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The J-integral and stress intensity factor (SIF) are two major parameters in linear elastic fracture mechanics
(LEFM) for the fracture criterion. In this paper, we focus on the J-integral of the slant crack and the slant rigid-
line inclusion under the remote anti-plane shear. By employing the degenerate kernel, the path independence of
J-integral is analytically demonstrated by using the elliptic coordinates. The positive and negative J-integrals are
also analytically derived and numerically implemented by using the dual BEM for the crack and the rigid-line

inclusion, respectively. It is interesting to find that the J-integral is not an invariant by using different observer
systems but is one component of the vector of the first order tensor. Transformation law of the J-integral with
respect to different observers is analytically proved and numerically demonstrated. Finally, the tensor property

of order one is examined.

1. Introduction

Line segment problems have been widely investigated using the dual
boundary integral equation approach [1]. It has two different bound-
ary conditions in engineering practice in the boundary value problems
(BVPs). One is the Dirichlet type and the other is the Neumann type.
For the anti-plane elasticity, a rigid-line inclusion is specified by the
Dirichlet B.C. to describe the rigid behavior, while a crack is described
by the Neumann B.C. to describe the free traction. For the rigid-line
inclusion problems, England [2] found that the stress field have singu-
larities near the tip of the rigid-line inclusion in linear elasticity as the
same as crack problems. The rigid-line inclusion problems were widely
investigated later by either integral equation formulations or numerical
testing [3-8]. For the interaction between cracks and rigid-line inclu-
sions, Dong [9] proposed an integral equation approach to investigate
the interaction between cracks and rigid-line inclusions embedded in an
infinite isotropic elastic matrix subject to the remote loading. Xiao et al.
[10] revealed interesting electroelastic interaction phenomena of mul-
tiple cracks and multiple rigid-line inclusions by numerical examples.

Wang et al. [11] have summarized a Table for the SIF of the Modes
L, I and III for the crack and the rigid inclusion. To determine the value
of SIF, three approaches can be employed. One is the extrapolation
approach for the boundary or interior displacement near the tip. An-
other is the extrapolation approach for the boundary stress or interior
stress near the tip. The other is the J integral [12] enclosing the crack
tip. The J-integral is an efficient way to determine the SIF in energy
sense instead of the asymptotic behavior of the displacement or stress
near the tip. Whether the J-integral is positive or negative as well as
its tensor property attracts the attention of mathematicians and engi-
neers. The popular use of path-independent J-integral lies in the fact
that the information regarding the stress and traction states at a dis-
continuity can be calculated from integrals over a path some distance
away from the discontinuity, where singularities are not encountered.
Use of contour-integral approach or energy method has the obvious ad-
vantage that an accurate modelling of the crack tip behavior is not nec-
essary and accurate results can be obtained by using coarse mesh of
boundary elements [13-14]. Then, the use of singular element near the
crack tip may not be necessary. Not only for the LEFM, the J-integral
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approach can be employed with some success as a suitable criterion
and can predict the crack growth in the nonlinear and elasto-plastic
behavior of cracked bodies. However, the J-integral is not path inde-
pendent for elasto-plastic materials and is not equal to the energy re-
lease rate although it is right for the linear elastic material. Path in-
dependence of J-integral is also interesting and can be examined in
any observer system. Neglecting the body force, Rice [12] introduced
the concept of path-independent J-integral which relates to the energy
released per unit of crack translation. In general, there are two com-
ponents in the J-integral, their component form in different observer
systems may not be the same but satisfies the transformation law of
tensor of order one. The invariance of J-integral was discussed in the
Appendix of Hellan book [15] for the single-valued field. Invariance of
the elastodynamic J-integral (J’) was also studied by Nishioka [16]. The
invariant J-integral in finite element models was also investigated by
Ukrainian [17]. Whether the J-integral in the anti-plane elasticity for
a slant crack and rigid-line inclusion is an invariant or not attracts our
attention.

In this paper, we consider an infinite domain with a slant crack or
a slant rigid-line inclusion subject to the remote anti-plane shear case.
Therefore, we focus on the SIF of Mode III. Since a crack and a rigid-line
inclusion are the special cases of an ellipse, we employ the degenerate
kernel in terms of the elliptic coordinates to study this degenerate issue.
Thanks to the degenerate kernel, the positive or negative J-integrals and
the path independence of J-integral are analytically derived. The numer-
ical experiments by using the dual BEM are also performed. Besides, the
transformation law for the component form of J-integral is also ana-
lytically and numerically examined. We also proved that results of the
horizontal case in [18] are special cases of the present slant cases.

