝑠 cos ( 𝑛 𝜉𝑠 ) 
]
, 𝜂𝑠 > 0 > 𝜂𝑥 , 

(8)

here 𝜂s ≥ 0, x = ( 𝜂x , 𝜉x ), s = ( 𝜂s , 𝜉s ), c is the half distance between the
wo foci of the bipolar coordinates and the relationship between Carte-
ian coordinates ( x 1 , x 2 ) and the bipolar coordinates ( 𝜂x , 𝜉x ) are 

 1 = 𝑐 
sinh 𝜂𝑥 

cosh 𝜂𝑥 − cos 𝜉𝑥 
, (9)

 2 = 𝑐 
sin 𝜉𝑥 

cosh 𝜂𝑥 − cos 𝜉𝑥 
. (10)

If 𝜂s < 0, the kernel function is similarly expanded as: 

( 𝐬 , 𝐱) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ln (2 𝑐) + 𝜂𝑠 − 

∞∑
𝑛 =1 

1 
𝑛 

[
𝑒 − 𝑛 ( 𝜂𝑠 − 𝜂𝑥 ) cos 

[
𝑛 ( 𝜉𝑥 − 𝜉𝑠 ) 

]
− 𝑒 𝑛 𝜂𝑥 cos ( 𝑛 𝜉𝑥 ) − 𝑒 𝑛 𝜂𝑠 cos ( 𝑛 𝜉𝑠 ) 

]
, 𝜂𝑥 ≤ 𝜂𝑠 < 0 , 

ln (2 𝑐) + 𝜂𝑥 − 

∞∑
𝑛 =1 

1 
𝑛 

[
𝑒 − 𝑛 ( 𝜂𝑥 − 𝜂𝑠 ) cos 

[
𝑛 ( 𝜉𝑥 − 𝜉𝑠 ) 

]
− 𝑒 𝑛 𝜂𝑥 cos ( 𝑛 𝜉𝑥 ) − 𝑒 𝑛 𝜂𝑠 cos ( 𝑛 𝜉𝑠 ) 

]
, 𝜂𝑠 < 𝜂𝑥 < 0 , 

ln (2 𝑐) − 

∞∑
𝑛 =1 

1 
𝑛 

[
𝑒 − 𝑛 ( 𝜂𝑥 − 𝜂𝑠 ) cos 

[
𝑛 ( 𝜉𝑥 − 𝜉𝑠 ) 

]
− 𝑒 − 𝑛 𝜂𝑥 cos ( 𝑛 𝜉𝑥 ) − 𝑒 𝑛 𝜂𝑠 cos ( 𝑛 𝜉𝑠 ) 

]
, 𝜂𝑠 < 0 < 𝜂𝑥 . 

(11)

To verify the validity of Eqs. (8) and ( 11 ), the contour plots of the
losed-form fundamental solution and the degenerate kernel are shown
n Table 1 . To fully employ the degenerate kernel in the bipolar coor-
inates, a circular case, an eccentric annulus and an infinite plane with
wo identical circular holes are considered. In the following three sub-
ections, we individually investigate the degenerate scale of these three
ases. 

.1. Revisit of the degenerate scale of a circular domain by using the 

ipolar coordinates 

First, we revisit the degenerate scale of a circular domain by us-
ng the degenerate kernel in terms of the bipolar coordinates instead
f the polar coordinates [12] . The specified Dirichlet boundary condi-
ion along the boundary ( 𝜂s = 𝜂0 ) can be expanded by using the Fourier
eries, 

̄ ( 𝐬 ) = 𝑝 0 + 

∞∑
𝑛 =1 

𝑝 𝑛 cos ( 𝑛 𝜉𝑠 ) + 

∞∑
𝑛 =1 

𝑞 𝑛 sin ( 𝑛 𝜉𝑠 ) , 

𝐬 ∈ 𝐵 𝑎𝑛𝑑 0 ≤ 𝜉𝑠 ≤ 2 𝜋, 𝜂𝑠 = 𝜂0 = const ., (12)

here s = ( 𝜂s , 𝜉s ), coefficients of Fourier series, p 0 , p n and q n are given
rom the Dirichlet B.C. The unknown boundary flux density of normal
erivative, t ( s ), is expressed by 

 ( 𝐬 ) = − 

cosh 𝜂0 − cos 𝜉𝑠 
𝑐 

[ 

𝑎 0 + 

∞∑
𝑛 =1 

𝑎 𝑛 cos ( 𝑛 𝜉𝑠 ) + 

∞∑
𝑛 =1 

𝑏 𝑛 sin ( 𝑛 𝜉𝑠 ) 

] 

, 

𝐬 ∈ 𝐵 and 0 ≤ 𝜉𝑠 ≤ 2 𝜋, (13)

ince 𝜕 ( ⋅)∕ 𝜕 𝐧 𝐬 = − 

cosh 𝜂𝑠 − cos 𝜉𝑠 
𝑐 

𝜕 ( ⋅)∕ 𝜕 𝜂𝑠 . In Eq. (13) , a 0 , a n and b n are the
nknown coefficients of Fourier series to be determined. For the bound-
ry contour, we have 

 𝐵( 𝐬 ) = 

𝑐 

cosh ( 𝜂 ) − cos ( 𝜉 ) 
𝑑 𝜉𝑠 . (14)
𝑠 𝑠 r

74 
Based on Eqs. (6) and ( 14 ), substitution of 𝜂x = 𝜂0 , Eqs. (8) , (12) and
13) into Eq. (7) yields 

 𝜋
(
ln (2 𝑐) − 𝜂0 

)
𝑎 0 − 

∞∑
𝑛 =1 

𝜋

𝑛 
cos ( 𝑛 𝜉𝑥 ) 𝑎 𝑛 − 

∞∑
𝑛 =1 

𝜋

𝑛 
sin ( 𝑛 𝜉𝑥 ) 𝑏 𝑛 

+ 

∞∑
𝑛 =1 

2 𝜋
𝑛 
𝑒 − 𝑛 𝜂0 cos ( 𝑛 𝜉𝑥 ) 𝑎 0 + 

∞∑
𝑛 =1 

𝜋

𝑛 
𝑒 − 𝑛 𝜂0 𝑎 𝑛 

= 2 𝜋

( 

𝑝 0 + 

∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂0 𝑝 𝑛 

) 

+ 𝜋

∞∑
𝑛 =1 

𝑝 𝑛 cos ( 𝑛 𝜉𝑥 ) 

+ 𝜋

∞∑
𝑛 =1 

𝑞 𝑛 sin ( 𝑛 𝜉𝑥 ) , 𝐱 ∈ 𝐵 and 0 ≤ 𝜉𝑥 ≤ 2 𝜋. (15) 

By comparing with the coefficient of the Fourier sine base in Eq. (15) ,
e have 

 𝑛 = − 𝑛 𝑞 𝑛 . (16)

However, the coefficients, a 0 and a n of cosine terms are coupled as
hown below: 

 

(
ln (2 𝑐) − 𝜂0 

)
𝑎 0 + 

∞∑
𝑛 =1 

1 
𝑛 
𝑒 − 𝑛 𝜂0 𝑎 𝑛 

= 2 

( 

𝑝 0 + 

∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂0 𝑝 𝑛 

) 

, for the constant term , (17) 

2 
𝑛 
𝑒 − 𝑛 𝜂0 𝑎 0 − 

1 
𝑛 
𝑎 𝑛 = 𝑝 𝑛 , for the cos ( 𝑛 𝜉𝑥 ) term (18)

After decoupling a 0 and a n in Eqs. (17) and ( 18 ), we have 

 

ln (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

1 
𝑛 
𝑒 −2 𝑛 𝜂0 

) 

𝑎 0 = 𝑝 0 − 

3 
2 

∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂0 𝑝 𝑛 . (19)

f the coefficient of a 0 in Eq. (19) is equal to zero, i.e. 

n (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

1 
𝑛 
𝑒 −2 𝑛 𝜂0 = 0 , (20)

hen a 0 cannot be determined. The value of 𝜂0 satisfying Eq. (20) de-
oted by 𝜂d yields the degenerate scale. Based on the addition theorem
f ln function [30] , we have 

n ( 𝑎 − 𝑏 ) = ln 𝑎 − 

∞∑
𝑛 =1 

1 
𝑛 

(
𝑏 

𝑎 

)𝑛 

, 
|||| 𝑏 𝑎 |||| < 1 . (21)

By setting 𝑎 = 𝑒 𝜂𝑑 and 𝑏 = 𝑒 − 𝜂𝑑 in Eq. (21), Eq. (20) is simplified to 

n (2 𝑐) − ln ( 𝑒 𝜂𝑑 − 𝑒 − 𝜂𝑑 ) = 0 , (22)

.e. 

2 𝑐 
𝑒 𝜂𝑑 − 𝑒 − 𝜂𝑑 

= 1 . (23)

The radius of the circle, a , in the bipolar coordinates is expressed by

 = 

𝑐 

sinh 𝜂0 
, 𝜂0 > 0 . (24)

Eq. (23) in conjunction with Eq. (24) proves that the degenerate
cale of a circular domain is a = a d = c /sinh 𝜂d = 1 as shown in Fig. 1 .
his result matches well that of a circle by using the degenerate kernel
f the polar coordinates [12] . In the BEM implementation, the influence
atrix constructed by using the U ( s , x ) kernel may be singular when the

adius is one (degenerate scale) as shown in Fig. 2 (a). 
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Table 1 

Sketch of contour plots of the closed-form fundamental solution and the degenerate kernel. 
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.2. Analytical derivation of the degenerate scale of an eccentric annulus 

y using the bipolar coordinates 

Similarly, the given and unknown boundary data of an eccentric an-
ulus are expressed by 

 0 ( 𝐬 ) = 𝑝 
(0) 
0 + 

∞∑
𝑛 =1 

𝑝 (0) 
𝑛 

cos ( 𝑛 𝜉𝑠 ) + 

∞∑
𝑛 =1 

𝑞 (0) 
𝑛 

sin ( 𝑛 𝜉𝑠 ) , 𝐬 ∈ 𝐵 0 and 0 ≤ 𝜉𝑠 ≤ 2 𝜋, 

(25) 