2. Problem statement and mathematical formulation

The J-integral of the horizontal crack and rigid-line inclusion under
the anti-plane shear problem have been solved in the [18]. Here, we
focus on the J-integral of a slant crack under the anti-plane shear (655 =
S and 673 = 0) or a slant rigid-line inclusion under the anti-plane shear
(65 = 0and 675 = 5) as shown in Fig. 1. The J-integral defined by Rice
[12] was given below:

_ ou;
J. = Wny —T;— |dT,

1 ox

r 1

where I' is the path along which the J-integral is calculated, W =
is the strain energy density for the linear elastic material, n; is the com-
ponent of the outward unit normal n in the first direction x;, y; is the i th
component of the displacement vector and T; = on; is the traction along
T, respectively, and dI” is the differential arc length. For the anti-plane
problem, the nonvanishing shear strains are given by

@)

OijEij

1 Ouy 1 Oug
= —-—, = —-—, 2
f137 3 0x, 2373 0x, @
and the corresponding stresses follow Hooke’s law as
013 = 2HE 3, Op3 = 2er;, 3

where y is the shear modulus. Therefore, the strain energy density is
given by

2 2
o7, +o0
137 %3
W = 013613 + 0p3693 = ——=—. “4)
13€13 T 023623 o
The traction is
T3 = o131 + 053 By )
By substituting Eq. (2) into Eq. (3), we have
oy _ 23 93 _ o 6)
ox;  p o 0xy oy
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For a slant crack or a slant rigid-line inclusion, the J-integral can
be derived by two different observer systems. One is that we can de-
compose it into the combination of two horizontal cases under the dif-
ferent remote anti-plane shear since the observer system is attached on
the crack or rigid-line inclusion as shown in Fig. 1. The other is using
the observer system subject to the original system coordinates, (x;, X,).
Fig. 2 shows a slant crack and a slant rigid-line inclusion by using the
(x1, x5) observer coordinate system while Fig. 3 shows the (X, x,) sys-
tem. Here, we focus on the J-integral derived by using the (x;, x5) ob-
server coordinate system.

To derive the J-integral, we need to solve the total displacement first.
Hence, we introduce the degenerate kernel. By employing the degener-
ate kernel, the collocation point can be located on the real boundary
free of the singular integral. Therefore, the representations of integral
equations and null-field integral equations including the boundary point
for the exterior problem can be written as

2ru(x) = / T(s,x)u(s)dB(s) — / U®(s,x)1(s)dB(s), x € DU B, (@)
B B
2rt(X) = / ME(s, x)u(s)dB(s)—/ L¢(s,x)t(s)dB(s), x € DU B, 8)
B B
and
0= / T'(s, X)u(s)dB(s) — / U'(s,x)t(s)dB(s), x € D° U B, )
B B
0= / Mi(s, x)u(s)dB(s) — / Li(s,x)1(s)dB(s), x € D° U B, (10)
B B

respectively, where D is the domain, D¢ is the complementary domain,
B is the boundary and the degenerate kernel in the dual BIEM will be
elaborated on later. Since the anti-plane problem satisfies the Laplace
equation, the closed-form fundamental solution in the BEM/BIEM is U(s,
x)=In |x—s| =In r, where r is the distance between x and s. By employ-
ing the separable property of the kernel, U(s, x) can be expanded into
the series form by separating the source point and the field point. Since
the crack and the rigid-line inclusion problem is a degenerate case of an
ellipse, we express the degenerate kernel in terms of elliptic coordinates
[19-21] as shown below:

o
U'@ngiéem) =& +Ins — Zl %e"”‘? cosh mé, cos mn, cos mn
o

o
- Zl ie’”’fs sinhmé, sinmn, sinmng, & >¢&., (a)
m=

Us,x) = o>,
U¢(&,.ng:én) =&+ 1n ‘5 -y ;e’mé cosh mé&; cos mn, cos my
m=1

1 ie‘mév sinhmé_ sinmn, sinmn,, & <&, (b)

an

where the field point x = (¢,,7,), the source point s = (&,7;), and c is the
half distance between two foci, the superscripts “i” and “e” denote the in-
terior (& > &,) and exterior (& < £,) cases, respectively. The degenerate-
kernel expression for the closed-form fundamental solution of U(s, x) is
shown in Fig. 4. After taking the normal derivative — d/dng with respect
to the source point, T(s, x) can be obtained as shown below:

(

o
+2 Y, e~ sinhmé, sinmn, sinmr]s>, E>¢&, (a)

)
1+2 Y e coshmé, cos mn, cos mn,
m=1

-1

T/, 53 Exa ) = Ty

T(s,x) = m=1 I
T niéen) = 5 (2 X e sinhmg, cos mn, cos mn,
&) \ 2
o
+2 Zl e« cosh m&; sin mn, sin mr/s>, E <& (D)
P
(12)
It is mnoted that a Jacobian term, J(&,n,)=J,=

C\/ cosh?¢,sin’y, + sinh?£,cos?y,, is in the denominator.
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Fig. 1. Orientation and decomposition of a slant crack and a slant rigid-line inclusion.

3. Analytical derivation of the path independence of J-integral

Now, we consider the slant crack under the anti-plane shear (65 =
Sand 675 =0) as shown in Fig. 1(a), where « is the inclined angle of
the crack. The problem can be decomposed into two horizontal cases
as shown in Fig. 1(a-1-1) and 1(a-2-1) by employing the superposition
technique. However, the total displacement in Fig. 1(a-1-1) can be de-
composed again as Fig. 1(a-1-2) and 1(a-1-3) while Fig. 1(a-2-1) is equal
to Fig. 1(a-2-2) since a crack is trivial here. Fig. 1(a-1-2) and 1(a-2-2)
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are both due to the remote shear loading u® in an infinite plane. The
displacement of uM(x) is caused by the infinite plane problem with a
crack as shown in Fig. 1(a-1-3). The boundary condition on the crack is
free of traction, which yields the Neumann boundary condition. Since
u®™ is given, the t(s) on the crack surface can be obtained. By apply-
ing the Fourier expansions, the specified boundary data u™(s) can be
expressed. By using Eq. (9), the unknown boundary density u™(s) can
be obtained after comparing coefficients of the basis. By solving the
Fig. 1(a-1-3) using the BIE, the total displacement of the slant crack
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Fig. 2. A slant crack and a slant rigid-line in-
clusion by using the (x;, x,) observer coordi-
nate system. (a) A crack case. (b) A rigid-line
inclusion case.

Fig. 3. A slant crack and a slant rigid-line in-
clusion by using the (x,, %,) observer coordi-
nate system. (c) A crack case. (d) A rigid-line
inclusion case.

(¢) Full field (0< &, <o)

Fig. 4. Contour plot of the degenerate kernel for the fundamental solution (U(s, x)) in elliptic coordinates, & =¢&.

yields

uz (&, 1) = §c(sini1x cosh&, cosa + cos#, cosh &, sina). (13)
u

The stress is

sinh &, cos 7,

cosh &, sinn,

where h, =

¢((sinh &, cos ) +(cosh &, sinny)?)”

hy = ¢((sinh &, cos 11 )2 +(cosh &, sin77,)%)

ous dus ) Sc?(—sin7n, cosn, cos a)

oc,=ulh— —hy—
13 (lﬁfx 2 on,

duy duy Sc2cosh&, sinhé, cosa
Oy3 = M\ Mg

+h—
o, ' on,

2u J2?
+ Ssina, 14 .
(14 _ 252¢2 ( sinn, cosn,
2u J?

, 15)
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and J, = C\/ cosh?&,sin’y,, + sinh?&, cos2r,.. By substituting Eqs. (14) and
(15) into Eq (4), the strain energy density yields

8% <coszi1x + sinh?&,

>COSZG{

2
sin & cos a + S—sinza (16)
2u

since the total displacement is obtained. The integral path is decom-
posed of three parts, I';, I'; and I'; in Table 1. The component of the
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Table 1
Stress intensity factor of the slant crack under the anti-plane shear.

Observation point

Approach Boundary data Interior field Field and boundary
— y — oo v
23 = ‘S 0-23 = *S
aA A a a A N M Y

o o
Il 1]
g.@ ]
s o
(fco)’ 4
4,
\\// D
OO OO COOO®OOO COOOOOO
Gy =S 0y =8 Gy =S
Displacement K,,,:ii_l}g%:&'cosa a K,,,=£E%L\/¥”M=Scosa na
Stress Ky = lim V2res(0,n) = S cosar/ma Kypp, = lim V2zeo(£,0) = Scosay/za
: - - S’za K}
J-integral Jor= 2 cos?a = z,:
outward unit normal vector n for the elliptic contour I'y (£, =¢;) is 252¢2 ( sinn, cosy 2
sinh 2, cos -5 % sinacosa + =—sin’a |(-1)
nl = X rlX R (17) ll X
- 2 . 2 2.2 cos? 2,02 sinh?
\/(smh & cosn,)” + (cosh&, sing,) __ 52 2 cos Zr,x costa 52 c smh2 & cos’a
coshé, sinn, s neoJ
ny = > 2 as) S22 sinn cosn, . S2 .5
\/(sinh £, cosn, )’ + (cosh &, sinn, ) + T g Sinacosa-msina, (25)
X
For the elliptic coordinates, we have a=ccosh ¢, and b=csinh &,,
where a is the semi-major axis and b is the semi-minor axis of the ellipse. us Sc? (= sinny cos iy cos ) )
Egs. (17) and (18) can be written as 3% = 72 + Ssina |(-1)
bcosn, *
m=— (19) Sc?(—sinyy cosn, cos a) ) 1
x X + Ssina |—
. J? u
asinn,
n=—. (20) 2(_gi 2
J Sc*(—sinn, cosn, cosa
¥ =-1 ( —— )+Ssina . (26)
By substituting Egs. (14), (15), (19) and (20) into Eq. (5), we have H J:
T Scsinh &, (sinn, cosa + sinacosy, ) @ By substituting Egs. (25) and (26) into Eq. (1) for
3= .

J, dl'=—ccosh é,sin n,dé, and by substituting #, = —% and 7n, = ’2—'
By substituting Eq. (14) into Eq. (6), we have for the contf)ur I'; and I'3, respectively, the J-integrals for the contours
I'; and I'; yield

ous Sc?(-sinn, cosn, cos a) N Ssina

(22)

2 sinh? 2
0x; uJ? H (J;:’)r =/ <—§— - fx cosZa + g—sinza)(ccoshfg’xdéjx)
By substituting Egs. (16), (19), (21) and (22) into Eq. (1), the J- ! r M cosh™&, %

. . 2 2 2
integral for the contour I', yields __ % cosla + % cos?a(tan"" sinh £, ) + % sina, @7
U u u
2,2 bcos n,.cos’a 2 bcos
(Jca> _ / S x 5 fx (cos®a — sin’a)
T \2w 72 7, -
’ 9y X, (JM) = / _S_z sinh”¢ cos?a + S—Zsinza (—ccosh.‘; dé )
 Sbsinmcora sma) J.dn, T e\ 20 coste, 2 X
My 2 2 2
S<b 2 S<c 2 -1 - S<b . 2
2 2 2 = ———cos“a + —cos“a(tan”" sinh¢, ) + —sina, (28)
- Secosa (tan_l Sin:n: ) + 2 b(cos?a — sina). (23) 2u 2u ( ) 2u
U U
! respectively. It is interesting to find that I'; and I'; contribute to the
However, the component of the outward unit normal vector n for the same weight for the J-integral. Therefore, the J-integral for the contour
contour I'; (0 < ¢, <¢;)and T3 (0 <¢, <&;)is I can be obtained as
ng=-1, n=0. 24) J&% = Stex cos’a 29
X1 2 ’
Therefore, we have #
where c=a in the degenerate case. Eq. (29) can be rewritten as
S2c2 cosznx + sinhz.fx 5 0
Wn, = ———= |cos“a ca _ STma_ o
1 < o < E o= 7 cos“a. (30)
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Table 2
I and J_ of the crack under the anti-plane shear.
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Observer system (x;,X) Crack Crack (trivial) Slant crack
o, =S Go=S
.S"ﬁ’ '$\ o,=0
"
= =] =) 2a, \ o
1] B 1=0 / aad
(24 = 2a = e K s % 15
;} b = t B =0 | 5 ‘\\ A
) |_ 2a _I 1)
D D
C 5 D : -
o, =S on=0 GL,=S
S%za S%za 2
o ” 0 2, cos’a
. 0 S in2 a
X
Table 3
J,, and J,, of the rigid-line inclusion under the anti-plane shear.
Observer system (x;,X,) Crack Crack (trivial) Slant crack
o5=S
4 =
= B u=0 i
- Ll

D D
a,=0 og,=5 G,=0
S2ra S’xa 2
J-n -5 0 —2 % cos“a
I, 0 0 % sin2 a
However, the SIF can be derived from three ways. One is the J- S?c . S?c .