 1 ( 𝐬 ) = 𝑝 
(1) 
0 + 

∞∑
𝑛 =1 

𝑝 (1) 
𝑛 

cos ( 𝑛 𝜉𝑠 ) + 

∞∑
𝑛 =1 

𝑞 (1) 
𝑛 

sin ( 𝑛 𝜉𝑠 ) , 𝐬 ∈ 𝐵 1 and 0 ≤ 𝜉𝑠 ≤ 2 𝜋, 

(26) 

nd 

 0 ( 𝐬 ) = − 

cosh 𝜂0 − cos 𝜉𝑠 
𝑐 

[ 

𝑎 
(0) 
0 + 

∞∑
𝑛 =1 

𝑎 (0) 
𝑛 

cos ( 𝑛 𝜉𝑠 ) + 

∞∑
𝑛 =1 

𝑏 (0) 
𝑛 

sin ( 𝑛 𝜉𝑠 ) 

] 

, 

𝐬 ∈ 𝐵 0 and 0 ≤ 𝜉𝑠 ≤ 2 𝜋, (27) 

 1 ( 𝐬 ) = − 

cosh 𝜂1 − cos 𝜉𝑠 
𝑐 

[ 

𝑎 
(1) 
0 + 

∞∑
𝑛 =1 

𝑎 (1) 
𝑛 

cos ( 𝑛 𝜉𝑠 ) + 

∞∑
𝑛 =1 

𝑏 (1) 
𝑛 

sin ( 𝑛 𝜉𝑠 ) 

] 

, 

𝐬 ∈ 𝐵 1 and 0 ≤ 𝜉𝑠 ≤ 2 𝜋, (28) 

here the subscript ‘0 ’ and ‘1 ’ of u , t and B and the superscript ‘(0) ’
nd ‘(1) ’ of the unknown coefficients of Fourier series, stand for the
uter (0) and inner (1) circular boundaries of the domain, respectively.
75 
ccording to Eqs. (6) and ( 14 ), substitution of Eqs. (8) , ( 25 )–( 28 ) into
q. (7) yields 

 𝜋
(
ln (2 𝑐) − 𝜂0 

)
𝑎 
(0) 
0 − 

∞∑
𝑛 =1 

𝜋

𝑛 
cos ( 𝑛 𝜉𝑥 ) 𝑎 (0) 𝑛 

− 

∞∑
𝑛 =1 

𝜋

𝑛 
sin ( 𝑛 𝜉𝑥 ) 𝑏 (0) 𝑛 

+ 

∞∑
𝑛 =1 

2 𝜋
𝑛 
𝑒 − 𝑛 𝜂0 cos ( 𝑛 𝜉𝑥 ) 𝑎 

(0) 
0 + 

∞∑
𝑛 =1 

𝜋

𝑛 
𝑒 − 𝑛 𝜂0 𝑎 (0) 

𝑛 

+2 𝜋
(
ln (2 𝑐) − 𝜂0 

)
𝑎 
(1) 
0 − 

∞∑
𝑛 =1 

𝜋

𝑛 
𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) cos ( 𝑛 𝜉𝑥 ) 𝑎 (1) 𝑛 

− 

∞∑
𝑛 =1 

𝜋

𝑛 
𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) sin ( 𝑛 𝜉𝑥 ) 𝑏 (1) 𝑛 

+ 

∞∑
𝑛 =1 

2 𝜋
𝑛 
𝑒 − 𝑛 𝜂0 cos ( 𝑛 𝜉𝑥 ) 𝑎 

(1) 
0 + 

∞∑
𝑛 =1 

𝜋

𝑛 
𝑒 − 𝑛 𝜂1 𝑎 (1) 

𝑛 

= 2 𝜋

( ∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂0 𝑝 (0) 
𝑛 

+ 

∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂1 𝑝 (1) 
𝑛 

) 

− 𝜋

∞∑
𝑛 =1 

(
𝑝 (0) 
𝑛 

+ 𝑒 − 𝑛 ( 𝜂0 − 𝜂1 ) 𝑝 (1) 
𝑛 

)
cos ( 𝑛 𝜉𝑥 )

− 𝜋

∞∑
𝑛 =1 

(
𝑞 (0) 
𝑛 

+ 𝑒 − 𝑛 ( 𝜂0 − 𝜂1 ) 𝑞 (1) 
𝑛 

)
sin ( 𝑛 𝜉𝑥 ) , 𝐱 ∈ 𝐵 0 , (29)

 𝜋
(
ln (2 𝑐) − 𝜂0 

)
𝑎 
(0) 
0 − 

∞∑
𝑛 =1 

𝜋

𝑛 
𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) cos ( 𝑛 𝜉𝑥 ) 𝑎 (0) 𝑛 

− 

∞∑
𝑛 =1 

𝜋

𝑛 
𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) sin ( 𝑛 𝜉𝑥 ) 𝑏 (0) 𝑛 

+ 

∞∑
𝑛 =1 

2 𝜋
𝑛 
𝑒 − 𝑛 𝜂1 cos ( 𝑛 𝜉𝑥 ) 𝑎 

(0) 
0 + 

∞∑
𝑛 =1 

𝜋

𝑛 
𝑒 − 𝑛 𝜂0 𝑎 (0) 

𝑛 

+2 𝜋
(
ln (2 𝑐) − 𝜂1 

)
𝑎 
(1) 
0 − 

∞∑
𝑛 =1 

𝜋

𝑛 
cos ( 𝑛 𝜉𝑥 ) 𝑎 (1) 𝑛 

− 

∞∑
𝑛 =1 

𝜋

𝑛 
sin ( 𝑛 𝜉𝑥 ) 𝑏 (1) 𝑛 

+ 

∞∑
𝑛 =1 

2 𝜋
𝑛 
𝑒 − 𝑛 𝜂1 cos ( 𝑛 𝜉𝑥 ) 𝑎 

(1) 
0 + 

∞∑
𝑛 =1 

𝜋

𝑛 
𝑒 − 𝑛 𝜂1 𝑎 (1) 

𝑛 
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b

𝑢

𝑢

a

𝑡

𝑡

w  

‘  

a  

(

2

2

= 2 𝜋

( 

𝑝 
(0) 
0 + 

∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂0 𝑝 (0) 
𝑛 

+ 

∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂1 𝑝 (1) 
𝑛 

) 

+ 𝜋

∞∑
𝑛 =1 

(
𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) 𝑝 (0) 

𝑛 
− 𝑝 (1) 

𝑛 

)
cos ( 𝑛 𝜉𝑥 ) 

+ 𝜋

∞∑
𝑛 =1 

(
𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) 𝑞 (0) 

𝑛 
− 𝑞 (1) 

𝑛 

)
sin ( 𝑛 𝜉𝑥 ) , 𝐱 ∈ 𝐵 1 , (30)

y collocating on the outer and inner boundary points, respectively. Af-
er comparing with the coefficients in Eqs. (29) and ( 30 ), it is found
hat coefficients of sine, 𝑏 (0) 𝑛 and 𝑏 (1) 𝑛 are uncoupled with the coefficients
f cosine, 𝑎 (0) 0 , 𝑎 (0) 𝑛 , 𝑎 (1) 0 and 𝑎 (1) 𝑛 . The coefficients of sine could be deter-
ined in advance. After adding or subtracting the related equations of

onstant or cosine term, the coefficients satisfy 

𝜂1 − 𝜂0 
)
𝑎 
(1) 
0 = 𝑝 

(0) 
0 , (31)

 

(
ln (2 𝑐) − 𝜂0 

)
𝑎 
(0) 
0 + 

∞∑
𝑛 =1 

1 
𝑛 
𝑒 − 𝑛 𝜂0 𝑎 (0) 

𝑛 
+ 

(
2 ln (2 𝑐) − 𝜂0 − 𝜂1 

)
𝑎 
(1) 
0 

+ 

∞∑
𝑛 =1 

1 
𝑛 
𝑒 − 𝑛 𝜂1 𝑎 (1) 

𝑛 
= 𝑝 

(0) 
0 + 2 

( ∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂0 𝑝 (0) 
𝑛 

+ 

∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂1 𝑝 (1) 
𝑛 

) 

, (32)

 

(0) 
𝑛 

− 𝑎 (1) 
𝑛 

= 

𝑛 

1 − 𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) 

[2 
𝑛 
( 𝑒 − 𝑛 𝜂0 − 𝑒 − 𝑛 𝜂1 ) 

(
𝑎 
(0) 
0 + 𝑎 

(1) 
0 

)
+ 

(
1 + 𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) 

)
𝑝 (0) 
𝑛 

− 

(
1 − 𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) 

)
𝑝 (1) 
𝑛 

]
, (33)

 

(0) 
𝑛 

+ 𝑎 (1) 
𝑛 

= 

𝑛 

1 + 𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) 

[2 
𝑛 
( 𝑒 − 𝑛 𝜂0 + 𝑒 − 𝑛 𝜂1 ) 

(
𝑎 
(0) 
0 + 𝑎 

(1) 
0 

)
+ 

(
1 − 𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) 

)
𝑝 (0) 
𝑛 

+ 

(
1 + 𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) 

)
𝑝 (1) 
𝑛 

]
. (34)

Eqs. (33) and ( 34 ) yield 

 

(0) 
𝑛 

= 

( 

𝑛 

1 − 𝑒 −2 𝑛 ( 𝜂1 − 𝜂0 ) 

) [2 
𝑛 

(
𝑒 − 𝑛 𝜂0 − 𝑒 − 𝑛 𝜂1 𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) 

)(
𝑎 
(0) 
0 + 𝑎 

(1) 
0 

)
+ 

(
1 + 𝑒 −2 𝑛 ( 𝜂1 − 𝜂0 ) 

)
𝑝 (0) 
𝑛 

]
, (35)

 

(1) 
𝑛 

= 

( 

𝑛 

1 − 𝑒 −2 𝑛 ( 𝜂1 − 𝜂0 ) 

) [
−2 𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) 𝑝 (0) 

𝑛 
+ 

(
1 + 𝑒 −2 𝑛 ( 𝜂1 − 𝜂0 ) 

)
𝑝 (1) 
𝑛 

]
. (36)

After substituting Eq. (35) into Eq. (32), Eq. (32) yields 

 

( 

ln (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

1 
𝑛 

𝑒 −2 𝑛 𝜂0 − 𝑒 − 𝑛 ( 𝜂1 + 𝜂0 ) 𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) 

1 − 𝑒 −2 𝑛 ( 𝜂1 − 𝜂0 ) 

) 

𝑎 
(0) 
0 

= 𝑝 
(0) 
0 + 2 

( ∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂0 𝑝 (0) 
𝑛 

+ 

∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂1 𝑝 (1) 
𝑛 

) 

− 

∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂0 
1 + 𝑒 −2 𝑛 ( 𝜂1 − 𝜂0 ) 

1 − 𝑒 −2 𝑛 ( 𝜂1 − 𝜂0 ) 
𝑝 (0) 
𝑛 

− 

( 

2 ln (2 𝑐) − 𝜂0 − 𝜂1 + 

∞∑
𝑛 =1 

2 
𝑛 

𝑒 −2 𝑛 𝜂0 − 𝑒 − 𝑛 ( 𝜂1 + 𝜂0 ) 𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) 

1 − 𝑒 −2 𝑛 ( 𝜂1 − 𝜂0 ) 

) 

𝑎 
(1) 
0 

− 

∞∑
𝑛 =1 

1 
𝑛 
𝑒 − 𝑛 𝜂1 𝑎 (1) 

𝑛 
, (37)

Based on Eq. (37) in conjunction with Eq. (31) for 𝑎 (1) 0 and Eq. (36) for

 

(1) 
𝑛 , we find that if the coefficient of 𝑎 (0) 0 is equal to zero, i.e. 

n (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

1 
𝑛 

𝑒 −2 𝑛 𝜂0 − 𝑒 − 𝑛 ( 𝜂1 + 𝜂0 ) 𝑒 − 𝑛 ( 𝜂1 − 𝜂0 ) 

1 − 𝑒 −2 𝑛 ( 𝜂1 − 𝜂0 ) 

= ln (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

1 
𝑛 

𝑒 −2 𝑛 𝜂0 
(
1 − 𝑒 −2 𝑛 ( 𝜂1 − 𝜂0 ) 

)
1 − 𝑒 −2 𝑛 ( 𝜂1 − 𝜂0 ) 

= 0 , (38)
76 
hen 𝑎 (0) 0 cannot be determined. The parameter 𝜂0 = 𝜂d satisfying
q. (38) yields the degenerate scale. After the simplification, Eq. (38) is
lso reduced to the same as Eq. (20) . Hence, the degenerate scale of the
ccentric annulus depends on the radius of the outer circular boundary.
he outer unit radius yields the degenerate scale. In the BEM implemen-
ation, a singular influence matrix occurs in the same size (degenerate
cale) as shown in Fig. 2 (b). These results agree with the finding [13] . 

.3. Analytical derivation of the degenerate scale for the infinite plane with

wo identical circular holes 

The degenerate scale of an infinite plane containing two identical
ircular holes is the main concern in this paper. The given and unknown
oundary data of the two circular holes are expressed by 

 𝑟 ( 𝐬 ) = 𝑝 
( 𝑟 ) 
0 + 

∞∑
𝑛 =1 

𝑝 ( 𝑟 ) 
𝑛 

cos ( 𝑛 𝜉𝑠 ) + 

∞∑
𝑛 =1 

𝑞 ( 𝑟 ) 
𝑛 

sin ( 𝑛 𝜉𝑠 ) , 𝐬 ∈ 𝐵 𝑟 and 0 ≤ 𝜉𝑠 ≤ 2 𝜋, 

(39) 

 𝑙 ( 𝐬 ) = 𝑝 
( 𝑙) 
0 + 

∞∑
𝑛 =1 

𝑝 ( 𝑙) 
𝑛 
cos ( 𝑛 𝜉𝑠 ) + 

∞∑
𝑛 =1 

𝑞 ( 𝑙) 
𝑛 

sin ( 𝑛 𝜉𝑠 ) , 𝐬 ∈ 𝐵 𝑙 and 0 ≤ 𝜉𝑠 ≤ 2 𝜋, 

(40) 

nd 

 𝑟 ( 𝐬 ) = − 

cosh 𝜂0 − cos 𝜉𝑠 
𝑐 

[ 

𝑎 
( 𝑟 ) 
0 + 

∞∑
𝑛 =1 

𝑎 ( 𝑟 ) 
𝑛 

cos ( 𝑛 𝜉𝑠 ) + 

∞∑
𝑛 =1 

𝑏 ( 𝑟 ) 
𝑛 

sin ( 𝑛 𝜉𝑠 ) 

] 

, 

𝐬 ∈ 𝐵 𝑟 and 0 ≤ 𝜉𝑠 ≤ 2 𝜋, (41) 

 𝑙 ( 𝐬 ) = − 

cosh 
(
− 𝜂0 

)
− cos 𝜉𝑠 

𝑐 

[ 

𝑎 
( 𝑙) 
0 + 

∞∑
𝑛 =1 

𝑎 ( 𝑙) 
𝑛 
cos ( 𝑛 𝜉𝑠 ) + 

∞∑
𝑛 =1 

𝑏 ( 𝑙) 
𝑛 
sin ( 𝑛 𝜉𝑠 ) 

] 

, 

𝐬 ∈ 𝐵 𝑙 and 0 ≤ 𝜉𝑠 ≤ 2 𝜋, (42) 

here the subscript ‘r ’ and ‘l ’ of u , t and B and the superscript ‘( r ) ’ and
( l ) ’ of the unknown coefficients of Fourier series, stand for the right hole
nd left one in the infinite plane, respectively. According to Eqs. (6) and
 14 ), substitution of Eqs. (8,11,39–42) into Eq. (7) yields 

 𝜋
(
ln (2 𝑐) − 𝜂0 

)
𝑎 
( 𝑟 ) 
0 − 

∞∑
𝑛 =1 

𝜋

𝑛 
cos ( 𝑛 𝜉𝑥 ) 

(
𝑎 ( 𝑟 ) 
𝑛 

− 2 𝑒 − 𝑛 𝜂0 𝑎 ( 𝑟 ) 0 

)
− 

∞∑
𝑛 =1 

𝜋

𝑛 
sin ( 𝑛 𝜉𝑥 ) 𝑏 ( 𝑟 ) 𝑛 

+ 

∞∑
𝑛 =1 

𝜋

𝑛 
𝑒 − 𝑛 𝜂0 𝑎 ( 𝑟 ) 

𝑛 

+2 𝜋 ln (2 𝑐) 𝑎 ( 𝑙) 0 − 

∞∑
𝑛 =1 

𝜋

𝑛 
cos ( 𝑛 𝜉𝑥 ) 

(
𝑒 −2 𝑛 𝜂0 𝑎 ( 𝑙) 

𝑛 
− 2 𝑒 − 𝑛 𝜂0 𝑎 ( 𝑙) 0 

)
− 

∞∑
𝑛 =1 

𝜋

𝑛 
𝑒 −2 𝑛 𝜂0 sin ( 𝑛 𝜉𝑥 ) 𝑏 ( 𝑙) 𝑛 

+ 

∞∑
𝑛 =1 

𝜋

𝑛 
𝑒 − 𝑛 𝜂0 𝑎 ( 𝑙) 

𝑛 

= 𝜋

( 

2 𝑝 ( 𝑟 ) 0 + 

∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂0 𝑝 ( 𝑟 ) 
𝑛 

+ 

∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂0 𝑝 ( 𝑙) 
𝑛 

) 

+ 𝜋

∞∑
𝑛 =1 

(
𝑝 ( 𝑟 ) 
𝑛 

− 𝑒 −2 𝑛 𝜂0 𝑝 ( 𝑙) 
𝑛 

)
cos ( 𝑛 𝜉𝑥 ) 

+ 𝜋

∞∑
𝑛 =1 

(
𝑞 ( 𝑟 ) 
𝑛 

− 𝑒 −2 𝑛 𝜂0 𝑞 ( 𝑙) 
𝑛 

)
sin ( 𝑛 𝜉𝑥 ) , 𝐱 ∈ 𝐵 𝑟 , (43) 

 𝜋 ln (2 𝑐) 𝑎 ( 𝑟 ) 0 − 

∞∑
𝑛 =1 

𝜋

𝑛 
cos ( 𝑛 𝜉𝑥 ) 

(
𝑒 −2 𝑛 𝜂0 𝑎 ( 𝑟 ) 

𝑛 
− 2 𝑒 − 𝑛 𝜂0 𝑎 ( 𝑟 ) 0 

)
− 

∞∑
𝑛 =1 

𝜋

𝑛 
𝑒 −2 𝑛 𝜂0 sin ( 𝑛 𝜉𝑥 ) 𝑏 ( 𝑟 ) 𝑛 

+ 

∞∑
𝑛 =1 

𝜋

𝑛 
𝑒 − 𝑛 𝜂0 𝑎 ( 𝑟 ) 

𝑛 
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c
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[

𝑈  

w  

r  

e

𝑈

w  

t  

(

2

a  

c  

b

𝑎  

𝑎  

𝑏  

 

a  

t

+2 𝜋
(
ln (2 𝑐) − 𝜂0 

)
𝑎 
( 𝑙) 
0 − 

∞∑
𝑛 =1 

𝜋

𝑛 
cos ( 𝑛 𝜉𝑥 ) 

(
𝑎 ( 𝑙) 
𝑛 

− 2 𝑒 − 𝑛 𝜂0 𝑎 ( 𝑙) 0 

)
− 

∞∑
𝑛 =1 

𝜋

𝑛 
sin ( 𝑛 𝜉𝑥 ) 𝑏 ( 𝑙) 𝑛 

+ 

∞∑
𝑛 =1 

𝜋

𝑛 
𝑒 − 𝑛 𝜂0 𝑎 ( 𝑙) 

𝑛 

= 𝜋

( 

2 𝑝 ( 𝑙) 0 + 

∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂0 𝑝 ( 𝑟 ) 
𝑛 

+ 

∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂0 𝑝 ( 𝑙) 
𝑛 

) 

+ 𝜋

∞∑
𝑛 =1 

(
− 𝑒 −2 𝑛 𝜂0 𝑝 ( 𝑟 ) 

𝑛 
+ 𝑝 ( 𝑙) 

𝑛 

)
cos ( 𝑛 𝜉𝑥 ) 

+ 𝜋

∞∑
𝑛 =1 

(
− 𝑒 −2 𝑛 𝜂0 𝑞 ( 𝑟 ) 

𝑛 
+ 𝑞 ( 𝑙) 