. . . . K X = — sinacosacoshé; — — sinacos a, 35)
integral, another is the asymptotic behavior on the interior or bound- u u

ary stress near the crack tip and the other is displacement fields of the
asymptotic behavior on the interior or boundary near the crack tip of
[22]. Following the similar procedure in [18], the SIF of the slant crack
can be derived from the asymptotic behavior. Here, we only show the
final result in Table 1. The SIF yields

Ky = Sy/macosa. 31

Eq. (31) also yields the same result in [23]. Hence, Eq. (30) can be
written as
2

K
ca _ I
L= (32)

Eq. (32) yields the same result as mentioned in [18, 24-26]. The path
independence of J-integral is also proved.

According to the definition of J-integral, it is a tensor of order one.
Here, we find that the J-integral defined by Rice is only the x; compo-
nent while the x, component is given by

7= [ (wn,-1,2% \ar 33
o=\ Wm T )dr (33)

Therefore, we have

202 asin 2 asin
( )f") / S’c 3)1" cos’a + i L (sinza - cosza)
2/T, r, 2u J? 2u J,

S2 acosn, sinacosa
- )J.dn,

H J,
2
= —Qc sina cosacoshé;, (34)
u

for the contour I'y. For the contours I'; and I';, we have

(J)f") _ / S2¢2cosh &, sinh &, sinacos a (ccoshfxdfx)
2/, r, ﬂJf

S2¢%cosh &, sinh &, sina cosa
(Ji") = / & & (—ccoshé, dé&,)
2/, I3 uJ?

2 2
e sin@ cosa cosh &) — S sin a cos a, (36)
U U

respectively. After combining the integrals for I';, I'; and I's, we have

_Q2
J = S7a sin 2a. 37N
u

X2

for the slant crack. Similarly, we have

2
i -S%za__, 111
J;”l’ = o cos“a = _W’ (38)
) 2
e o 574 Gn2a, (39)

for the slant rigid-line inclusion. Eq. (38) can be also obtained by using
the Eq. (32) since the reciprocal relation for the SIF between a crack
and a rigid-line inclusion with respect to the opposite loading was ad-
dressed in [18], which is an extension of the reciprocal relation for the
SCF between a hole and a rigid inclusion [13,27-28]. After comparing
Egs. (30) and (35) with Egs. (38) and (39) for the crack and rigid-line
inclusion, their results are different by a sign. From Egs. (37) and (39),
we also find that J,, is also path independent no matter what & is. The
results of J,,, for the horizontal crack and horizontal rigid-line inclusion
are both derived by setting @ =0 although J, was obtained in [18]. Ac-
cording to the definition, we summarize the result of J, and J, for the
crack in Table 2 while the result of the rigid-line inclusion is shown in
Table 3. It also indicates that the result in [18] is the special case of the
present paper by setting a = 0, % wand 37” It is found that J, are posi-
tive and negative for the crack and the rigid-line inclusion, respectively,
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Table 4

First order tensor of J-integral in the (x;,x,) and (%,, X,) observer system for the rigid-line inclusion.
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(cos f,sin f3)

(a) %

X

1 X

'\:3 e (cos(a + B).sin(a + )
0| fa /B Transformation (00) ‘
5 law < X,
N,
T.
1 (x;.x,) u;(x. %)) =1;(%,.X,) i (X,.5,)
Ouy E?is | ) | [ Ou, C‘hj3 =(%cosa7 o,
ox; ox | |cosa —sina || O X, ox ox,
ou, o, sine  cosa || du, ou, .ou, . O,
bl 2 3] L 2 — =(—sina+—cosa)
ox, 0ox, | | Ox, ézvc2 ax, ox,
O, _ Gy
o= U o . _ Gy=p—= /1(—cosa —sinea)
ox, Gis | [cosa —sinal|o; i ax, X,
Cuuy G sina cosa || oy dit; du du,
Oy = — = = = =u—=u ( sin ¢ +—=cos @)
2 ox, ox; ox,
. | [cosa —sinal|[n .
n=(cos f.sin ) {_1 =l ] ' ] 71 = (cos(a + f).sin(a + f3))
| |sina cosa ||m
2 2 2 -
o, +0. du Ou = G, +0. oy, Ol
w=Te o LG TG W= = 2o o LG =W
2u 0ox, 2u ox,
(2] & _ o o
Ts:O'Bnl+axnz:,u(ggcosﬂ+isin[)‘) T,=T, T, =G n, +6’Bﬁzzﬂ(ﬁcosﬁ+£sinﬁ):

> ox,

=J‘;7nl—1'3a—l_3dl—

—j"Ha" osp+ (2

Bu Suy

) cos B

sin B)dT

Aq

¥ j Wi, — T, 24T
? a,
/ Ouy .\, ,
==« ; B~( 6x}) sin 8
Cuy Cuiy
-2—=_Zcos Bydl
= 2

X X,

o - o
Js |:coso( —sma} Iy

JY sina cosa || J*

(=) +(

) = () ()

—a)

22;’1 z:[j cos(f—a))dl

not only for the horizontal but also for the slant case. However, J, are
negative and positive for the crack and the rigid-line inclusion, respec-
tively. It is interesting to find that J,, = 0 when a = 0. Z, mand . This
indicates that J,, only makes a contribution in the slant case. Although
only the anti-plane shear loading case is considered, the extension work

s g

to the in-plane loading is straightforward and related works can be found

in [29-30].

4. On the tensor property of J-integral

Since the J-integral is a tensor of order one, we examine the ten-
sor property of the J-integral for the slant rigid-line inclusion here. Two W=

n = (cos f3,sin ).

numerical evidences are done here. The observer coordinates system
(x1, X5) is counter colockwisely rotated by a angle with respect to the
(X, X,) system as shown in Table 4. We choose a circular path to ex-
amine the tensor property, the normal vector of the integral-path in the
(37, x5) system as shown in Table 4(a) is

(40)

The strain energy density and the traction along I are

observer systems are used. Not only the analytical solutions but also
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Table 5
J-integral for a slant crack using (x;,x,) and (x;, X,) observer systems.

Observer system (X;,X;) Observer system (¥,,X,)
&,=S Zis
DO DD D DD
Transformation law
J cosa —sina|| /5
J° | sina  cosa J&
OJoNoNoYoolo
Oy =
Jf" J;_:’ J‘fa
Thelnedlanels Exact solution Exaczt solution Exact solution Exact solution
B S*ra cos’a Dual BEM =54 nra Dual BEM I cosa — I sina Dual BEM Jsina + J cosa Dual BEM
a=0 0.31416 0.31492 0 -0.24e-7 0.31416 0.31492 0 -0.24e-7
a=rx/8 0.26815 0.26881 -0.14142 -0.14175 0.30186 0.30260 -0.02804 -0.02809
a=r/6 0.23562 0.23620 -0.17321 -0.17361 0.29066 0.29136 -0.03219 -0.03226
a=rx/4 0.15708 0.15746 -0.2 -0.20047 0.25249 0.25310 -0.03035 -0.03041
a=r/3 0.07854 0.07873 -0.17321 -0.17361 0.18927 0.18972 -0.01859 -0.01862
a=rx/2 0.0 0.164e-16 0 -0.149¢-16 0 -0.501e-17 0 0.260e-17
() +() () +(%)
Exact solution Exact solution
Inclined angle S’ra P (_S% . 3
a [ 2u COSEC IS P AL Dual REM (Jecosa =g sinaf)2 +(J sina + I cosar)2 DUl RN
a=0 0.09870 0.09917 0.09870 0.09917
a=m/8 0.09190 0.09235 0.09190 0.09235
a=n/6 0.08552 0.08593 0.08552 0.08593
a=r/4 0.06467 0.06498 0.06467 0.06498
a=m/3 0.03617 0.03634 0.03617 0.03634
a=mx/2 0 0.272e-34 0 0.319e-35
ou dusy The strain energy density and the traction along I" are
T; = o3h +023n2=;4<—3 cos f + —3s1nﬂ>, (42) 24 Y J
0x, 0xy ) _ 2 _ 2
5, _ 91t oy ﬂ<(3“3> <5“3> >
W=——=>|2=) +t| , (46)
respectively. Therefore, we have 2 2\ 0%,
ous |2 ous \ 2 us 0 Ty = 613/, + Gy (M p+ 28 ﬁ) 47
. =630 + 63l = u| —= cos —sinf |,
J* = / B_(2s cos f + ] cosf— 2££ sing |dT, (43) } PR 0x, 0xy
1 r2 0x, 0x, 0xy 0x,

respectively. The J-integral yields

2 2 ) ouy \ ous \2 Ouy ou
. u Ous . Ous . duy duy Jyx=/£ _(_3> - +(_3> —a) =222 §in(f—a) |dr,
J)I(Z = /1- 3 <<E> sin g — <E> sin f — zﬁ_xl 8_x2 cos g |dr. (44) 5 L2 o, cos (f —a) o, cos(f —a) 9%, ox, sin (f — a)
48)

For the (X, X,) observer system as shown in Table 4(b), the normal
vector of integral-path is

x; O

~
oy

|
S~
[SIRS
/N
Fa
Q.zlm
= |
Sa P
~—
©

2

=
=
=

|

R
=

|
/N
|5

ou )2 . Ouy Ouy )
sin(f — a) — 2—= —= cos(f — a) |dT.
i = (cos(a + B), sin(a + f)). 45) 0x, 0x; 0x;,
(49
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Table 6
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J-integral for a slant rigid-line inclusion using (x;, x,) and (%,, X,) observer systems.