𝑛 

)
sin ( 𝑛 𝜉𝑥 ) , 𝐱 ∈ 𝐵 𝑙 , (44) 

y collocating points on the right and left boundaries, respectively. After
omparing with the coefficients of Fourier base in Eqs. (43) and (44) , it
s found that coefficients of sine are uncoupled and they could be deter-
ined. After adding or subtracting the related equations of constant or

osine term, the coefficients satisfy 

2 ln (2 𝑐) − 𝜂0 
)(

𝑎 
( 𝑟 ) 
0 + 𝑎 

( 𝑙) 
0 

)
+ 

∞∑
𝑛 =1 

1 
𝑛 
𝑒 − 𝑛 𝜂0 

(
𝑎 ( 𝑟 ) 
𝑛 

+ 𝑎 ( 𝑙) 
𝑛 

)
= 

(
𝑝 
( 𝑟 ) 
0 + 𝑝 

( 𝑙) 
0 

)
+ 

∞∑
𝑛 =1 

𝑒 − 𝑛 𝜂0 
(
𝑝 ( 𝑟 ) 
𝑛 

+ 𝑝 ( 𝑙) 
𝑛 

)
, (45) 

− 𝜂0 
)(

𝑎 
( 𝑟 ) 
0 − 𝑎 

( 𝑙) 
0 

)
= 𝑝 

( 𝑟 ) 
0 − 𝑝 

( 𝑙) 
0 , (46)

4 
𝑛 
𝑒 − 𝑛 𝜂0 

(
𝑎 
( 𝑟 ) 
0 + 𝑎 

( 𝑙) 
0 

)
− 

1 
𝑛 

(
1 + 𝑒 −2 𝑛 𝜂0 

)(
𝑎 ( 𝑟 ) 
𝑛 

+ 𝑎 ( 𝑙) 
𝑛 

)
= 

(
1 − 𝑒 −2 𝑛 𝜂0 

)(
𝑝 ( 𝑟 ) 
𝑛 

+ 𝑝 ( 𝑙) 
𝑛 

)
, 

(47) 

1 
𝑛 

(
1 − 𝑒 −2 𝑛 𝜂0 

)(
𝑎 ( 𝑟 ) 
𝑛 

− 𝑎 ( 𝑙) 
𝑛 

)
= 

(
1 + 𝑒 −2 𝑛 𝜂0 

)(
𝑝 ( 𝑟 ) 
𝑛 

− 𝑝 ( 𝑙) 
𝑛 

)
. (48)

Eq. (47) can be rewritten as 

𝑎 ( 𝑟 ) 
𝑛 

+ 𝑎 ( 𝑙) 
𝑛 

)
= 

4 𝑒 − 𝑛 𝜂0 
1 + 𝑒 −2 𝑛 𝜂0 

(
𝑎 
( 𝑟 ) 
0 + 𝑎 

( 𝑙) 
0 

)
− 𝑛 

1 − 𝑒 −2 𝑛 𝜂0 

1 + 𝑒 −2 𝑛 𝜂0 

(
𝑝 ( 𝑟 ) 
𝑛 

+ 𝑝 ( 𝑙) 
𝑛 

)
. (49)

After substituting Eq. (49) into Eq. (45), Eq. (45) yields 

 

2 ln (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

4 
𝑛 

𝑒 −2 𝑛 𝜂0 

1 + 𝑒 −2 𝑛 𝜂0 

) (
𝑎 
( 𝑟 ) 
0 + 𝑎 

( 𝑙) 
0 

)
= 

(
𝑝 
( 𝑟 ) 
0 + 𝑝 

( 𝑙) 
0 

)
+ 

∞∑
𝑛 =1 

2 𝑒 − 𝑛 𝜂0 
1 + 𝑒 −2 𝑛 𝜂0 

(
𝑝 ( 𝑟 ) 
𝑛 

+ 𝑝 ( 𝑙) 
𝑛 

)
, (50) 

Based on Eqs. (46) and ( 50 ), 𝑎 ( 𝑟 ) 0 and 𝑎 ( 𝑙) 0 are expressed as 

 

( 

2 ln (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

4 
𝑛 

𝑒 −2 𝑛 𝜂0 

1 + 𝑒 −2 𝑛 𝜂0 

) 

𝑎 
( 𝑟 ) 
0 

= 

(
𝑝 
( 𝑟 ) 
0 + 𝑝 

( 𝑙) 
0 

)
+ 

∞∑
𝑛 =1 

2 𝑒 − 𝑛 𝜂0 
1 + 𝑒 −2 𝑛 𝜂0 

(
𝑝 ( 𝑟 ) 
𝑛 

+ 𝑝 ( 𝑙) 
𝑛 

)
+ 

( 

2 ln (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

4 
𝑛 

𝑒 −2 𝑛 𝜂0 

1 + 𝑒 −2 𝑛 𝜂0 

) (
𝑝 
( 𝑟 ) 
0 − 𝑝 

( 𝑙) 
0 

)
∕(− 𝜂0 ) , (51) 

 

( 

2 ln (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

4 
𝑛 

𝑒 −2 𝑛 𝜂0 

1 + 𝑒 −2 𝑛 𝜂0 

) 

𝑎 
( 𝑙) 
0 

= 

(
𝑝 
( 𝑟 ) 
0 + 𝑝 

( 𝑙) 
0 

)
+ 

∞∑
𝑛 =1 

2 𝑒 − 𝑛 𝜂0 
1 + 𝑒 −2 𝑛 𝜂0 

(
𝑝 ( 𝑟 ) 
𝑛 

+ 𝑝 ( 𝑙) 
𝑛 

)
− 

( 

2 ln (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

4 
𝑛 

𝑒 −2 𝑛 𝜂0 

1 + 𝑒 −2 𝑛 𝜂0 

) (
𝑝 
( 𝑟 ) 
0 − 𝑝 

( 𝑙) 
0 

)
∕(− 𝜂0 ) . (52) 
77 
If the coefficients of 𝑎 ( 𝑟 ) 0 and 𝑎 ( 𝑙) 0 are equal to zero, i.e. 

 ln (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

4 
𝑛 

( 

𝑒 −2 𝑛 𝜂0 

1 + 𝑒 −2 𝑛 𝜂0 

) 

= 0 , (53)

hen the unknown Fourier coefficients, 𝑎 ( 𝑟 ) 0 and 𝑎 ( 𝑙) 0 cannot be deter-
ined. This parameter, 𝜂0 = 𝜂d satisfying Eq. (53) yields a degenerate

cale. 

.4. Analytical derivation of the degenerate scale for the half-plane with a 

ircular hole 

For the half-plane problem subject to the special boundary condi-
ion, it would be transformed to an infinite plane problem by using the
mage method. In this subsection, we discuss the degenerate scale of
he half-plane subject to the Dirichlet or the Neumann boundary condi-
ion. If the boundary condition at the boundary line for the half-plane is
̄ ( 𝐱) = 0 |𝐱∈𝐵 Γ , then the anti-symmetric boundary conditions at the two
ircular boundaries satisfy 

̄ 𝑟 
(
𝐱 𝑟 
)
= − ̄𝑢 𝑙 

(
𝐱 𝑙 
)
, 𝐱 𝑟 = 

(
𝑥 1 , 𝑥 2 

)
∈ 𝐵 𝑟 𝑎𝑛𝑑 𝐱 𝑙 = 

(
− 𝑥 1 , 𝑥 2 

)
∈ 𝐵 𝑙 . (54)

Based on the boundary condition in Eq. (54) , Corfdir and Bonnet
23] and Chen [24] employed the Green’s function as shown below: 

 𝐷 ( 𝐬 , 𝐱) = ln |𝐬 − 𝐱 | − ln ||𝐬 ∗ − 𝐱 ||, (55)

here s = ( s 1 , s 2 ) and s ∗ = ( − s 1 , s 2 ). Based on Eqs. (8) and ( 11 ), the cor-
esponding kernel function of Eq. (55) in terms of bipolar coordinates is
xpanded as: 

 𝐷 ( 𝐬 , 𝐱) = 𝑈 ( 𝐬 , 𝐱) − 𝑈 ( 𝐬 ∗ , 𝐱) 

= 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

− 𝜂𝑠 − 

∞∑
𝑛 =1 

1 
𝑛 

[(
𝑒 − 𝑛 ( 𝜂𝑥 − 𝜂𝑠 ) − 𝑒 − 𝑛 ( 𝜂𝑥 + 𝜂𝑠 ) 

)
cos 

[
𝑛 ( 𝜉𝑥 − 𝜉𝑠 ) 

]]
, 

𝜂𝑥 ≥ 𝜂𝑠 ≥ 0 , 

− 𝜂𝑥 − 

∞∑
𝑛 =1 

1 
𝑛 

[(
𝑒 − 𝑛 ( 𝜂𝑠 − 𝜂𝑥 ) − 𝑒 − 𝑛 ( 𝜂𝑥 + 𝜂𝑠 ) 

)
cos 

[
𝑛 ( 𝜉𝑥 − 𝜉𝑠 ) 

]]
, 

𝜂𝑠 > 𝜂𝑥 > 0 , 

(56) 

here s = ( 𝜂s , 𝜉s ) and s ∗ = ( − 𝜂s , 𝜉s ). According to Eqs. (6) and ( 14 ) and
he Dirichlet boundary condition of Eq. (54) , substitution of Eqs. (56) ,
39) and (41) into Eq. (7) yields 

 𝜋𝜂0 𝑎 
( 𝑟 ) 
0 + 

∞∑
𝑛 =1 

𝜋

𝑛 

(
1 − 𝑒 −2 𝑛 𝜂0 

)
cos ( 𝑛 𝜉𝑥 ) 𝑎 ( 𝑟 ) 𝑛 

+ 

∞∑
𝑛 =1 

𝜋

𝑛 

(
1 − 𝑒 −2 𝑛 𝜂0 

)
sin ( 𝑛 𝜉𝑥 ) 𝑏 ( 𝑟 ) 𝑛 

= −2 𝜋𝑝 ( 𝑟 ) 0 − 

∞∑
𝑛 =1 

𝜋
(
1 + 𝑒 −2 𝑛 𝜂0 

)
cos ( 𝑛 𝜉𝑥 ) 𝑝 ( 𝑟 ) 𝑛 

− 

∞∑
𝑛 =1 

𝜋
(
1 + 𝑒 −2 𝑛 𝜂0 

)
sin ( 𝑛 𝜉𝑥 ) 𝑞 ( 𝑟 ) 𝑛 

, 

(57) 

fter collocating on the boundary points. By comparing with the coeffi-
ients of Fourier base in Eq. (57) , the coefficients are obtained as shown
elow: 

 

( 𝑟 ) 
0 = − 

1 
𝜂0 

𝑝 
( 𝑟 ) 
0 , (58)

 

( 𝑟 ) 
𝑛 

= − 𝑛 
1 + 𝑒 −2 𝑛 𝜂0 

1 − 𝑒 −2 𝑛 𝜂0 
𝑝 ( 𝑟 ) 
𝑛 
, (59)

 

( 𝑟 ) 
𝑛 

= − 𝑛 
1 + 𝑒 −2 𝑛 𝜂0 

1 − 𝑒 −2 𝑛 𝜂0 
𝑞 ( 𝑟 ) 
𝑛 
. (60)

Eqs. (58) and ( 60 ) indicate that a unique solution is obtained. The
nalytical solution corresponding to the homogeneous Dirichlet condi-
ion on the boundary line is expressed by 
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Fig. 4. Boundary flux for the case of an ordinary scale of an eccentric annulus. 

Fig. 5. Boundary flux for the case of a degenerate scale of an eccentric annulus. 

𝑢

 

 

e  

z  

a  

t  
 ( 𝐱) = 

𝑝 
( 𝑟 ) 
0 
𝜂0 

𝜂𝑥 − 

∞∑
𝑛 =1 

( 

𝑒 − 𝑛 𝜂0 

1 − 𝑒 −2 𝑛 𝜂0 
𝑝 ( 𝑟 ) 
𝑛 

sinh 
(
𝑛 𝜂𝑥 

)
cos 

(
𝑛 𝜉𝑥 

)
+ 

𝑒 − 𝑛 𝜂0 

1 − 𝑒 −2 𝑛 𝜂0 
𝑞 ( 𝑟 ) 
𝑛 

sinh 
(
𝑛 𝜂𝑥 

)
sin 

(
𝑛 𝜉𝑥 

)) 

, 𝐱 ∈ 𝐷. (61)
t  

78 
It is found that the space of solution does not have the constant term
ven though the constant term of boundary density, 𝑎 ( 𝑟 ) 0 , is not equal to
ero. The reason is that the kernel function in Eq. (56) does not contain
 constant term for the domain point. It is why Chen [24] explained
hat no degenerate scale occurs since the scaling factor disappears in
he kernel function of Eq. (55) after scaling transformation. In other
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Fig. 6. Degenerate scale versus the number of boundary elements of each boundary for 

the case of the infinite plane with two identical circular holes ( 𝛾 = 2). 

Fig. 7. Minimum singular value versus the radius for the case of the infinite plane with 

two identical circular holes. 
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Fig. 8. Boundary flux for the case of a degenerate scale of the infinite plane with two 

identical circular holes. 

B  

(

𝑈

ords, there is no the degenerate scale for the Dirichlet condition on
he boundary line of the half-plane if the employed kernel function is
he Green’s function of Eq. (55) . 

For the case of the boundary condition at the boundary line is
 ( 𝐱) = 0 |𝐱∈𝐵 Γ , the symmetric boundary conditions at the two circular
oundaries satisfy 

̄ 𝑟 
(
𝐱 𝑟 
)
= 𝑢̄ 𝑙 

(
𝐱 𝑙 
)
, 𝐱 𝑟 = 

(
𝑥 1 , 𝑥 2 

)
∈ 𝐵 𝑟 and 𝐱 𝑙 = 

(
− 𝑥 1 , 𝑥 2 

)
∈ 𝐵 𝑙 . (62)

Based on the boundary condition in Eq. (62) , the Green’s function
mployed by Corfdir and Bonnet [23] and Chen [24] is 

 𝑁 

( 𝐬 , 𝐱) = ln |𝐬 − 𝐱 | + ln ||𝐬 ∗ − 𝐱 ||. (63)
79 
ased on Eqs. (8) and ( 11 ), the corresponding kernel function of Eq.
63) is expanded as: 

 𝑁 ( 𝐬 , 𝐱) = 𝑈 ( 𝐬 , 𝐱) + 𝑈 ( 𝐬 ∗ , 𝐱) 

= 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

2 ln (2 𝑐) − 𝜂𝑠 − 
∞∑
𝑛 =1 

1 
𝑛 

[(
𝑒 − 𝑛 ( 𝜂𝑥 − 𝜂𝑠 ) + 𝑒 − 𝑛 ( 𝜂𝑥 + 𝜂𝑠 ) 

)
cos 

[
𝑛 ( 𝜉𝑥 − 𝜉𝑠 ) 

]
−2 𝑒 − 𝑛 𝜂𝑥 cos ( 𝑛 𝜉𝑥 ) − 2 𝑒 − 𝑛 𝜂𝑠 cos ( 𝑛 𝜉𝑠 ) 

]
, 𝜂𝑥 ≥ 𝜂𝑠 ≥ 0 , 

2 ln (2 𝑐) − 𝜂𝑥 − 
∞∑
𝑛 =1 

1 
𝑛 

[(
𝑒 − 𝑛 ( 𝜂𝑠 − 𝜂𝑥 ) + 𝑒 − 𝑛 ( 𝜂𝑥 + 𝜂𝑠 ) 

)
cos 

[
𝑛 ( 𝜉𝑥 − 𝜉𝑠 ) 

]
−2 𝑒 − 𝑛 𝜂𝑥 cos ( 𝑛 𝜉𝑥 ) − 2 𝑒 − 𝑛 𝜂𝑠 cos ( 𝑛 𝜉𝑠 ) 

]
, 𝜂𝑠 > 𝜂𝑥 > 0 . 

(64) 
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Fig. 9. Minimum singular value versus the length of the semi-major axis for 𝛼 = 1.2. 
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According to Eqs. (6) and ( 14 ) and the Neumann boundary condition
f Eq. (62) , substitution of Eqs. (64) , (39) and (41) into Eq. (7) yields 

 𝜋
(
2 ln (2 𝑐) − 𝜂0 

)
𝑎 
( 𝑟 ) 
0 − 

∞∑
𝑛 =1 

𝜋

𝑛 

(
1 + 𝑒 −2 𝑛 𝜂0 

)
cos ( 𝑛 𝜉𝑥 ) 𝑎 ( 𝑟 ) 𝑛 

− 

∞∑
𝑛 =1 

𝜋

𝑛 

(
1 + 𝑒 −2 𝑛 𝜂0 

)
sin ( 𝑛 𝜉𝑥 ) 𝑏 ( 𝑟 ) 𝑛 

+ 

∞∑
𝑛 =1 

4 𝜋
𝑛 
𝑒 − 𝑛 𝜂0 cos ( 𝑛 𝜉𝑥 ) 𝑎 

( 𝑟 ) 
0 + 

∞∑
𝑛 =1 

2 𝜋
𝑛 
𝑒 − 𝑛 𝜂0 𝑎 ( 𝑟 ) 

𝑛 

= 2 𝜋𝑝 ( 𝑟 ) 0 + 

∞∑
𝑛 =1 

𝜋
(
1 − 𝑒 −2 𝑛 𝜂0 

)
cos ( 𝑛 𝜉𝑥 ) 𝑝 ( 𝑟 ) 𝑛 

+ 

∞∑
𝑛 =1 

𝜋
(
1 − 𝑒 −2 𝑛 𝜂0 

)
sin ( 𝑛 𝜉𝑥 ) 𝑞 ( 𝑟 ) 𝑛 

− 

∞∑
𝑛 =1 

2 𝜋𝑒 − 𝑛 𝜂0 𝑝 ( 𝑟 ) 
𝑛 
, (65)

fter collocating on the boundary points. By comparing with the coeffi-
ients of Fourier base in Eq. (65) , the coefficients could be obtained as
hown below: 
 

2 ln (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

4 
𝑛 

𝑒 −2 𝑛 𝜂0 

1 + 𝑒 −2 𝑛 𝜂0 

) 

𝑎 
( 𝑟 ) 
0 = 𝑝 

( 𝑟 ) 
0 + 

∞∑
𝑛 =1 

2 𝑒 −2 𝑛 𝜂0 
1 + 𝑒 −2 𝑛 𝜂0 

𝑝 ( 𝑟 ) 
𝑛 
, (66)

 

( 𝑟 ) 
𝑛 

= 

4 𝑒 − 𝑛 𝜂0 
1 + 𝑒 −2 𝑛 𝜂0 

𝑎 
( 𝑟 ) 
0 − 𝑛 

1 − 𝑒 −2 𝑛 𝜂0 

1 + 𝑒 −2 𝑛 𝜂0 
𝑝 ( 𝑟 ) 
𝑛 
, (67)

 

( 𝑟 ) 
𝑛 

= − 𝑛 
1 − 𝑒 −2 𝑛 𝜂0 

1 + 𝑒 −2 𝑛 𝜂0 
𝑞 ( 𝑟 ) 
𝑛 
. (68)

If the variable, 𝜂0 = 𝜂d satisfies Eq. (53) , then Eq. (66) could be sim-
lified to 

 ⋅ 𝑎 ( 𝑟 ) 0 = 𝑝 
( 𝑟 ) 
0 + 

∞∑
𝑛 =1 

2 𝑒 −2 𝑛 𝜂0 
1 + 𝑒 −2 𝑛 𝜂0 

𝑝 ( 𝑟 ) 
𝑛 
. (69)

According to the Fredholm alternative theorem, the degenerate
cale of the half-plane problem may result in no solution ( 𝑝 ( 𝑟 ) 0 +
∞
𝑛 =1 

2 𝑒 − 𝑛 𝜂𝑑 
1+ 𝑒 −2 𝑛 𝜂𝑑 

𝑝 
( 𝑟 ) 
𝑛 ≠ 0 ) or infinite solutions ( 𝑝 ( 𝑟 ) 0 + 

∑∞
𝑛 =1 

2 𝑒 − 𝑛 𝜂𝑑 
1+ 𝑒 −2 𝑛 𝜂𝑑 

𝑝 
( 𝑟 ) 
𝑛 = 0 )

orresponding to the Neumann condition on the boundary line. 
Based on the above analytical derivation, the results agree with those

n [23, 24] . However, some users of the BEM/BIEM may directly employ
80 
he fundamental solution for Laplace equation in Eq. (5) to deal with the
alf-plane problem even if they use the image method. According to the
oundary condition of Eq. (54), Eqs. (51) and ( 52 ) are simplified to 

 

2 ln (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

4 
𝑛 

𝑒 −2 𝑛 𝜂0 

1 + 𝑒 −2 𝑛 𝜂0 

) 