Observer system (X;,X,) Observer system (X;,X,)
6,=0 G,=0
® O ® = @
@ X, X @ O
~
O] > S5 O] )
[52) ) . “ = 2
n® 20 Lo @D Transformation law i® % @D
g o Q § o it s
'® <” @ JE Teosa —sina| /o O Ol
® &) Jo| | sine  cosa || g © &
D 5 X
® o) ®© S
5, =0 Gy =00
A A i i
Inclined angle Exscsscliticn Exag:t selicy Exact solution Exact solution
-S*ma Dual BEM Sa SN Dual BEM Dual BEM Dual BEM
a COSR Jcosa—J sina Jsina +J 7 cosa
a=0 -0.31416 -0.31254 0 -1.38e-7 -0.31416 -0.31254 0 -1.38e-8
a=r/8 -0.26815 -0.26677 0.14142 0.14078 -0.30186 -0.30025 0.02804 0.02775
a=r/6 -0.23562 -0.23441 0.17321 0.17243 -0.29066 -0.28908 0.03219 0.03178
a=r/4 -0.15708 -0.15627 0.2 0.19910 -0.25249 -0.25112 0.03035 0.02967
a=r/3 -0.07854 -0.07814 0.17321 0.17242 -0.18927 -0.18837 0.01859 0.01773
a=r/2 0.0 -0.26e-17 0 0.17e-16 0 0.19%-16 0 0.43e-17
(72) +(22) (72) +(2)
Exact solution Exact solution
Inclined angle _q? z 2 2 2 ) 2
" S7a 2ol 5 9%n2a Dual BEM (V2 cosa T sinar) +(Jsina +J cos ) Dual BEM
2u P ! 2 ] 2
a=0 0.09870 0.09768 0.09870 0.09768
a=r/8 0.09190 0.09099 0.09190 0.09092
a=r/6 0.08552 0.08468 0.08552 0.08458
a=r/4 0.06467 0.06406 0.06467 0.06394
a=x/3 0.03617 0.03583 0.03617 0.03580
a=mr/2 0 0.31E-35 0 0.36E-35

ca _ [ ca _ [ _ o = Ol _ Ty = O
where =1, p=1, a=0.2, Ji* = [ Wn, =Ty 52dl, Ji* = [ Wny = Ty 52d, Jot = [ Wil = T3 22d0, I3 = [ Wity = Ty S2dT

ox;

The transformation law between the two observer systems is
constructed in Table 4. We also find that the total displacement,
us(x1,x,), ii3(%;,X,), strain energy density, W, W, and the traction,
T;, Ts, are invariants no matter that which plane observer system is
used. Table 4 gives

diiy . dus
o5 | _ |cose  —sina| 5%,
ony | = [ i ous | 0
2 sina cosa |[ 22
0%, 0xy
G13| _ |cosa  —sina| o3 1)
53 sina cosa | |ops]’
iiy| _ |cosa  —sina|[n; 52)
iy sina  cosa | [n,]’
[ jia o i
% | _ [cosa sina J)Fl . (53)
J* sina cosa | [JI*
RES x2
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From Eq. (53), we realize that the relation of the J-integral derived
by different observer systems is a rotation matrix. Finally, the length of
the vector is an invariant as shown below:

(i) ()" = () (e

It indicates that the J-integral defined by Rice is not invariant and
is only one component of a vector. To demonstrate the first order ten-
sor of J-integral, two cases, one crack and one rigid-line inclusion, are
given. The comparison of the exact solution and numerical results by
using the dual BEM are shown in Tables 5 and 6 for a slant crack and a
slant rigid-line inclusion, respectively. It is found that the two compo-
nents of the vector obey the transformation law in the results of the dual
BEM. Table 5 also shows that (J¢*) + (J£)%, (J{*)* + (JE)?, J<% and J ¢
decrease when the inclined angle « increases. Table 6 also shows that
W ;:)2 +(J };‘;)2 decrease and T and J )’c‘; increase when the inclined an-

(54)



J.-T. Chen, J.-H. Kao, S.-K. Kao et al.