𝑎 
( 𝑟 ) 
0 

= 

( 

2 ln (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

4 
𝑛 

𝑒 −2 𝑛 𝜂0 

1 + 𝑒 −2 𝑛 𝜂0 

) 

𝑝 
( 𝑟 ) 
0 ∕(− 𝜂0 ) , (70) 

 

2 ln (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

4 
𝑛 

𝑒 −2 𝑛 𝜂0 

1 + 𝑒 −2 𝑛 𝜂0 

) 

𝑎 
( 𝑙) 
0 

= − 

( 

2 ln (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

4 
𝑛 

𝑒 −2 𝑛 𝜂0 

1 + 𝑒 −2 𝑛 𝜂0 

) 

𝑝 
( 𝑟 ) 
0 ∕(− 𝜂0 ) . (71) 

If the parameter, 𝜂0 = 𝜂d satisfies Eq. (53) , then 

 ⋅ 𝑎 ( 𝑟 ) 0 = 0 (72)

nd 

 ⋅ 𝑎 ( 𝑙) 0 = 0 . (73)

According to the Fredholm alternative theorem, it would result in
nfinite solutions corresponding to the Dirichlet condition on the bound-
ry line. For the Neumann boundary condition in Eq. (62), Eqs. (51) and
 52 ) are simplified to 
 

2 ln (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

4 
𝑛 

𝑒 −2 𝑛 𝜂0 

1 + 𝑒 −2 𝑛 𝜂0 

) 

𝑎 
( 𝑟 ) 
0 = 𝑝 

( 𝑟 ) 
0 + 

∞∑
𝑛 =1 

2 𝑒 − 𝑛 𝜂0 
1 + 𝑒 −2 𝑛 𝜂0 

𝑝 ( 𝑟 ) 
𝑛 

(74)

 

2 ln (2 𝑐) − 𝜂0 + 

∞∑
𝑛 =1 

4 
𝑛 

𝑒 −2 𝑛 𝜂0 

1 + 𝑒 −2 𝑛 𝜂0 

) 

𝑎 
( 𝑙) 
0 = 𝑝 

( 𝑟 ) 
0 + 

∞∑
𝑛 =1 

2 𝑒 − 𝑛 𝜂0 
1 + 𝑒 −2 𝑛 𝜂0 

𝑝 ( 𝑟 ) 
𝑛 
. (75)

If the parameter, 𝜂0 = 𝜂d satisfies Eq. (53) , then 

 ⋅ 𝑎 ( 𝑟 ) 0 = 𝑝 
( 𝑟 ) 
0 + 

∞∑
𝑛 =1 

2 𝑒 − 𝑛 𝜂𝑑 
1 + 𝑒 −2 𝑛 𝜂𝑑 

𝑝 ( 𝑟 ) 
𝑛 

(76)

nd 

 ⋅ 𝑎 ( 𝑙) 0 = 𝑝 
( 𝑟 ) 
0 + 

∞∑
𝑛 =1 

2 𝑒 − 𝑛 𝜂𝑑 
1 + 𝑒 −2 𝑛 𝜂𝑑 

𝑝 ( 𝑟 ) 
𝑛 
. (77)

According to the Fredholm alternative theorem, the degenerate
cale of the half-plane problem may result in no solution ( 𝑝 ( 𝑟 ) 0 +
∞
𝑛 =1 

2 𝑒 − 𝑛 𝜂𝑑 
1+ 𝑒 −2 𝑛 𝜂𝑑 

𝑝 
( 𝑟 ) 
𝑛 ≠ 0 ) or infinite solutions ( 𝑝 ( 𝑟 ) 0 + 

∑∞
𝑛 =1 

2 𝑒 − 𝑛 𝜂𝑑 
1+ 𝑒 −2 𝑛 𝜂𝑑 

𝑝 
( 𝑟 ) 
𝑛 = 0 )

orresponding to the Neumann condition on the boundary line. 
To the best of authors ’ knowledge, the degenerate scale parasitizes

he kernel function. When the size of the domain is at the degenerate
cale, the constant term cannot be represented by using the BEM/BIEM.
n other words, the phenomenon of the degenerate scale depends upon
he employed kernel function. The Green’s function in Eq. (55) only
resents the anti-symmetric response, since the weights of these two
ources are opposite. Similarly, the Green’s function of Eq. (63) for the
eumann boundary condition only presents the symmetric response. For

he infinite plane with two identical circular holes subject to the anti-
ymmetric Dirichlet boundary conditions, the space of solution does not
ave the constant term. Therefore, the unique solution for the half-plane
roblem subject to the homogeneous Dirichlet boundary condition on
he boundary line can be obtained by using Eq. (55) . On the contrary, the
pace of solution may have a constant term for the symmetric Dirichlet
oundary condition. When a degenerate scale occurs in the infinite plane
ith two identical circular holes, the coefficients of constant term could
ot be determined. In other words, the range of the response is deficient
y a constant term when the real size is at a degenerate scale. This
eason can explain why a degenerate scale may occur in a half-plane
roblem subject to the homogeneous Neumann boundary condition on
he boundary line. When one employs the fundamental solution of the
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Table 2 

Relations between the kernel functions and the degenerate scale in half-plane problems. 

Kernel function B.C. 

Dirichlet B.C. Neumann B.C. 

Fundamental solution U ( s , x ) = ln | s − x | U ( s , x ) = ln | s − x | 
Infinite solutions (Degenerate scale) No solution or infinite solutions (Degenerate scale) 

Green’s function U D ( s , x ) = ln | s − x | − ln | s ∗ − x | U N ( s , x ) = ln | s − x | + ln | s ∗ − x | 
Unique solution (No degenerate scale) No solution or infinite solutions (Degenerate scale) 

Table 3 

Modal participation factor for the infinite plane with two identical circular holes ( a = 0.48557090999991, 𝛾 = 2). 

Boundary condition on 

the boundary line 

Minimum singular value 

𝜎100 

Modal participation 

factor 𝛾100 

Generalized force term 

for the minimum 

singular value 𝛽100 

Dirichlet ( u ( x ) = 0) 6.84077 ×10 − 10 4.36168 ×10 − 6 0 

Neumann ( t ( x ) = 0) 1.38381 ×10 10 9.46634 

Table 4 

Contour plots of the null field for the ordinary and degenerate scale of the eccentric annulus. 
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c  
aplace equation, ln r , the degenerate scale may exist in both the above
wo kinds of boundary conditions. The comparison is given in Table 2 . 

In addition, we can use the concept of modal participation factor to
xplain the outcome of Corfdir and Bonnet [23] and Chen [24] . In the
iscrete system, we have 

 𝑈 ] { 𝑡 } = [ 𝑇 ] { 𝑢 } , (78)

here [ U ] and [ T ] are the influence matrices by using the fundamental
olution of the Laplace equation, ln r , { u } and { t } are the boundary den-
ities. By using the singular value decomposition, [ U ] can be expressed
y 

 𝑈 ] = [ Φ] [ Σ] [ Ψ] 𝑇 , (79)
81 
here [ Σ] is a diagonal matrix corresponding to singular values of [ U ],
 Φ] and [ Ψ] are left and right singular matrices. The unknown boundary
ata can be expressed by 

 𝑡 } = [ Ψ] { 𝛾} . (80) 

The right-hand side of Eq. (78) is rewritten as 

 𝑇 ] { 𝑢 } = { 𝑏 } = [ Φ] { 𝛽} , (81)

here { 𝛽} means the generalized forcing term. Substituting Eqs. (79) –
81) into Eq. (78) , we obtain 

 Σ] { 𝛾} = { 𝛽} , (82) 

here 𝜎i 𝛾 i = 𝛽 i , i = 1, 2, …, N , and 𝛾 i is the i th modal participation factor
orresponding to the i th singular value 𝜎 . For the homogeneous Dirich-
i 
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Table 5 

3-D plots of the null field for the ordinary and degenerate scale of the eccentric annulus. 
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et and Neumann boundary condition on the boundary line, the modal
articipation factors are both addressed in Table 3 . This explained why
he solution for the infinite plane problem subject to the homogeneous
irichlet boundary condition on the boundary line obtained by the BEM

s acceptable, but one of the Neumann condition is not. 

. Numerical examples and discussions 

In this section, we employ the BEM to numerically verify the degen-
rate scale of two cases. One is an eccentric annulus and the other is
n infinite plane containing two holes. First, the null field and solution
pace of the ordinary and degenerate scales for the eccentric annulus
ere addressed, respectively. In addition, degenerate scales of the infi-
ite plane containing circular, elliptical and rectangular holes are con-
idered. The distance between the two centers of the holes is denoted
s d e for the case of infinite domain. The analytical derivation and the
EM implementations are addressed as follows. 

.1. Null field and nonzero field of an eccentric annulus 

The degenerate scale occurs due to the kernel function of the math-
matical model rather than the real physical behavior. In the discrete
ystem, the degenerate scale results in the numerical instability. The null
eld and nonzero field of the solution representation for the degener-
te scale are studied. First, the solution representation for an ordinary
cale of the eccentric annulus is addressed. The radii of the outer and
nner circles are 1.5 and 0.4, respectively. The distance between the two
enters is 0.4. The given boundary conditions are u 0 ( x ) = 1, x ∈ B 0 and
 1 ( x ) = 0, x ∈ B 1 . Based on the above given boundary conditions and
omparing with the coefficients in Eqs. (29) and ( 30 ), we obtain the
oundary data of an eccentric annulus 

 0 ( 𝐬 ) = 

( 

cosh 𝜂0 − cos 𝜉𝑠 
𝑐 

) ( 

1 
𝜂1 − 𝜂0 

) 

, 𝐬 ∈ 𝐵 0 and 0 ≤ 𝜉𝑠 ≤ 2 𝜋, (83)
82 
 1 ( 𝐬 ) = − 

( 

cosh 𝜂0 − cos 𝜉𝑠 
𝑐 

) ( 

1 
𝜂1 − 𝜂0 

) 

, 𝐬 ∈ 𝐵 1 and 0 ≤ 𝜉𝑠 ≤ 2 𝜋, (84)

s shown in Fig. 4 (a) and (b), respectively. The nonzero interior field and
he null exterior field for the ordinary scale are, respectively, expressed
y 

 ( 𝐱) = 1 − 

𝜂 − 𝜂0 
𝜂1 − 𝜂0 

, 𝐱 ∈ 𝐷, interior f ield (85)

 ( 𝐱) = 0 , 𝐱 ∈ 𝐷 

𝑐 , null f ield . (86)

The contour plot and 3-D plot of the solution representation are
hown in Tables 4 and 5 . 

For the degenerate scale, the radii of the outer and inner circles are 1
nd 0.4, respectively. The distance between the two centers is 0.4. The
irichlet boundary conditions are specified to be trivial to introduce
ontrivial boundary flux. Then, the corresponding nontrivial boundary
ata are obtained 

 0 ( 𝐬 ) = − 

( 

cosh 𝜂0 − cos 𝜉𝑠 
𝑐 

) 

[ 

1 + 

∞∑
𝑛 =1 

2 𝑒 − 𝑛 𝜂0 cos ( 𝑛 𝜉𝑠 ) 

] 

𝑎 
(0) 
0 , 

𝐬 ∈ 𝐵 0 and 0 ≤ 𝜉𝑠 ≤ 2 𝜋, (87) 

 1 ( 𝐬 ) = 0 , 𝐬 ∈ 𝐵 1 and 0 ≤ 𝜉𝑠 ≤ 2 𝜋, (88)

here the size of B 0 is the degenerate scale. Boundary flux of inner and
uter boundaries, are respectively, shown in Fig. 5 (a) and (b). Based on
he generating function related to hyperbolic and trigonometric func-
ions, we have 
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Table 6 

Degenerate scales for the infinite plane with two identical circular holes. 

Method 𝛾

2 4 6 8 10 ∞

Present (Analytical data) 0.48513 0.35082 0.28768 0.24951 0.22332 𝑒 − 𝜂𝑑 ∕2 ≈ 0 
BEM (Numerical data) ( N = 50) 0.4856 0.3511 0.2879 0.2497 0.2235 0.02238 ( 𝛾 = 2000) 

Chen [24] (Null field BIE) 0.4852 0.3509 0.2877 0.2496 0.2234 NA 

Corfder and Bonnet [23] (Asymptotic result) 0.5000 0.3536 0.2887 0.2500 0.2236 𝑒 − 𝜂𝑑 ∕2 ≈ 0 

Note: N is the number of elements for each boundary. 

Table 7 

Geometry parameter of degenerate scale in terms of bipolar coordinates for the infi- 

nite plane with two identical circular holes. 

𝛾 2 4 6 8 10 ∞

a d 0.48513 0.35082 0.28768 0.24951 0.22332 𝑒 − 𝜂𝑑 ∕2 

𝜂d 1.31696 2.06344 2.47789 2.76866 2.99322 cosh − 1 ( 𝛾) 

c 0.84027 1.35874 1.70193 1.98045 2.22208 𝑒 𝜂𝑑 ∕2 

1  

E

𝑡  

a  

r  

b

𝑢

𝑢

w  

𝑎  

t  

s  

a  
 + 

∞∑
𝑛 =1 

2 𝑒 − 𝑛 𝜂0 cos ( 𝑛 𝜉𝑠 ) = 

sinh 𝜂0 
cosh 𝜂0 − cos 𝜉𝑠 

. (89)

q. (87) is rewritten as 

 0 ( 𝐬 ) = − 

1 
𝑎 𝑑 

𝑎 
(0) 
0 = − 𝑎 

(0) 
0 , 𝐬 ∈ 𝐵 0 and 0 ≤ 𝜉𝑠 ≤ 2 𝜋, (90)

fter considering Eq. (24) . Then, the nonzero exterior field and null inte-
ior field for the eccentric annulus with a degenerate scale are expressed
Table 8 

Contour plots and 3D plots for the degenerate scale of the infinite 

83 
y 

 ( 𝐱) = 

( 

ln (2 𝑐) − 𝜂𝑑 + 

∞∑
𝑛 =1 

1 
𝑛 
𝑒 −2 𝑛 𝜂𝑑 

) 

𝑎 
(0) 
0 = 0 , 

𝐱 ∈ 𝐷, for the interior field , (91) 

 ( 𝐱) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
0 , 𝜂𝑥 ≥ 𝜂𝑑 [ (
𝜂𝑑 − 𝜂𝑥 

)
− 

∞∑
𝑛 =1 

1 
𝑛 

(
𝑒 −2 𝑛 𝜂𝑑 + 𝑛 𝜂𝑥 − 𝑒 − 𝑛 𝜂𝑥 

)
cos ( 𝑛 𝜉𝑥 ) 

] 
𝑎 
(0) 
0 , 𝜂𝑥 < 𝜂𝑑 

, 

𝐱 ∈ 𝐷 

𝑐 , for the exterior field , (92) 

here 𝑎 (0) 0 is an arbitrarily real-valued constant. Here, we can obtain

 

(0) 
0 = 0 . 141421266 according to the numerical result of BEM implemen-
ation. The contour plot and 3-D plot of the solution representation are
hown in Tables 4 and 5 . If the size of the boundary shape is a degener-
te scale, the given homogeneous Dirichlet boundary conditions result
plane with two identical circular holes. 
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Table 9 

Contour plots for the ordinary scale of the infinite plane with two identical circular holes. 
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n non-trivial boundary flux. Owing to the non-trivial boundary flux,
t is found that the field in the domain is null. In the complementary
omain outside the outer circular boundary, it is a nonzero field. 

.2. An infinite plane containing two identical holes 

In this subsection, the BEM was employed to verify the degenerate
cale of the infinite plane containing holes. For the circular case, the
istance between centers of the two circles is defined by 

 𝑑 𝑒 = 2 𝛾𝑎 = 2 𝑐 
cosh 𝜂0 
sinh 𝜂0 

, (93)

here 𝛾 is the geometric parameter. If the size of the circular hole is a
egenerate scale, then the influence matrix constructed by U ( s , x ) of the
EM is singular. In other words, the minimum singular value is equal
o zero. While 𝛾 = 2, the numerical result converges to the analytical
esult as shown in Fig. 6 . According to the minimum singular value,
he degenerate scale versus the parameter, 𝛾, is obtained as shown in
ig. 7 and Table 6 . The corresponding analytical results are shown in
able 7 . Good agreement between analytical and numerical results is
ade. For the limiting case, 𝛾 = cosh 𝜂0 →∞, it means that 𝑒 𝜂0 → ∞.
q. (53) can be rewritten as 

 ln (2 𝑐) − 𝜂0 ≈ 0 . (94)

In other words, the degenerate scale a d can be expressed by 

 𝑑 = 

𝑐 

sinh 𝜂𝑑 
= 

2 𝑐 
𝑒 𝜂𝑑 − 𝑒 − 𝜂𝑑 

≈ 𝑒 − 𝜂𝑑 ∕2 . (95)

This agrees with the asymptotic solution [23] for the degenerate
cale as shown below, 

 𝑑 ≈
√ 

1 
2 𝛾

= 

√ 

1 
𝑒 𝜂𝑑 + 𝑒 − 𝜂𝑑 

≈ 𝑒 − 𝜂𝑑 ∕2 . (96)
84 
These results are summarized in Tables 6 and 7 . 
For the degenerate scale, the radii of the right and left circular

oles are both equal to 0.485571 while 𝛾 = 2. Although the homoge-
eous Dirichlet boundary condition is given, the corresponding nontriv-
al boundary fluxes are 

 𝑙 ( 𝐬 ) = − 

cosh (− 𝜂𝑑 ) − cos 𝜉𝑠 
𝑐 

[ 

1 + 

∞∑
𝑛 =1 

4 𝑒 − 𝑛 𝜂𝑑 
1 + 𝑒 −2 𝑛 𝜂𝑑 

cos ( 𝑛 𝜉𝑠 ) 

] 

𝑎 
( 𝑟 ) 
0 , 

𝐬 ∈ 𝐵 𝑙 and 0 ≤ 𝜉𝑠 ≤ 2 𝜋, (97) 

 𝑟 ( 𝐬 ) = − 

cosh 𝜂𝑑 − cos 𝜉𝑠 
𝑐 

[ 

1 + 

∞∑
𝑛 =1 

4 𝑒 − 𝑛 𝜂𝑑 
1 + 𝑒 −2 𝑛 𝜂𝑑 

cos ( 𝑛 𝜉𝑠 ) 

] 

𝑎 
( 𝑟 ) 
0 , 

𝐬 ∈ 𝐵 𝑟 𝑎𝑛𝑑 0 ≤ 𝜉𝑠 ≤ 2 𝜋, (98) 

s shown in Fig. 8 . Then, the nonzero field in the domain and the null
eld in the complementary domain are, respectively, expressed by 

 ( 𝐱) = 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

− 
( (

𝜂𝑑 − 𝜂𝑥 
)
− 

∞∑
𝑛 =1 

2 
𝑛 

( 

( 𝑒 𝑛 𝜂𝑥 + 𝑒 − 𝑛 𝜂𝑥 ) 𝑒 
−2 𝑛 𝜂𝑑 

1+ 𝑒 −2 𝑛 𝜂𝑑 
− 𝑒 − 𝑛 𝜂𝑥 

) 

cos ( 𝑛 𝜉𝑥 ) 
) 

𝑎 
( 𝑟 ) 
0 , 

𝜂𝑥 ≥ 0 , 
− 
( (

𝜂𝑑 + 𝜂𝑥 
)
− 

∞∑
𝑛 =1 

2 
𝑛 

( 

( 𝑒 𝑛 𝜂𝑥 + 𝑒 − 𝑛 𝜂𝑥 ) 𝑒 
−2 𝑛 𝜂𝑑 

1+ 𝑒 −2 𝑛 𝜂𝑑 
− 𝑒 𝑛 𝜂𝑥 

) 

cos ( 𝑛 𝜉𝑥 ) 
) 

𝑎 
( 𝑟 ) 
0 , 

𝜂𝑥 < 0 , 

𝐱 ∈ 𝐷, 

(99)

 ( 𝐱) = 0 , 𝐱 ∈ 𝐷 

𝑐 , (100)

here 𝑎 ( 𝑟 ) 0 is an arbitrarily real-valued constant . Here, we obtain 𝑎 ( 𝑟 ) 0 =
 . 046329 according to the numerical result of BEM implementation. The
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Fig. 10. Minimum singular value versus the length of the rectangle for 𝛼 = 1.2. (The values 

inside the parentheses() and the square bracket [] denote the analytical value and Chen’s 

results [24],-respectively.) 

Table 10 

Degenerate scales for the infinite plane with two identical elliptical holes 

( 𝛼 = 1.2). 

𝛽

Method 0.1 0.2 0.3 0.4 0.5 

BEM ( N = 50) 1.5544 1.3045 1.1306 1.0002 0.8980 

Chen [24] 1.5526 1.3032 1.1295 0.9993 0.8972 

Note: N is the number of boundary elements for each ellipse. 

Table 11 

Degenerate scales for the infinite plane with two identical rectangular holes 

( 𝛼 = 1.2). 

𝛽

Method 0.1 0.2 0.3 0.4 0.5 

BEM ( N = 60) 1.4591 1.1981 1.0270 0.9033 0.8086 

Chen [24] 1.4587 1.1976 1.0265 0.9028 0.8081 

Note: N is the number of boundary elements for each rectangle. 
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ontour plot and 3-D plot for the case of degenerate scale are shown in
able 8 . If the size of the boundary shape is a degenerate scale, the given
omogeneous Dirichlet boundary conditions result in non-trivial bound-
ry flux. Owing to the non-trivial boundary flux, it is found that the field
n the domain is a nonzero field while a null field for a complementary
omain. 

For the ordinary scale, the radii of the right and left circular holes
re both equal to 0.5 while 𝛾 = 2. The symmetric ( u r ( x ) = 1, x ∈ B r and
 l ( x ) = 1, x ∈ B l ) and anti-symmetric ( u r ( x ) = 1, x ∈ B r and u l ( x ) = − 1,
x ∈ B l ) Dirichlet boundary conditions are both considered. The contour
lots of the solution representation are shown in Table 9 . 

In addition, the elliptical and rectangular holes are also considered
n the BEM implementation. The geometric parameters are shown in
ig. 3 (d) and (e). According to the minimum singular value, the de-
enerate scale versus the geometric parameter, 𝛽, is obtained as shown
n Figs. 9 and 10 . The numerical results agree well with Chen’s results
24] as shown in Tables 10 and 11 . Since degenerate kernel is not avail-
ble for bi-elliptical or bi-rectangular coordinates, no exact solution is
ompared with. The main point to provide above two noncircular cases
85 
s showing that two cavities of arbitrary shape in the infinite domain
lso have degenerate scales. 

. Conclusions 

In this paper, the degenerate kernel for expressing the closed-form
undamental solution in terms of bipolar coordinates was employed to
nalytically study the degenerate scale of a circular domain, eccentric
nnulus and infinite plane with two identical circular cavities. The de-
enerate scale of a circular case was revisited by using the degenerate
ernel in the bipolar coordinates. It was theoretically proved that the ra-
ius of the outer circle dominates the degenerate scale for the eccentric
nnulus. An analytical formula of degenerate scale for the infinite plane
ith two identical circular boundaries was also derived at the first time.
umerical examples by using the boundary element method were also
emonstrated and compared well with the analytical solution. In addi-
ion, null fields for ordinary and degenerate scales were also addressed.

cknowledgment 

Financial supports from the Ministry of Science and Technology
nder Grant No. MOST-103-2221-E-019-012-MY3 , MOST-105-2811-E-
19-001 , MOST-105-2221-E-019-004 and MOST-106-2221-E-019-009-
Y3 for National Taiwan Ocean University are gratefully acknowl-

dged. 

eferences 

[1] Jaswon MA , Symm GT . Integral equation methods in potential theory and elasto-
statics. New York: Academic Press; 1977 . 

[2] Rumely RS . Capacity theory on algebraic curves, 1378. Berlin: Springer-Verlag;
1989 . 

[3] Christiansen S . Detecting non-uniqueness of solutions to biharmonic integral equa-
tions through SVD. J Comput Appl Math 2001;134:23–35 . 

[4] Yan Y , Sloan IH . On integral equations of the first kind with logarithmic kernels. J
Integr Equ Appl 1988;1:945–75 . 

[5] Chen YZ , Wang ZX , Lin XY . The degenerate scale problem for the Laplace equation
and plane elasticity in a multiply connected region with an outer circular boundary.
Int J Solids Struct 2009;46(13):2605–10 . 

[6] Kuo SR , Chen JT , Lee JW , Chen YW . Analytical derivation and numerical experi-
ments of degenerate scale for regular N-gon domains in BEM. Appl Math Comput
2013;219:5668–83 . 

[7] Vodi čka R , Petrik M . Degenerate scales for boundary value problems in anisotropic
elasticity. Int J Solids Struct 2015;52:209–19 . 

[8] Chen YZ , Lin XY , Wang ZX . Evaluation of the degenerate scale for BIE in plane
elasticity and antiplane elasticity by using conformal mapping. Eng Anal Bound Elem
2009;33:147–58 . 

[9] Landkof NS . Foundations of modern potential theory. Berlin: Springer-Verlag; 1972 .
10] Dijkstra W. Condition numbers in the boundary element method: shape and solvabil-

ity. (Ph.D Dissertation), Eindhoven University of Technology, Netherlands, 2008. 
11] Kuo SR , Chen JT , Kao SK . Linkage between the unit logarithmic capacity in the

theory of complex variables and the degenerate scale in the BEM/BIEMs. Appl Math
Lett 2016;29(6):929–38 . 

12] Chen JT , Lin JH , Kuo SR , Chiu YP . Analytical study and numerical experiments for
degenerate scale problems in boundary element method using degenerate kernels
and circulants. Eng Anal Bound Elem 2001;25:819–28 . 

13] Chen JT , Shen WC . Degenerate scale for multiply connected Laplace problems. Mech
Res Commun 2007;34:69–77 . 

14] He WJ , Ding HJ , Hu HC . Degenerate scales and boundary element analysis of two
dimensional potential and elasticity problems. Comput Struct 1996;60:155–8 . 

15] Liu PLF , Lean MH . A note on–contour in the integral equation furmulation for a
multi-connected region. In: Grilli S, Brebbia CA, Cheng AH-D, editors. Computational
engineering with boundary elements vol. 1: fluid and potential problems. Boston::
Computational mechanics Publications; 1990. p. 295–302 . 

16] Chen JT , Kuo SR , Lin JH . Analytical study and numerical experiments for degenerate
scale problems in the boundary element method for two-dimensional elasticity. Int
J Numer Methods Eng 2002;54:1669–81 . 

17] Chen YZ , Wang ZX . Boundary integral equation method for periodic dissimilar elastic
inclusions in an infinite plate. Appl Math Comput 2012;218:8578–91 . 

18] Chen YZ . Numerical solution for degenerate scale problem arising from multiple
rigid lines in plane elasticity. Appl Math Comput 2011;218:96–106 . 

19] Chen YZ , Lin XY , Wang ZX . A semi-analytic solution for multiple curved cracks
emanating from circular hole using singular integral equation. Appl Math Comput
2009;213:389–404 . 

20] Chen JT , Wu CS , Chen KH , Lee YT . Degenerate scale for analysis of circular plate
using the boundary integral equations and boundary element method. Comput Mech
2006;38:33–49 . 

21] Hille E . Analytical function theory, vol. II. Boston:: Ginn and Company; 1962 . 

http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0001
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0001
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0001
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0002
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0002
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0003
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0003
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0004
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0004
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0004
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0005
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0005
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0005
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0005
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0006
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0006
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0006
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0006
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0006
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0007
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0007
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0007
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0008
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0008
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0008
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0008
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0009
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0009
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0010
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0010
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0010
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0010
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0011
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0011
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0011
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0011
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0011
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0012
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0012
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0012
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0013
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0013
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0013
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0013
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0014
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0014
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0014
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0015
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0015
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0015
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0015
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0016
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0016
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0016
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0017
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0017
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0018
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0018
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0018
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0018
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0019
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0019
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0019
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0019
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0019
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0020
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0020


J.-T. Chen et al. Engineering Analysis with Boundary Elements 85 (2017) 70–86 

[  

[  

 

[  

[  

[  

 

[  

 

[  

[  

[  
22] Yan Y , Sloan IH . On integral equations of the first kind with logarithmic kernels. J
Integr Equ Appl 1988;1:945–75 . 

23] Corfdir A , Bonnet G . Degenerate scale for the Laplace problem in the half plane;
approximate logarithmic capacity for two distant boundaries. Eng Anal Bound Elem
2014;37:836–41 . 

24] Chen YZ . Numerical solution for the degenerate scale in 2D Laplace equation for
notch in half-plane using null field BIE. Eng Anal Bound Elem 2016;70:126–33 . 

25] Chen JT , Lin SR , Chen KH . Degenerate scale problem when solving Laplace’s equa-
tion by BEM and its treatment. Int J Numer Methods Eng 2005;62:233–61 . 

26] Chen JT , Lee YT , Kuo SR , Chen YW . Analytical derivation and numerical experiments
of degenerate scale for an ellipse in BEM. Eng Anal Bound Elem 2012;36:1397–405 .
86 
27] Chen JT , Lee JW , Chen IL , Kuo PS . On the null and nonzero fields for true and
spurious eigenvalues of annular and confocal elliptical membranes. Eng Anal Bound
Elem 2013;37:42–59 . 

28] Kane JH . Boundary element analysis in engineering continuum mechanics. New Jer-
sey: Prentice-Hall; 1994 . 

29] Chen JT , Shen WC , Wu AC . Null-field integral equations for stress field around cir-
cular holes under antiplane shear. Eng Anal Bound Elem 2006;30(3):205–17 . 

30] Morse P , Feshbach H . Method of theoretical physics. New York: McGraw-Hill; 1953 .

http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0021
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0021
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0021
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0022
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0022
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0022
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0023
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0023
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0024
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0024
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0024
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0024
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0025
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0025
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0025
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0025
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0025
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0026
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0026
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0026
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0026
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0026
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0027
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0027
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0028
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0028
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0028
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0028
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0029
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0029
http://refhub.elsevier.com/S0955-7997(16)30492-1/sbref0029

	Analytical derivation and numerical experiment of degenerate scale by using the degenerate kernel of the bipolar coordinates
	1 Introduction
	2 Analytical derivation of the degenerate scale by using the bipolar coordinates
	2.1 Revisit of the degenerate scale of a circular domain by using the bipolar coordinates
	2.2 Analytical derivation of the degenerate scale of an eccentric annulus by using the bipolar coordinates
	2.3 Analytical derivation of the degenerate scale for the infinite plane with two identical circular holes
	2.4 Analytical derivation of the degenerate scale for the half-plane with a circular hole

	3 Numerical examples and discussions
	3.1 Null field and nonzero field of an eccentric annulus
	3.2 An infinite plane containing two identical holes

	4 Conclusions
	 Acknowledgment
	 References