BRATKEWMS &
A SEMINAR ON
BOUNDARY ELEMENT METHOD

E S
) Fas

EMELL B AP TRRERNDBHRN
B # R SAHEBAR IRREANPHAR
® 55 (02)351-02318933853H341-0503

PERBE+AFAAH=BEABHUNB

(a) First part

BRTREFHE
A SEMINAR ON
BOUNDARY ELEMENT METHOD

E
(=) & M

EWEL | BT SBAS TBERE B BN
B # B . SIHERARTRRER ISR
£ 55:(02)851-0231¥33853%341-0503

PERBt+AFAAH=BEABHNAE

(b) Second part

Engineering Analysis with Boundary Elements 126 (2021) 169-180

BRTFREMTE
A SEMINAR ON
BOUNDARY ELEMENT METHOD

B
(=) B R

EMBL BTGB AR TR REBNDBHARN
B # R SlHoRASTISREENBARA
& 8% (02)351-023189338534341-0503

PEREL+EEAAH=OEABHNAB

(¢) Third part

Fig. 5. Three proceedings for the seminar on the boundary element method in Taiwan by Prof. Rizzo.

Taiwan BEM/Meshless Meeting (2010-2020)

PLAEGTARALIANNALHANE

WAFI0AID BAGLEFANRER

N\
- A—i‘(,m-"““v,_‘.
E I EESEB:ER TR AWM ®

NTOUHRF 60 Rirthelay), Oct 17, 2020

Fig. 6. Group photos of Taiwan BEM/Meshless meetings since 2010. The 11™ BEM meetings was held on Oct. 17, National Taiwan Ocean University, 2020.
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History & Background Taiwan BEM workshop (1986-2020)

[ Ve | Thahostunt | Toworpnser | Coremony

Establishment of NTU

Prof. F J Rizzo

1986 NTU IAM gﬁ Prof. Y H Pao 1AM
1989 NTU n Prof. D L Young NSC é Prof. J A Liggett
o
1998 NSC & Prof. J T Chen NCHC n Prof. A H D Cheng
o NTOU-HRE 50th (@) ) )
2010 NTOU-HRE-MSV “ Prof.J T Chen e Hiniesne & Prof. Z C Li
2011 NCTS(South) f? Prof. KM Lee  NCKU 80th anniversary &% NCKU
2012 Feng Chia University ﬂ Prof. Y C Shiah Rigt Hong = B0 ﬁ Prof. H-K Hong
o birthday ok
National Chung Hsing n Congratulations for Dean S L Crouch
i University - S alion Academicain . Academician,NAE
2014 National SYS University ' ! Prof. TT Lu i Y.oung > n Prof. D L Young
birthday b
2015 MR Dr. RZ Wang NCREE Ehosh sl
(cross strait) ceremony
2016 HEls : Prof. J H Lee NCTS @ |57 rof K Hone
(Japan-Taiwan) o4 o ¢ 4 Prof. W-W Lin
1®E Prof. I LChern
2017 NIU g Prof. K H Ch llan Univ. @ Mg ik tone
A i 54, o h Prof. W-C Wang
5018 ISU Prof. H T Huang ko Uriiv S Prof. D L Young
» Fa=  Prof | L Chen 5
2019 NCKU 3 Prof. LW Liu Cheng Kung Univ. & Prof. J T Chen
= 0
2020 NTOU ':?z Prof. YT Lee NTOU.HRE 60th (= 2 Prof. C B Hwu
¢ Prof. CM Fan anniversary \&2) |

Fig. 7. The history of Taiwan BEM workshop since 1986.

gle a increases. Both results indicate that the SIF reaches its maximum
when a=0 and a=7x.

5. Conclusions

In this paper, we derived the J-integral for the slant crack and slant
rigid-line inclusion under the anti-plane shear. Thanks to the degenerate
kernel, the path independence of the J-integral was analytically exam-
ined. The positive and negative J-integrals for the slant crack and the
slant rigid-line inclusion, respectively, were also theoretically derived.
The numerical evidences were numerically calculated by using the dual
BEM. Besides, we found that J-integral was not an invariant and was
a component of the first direction of a vector although it is path inde-
pendent. The first order tensor of J-integral was theoretically and nu-
merically verified to satisfy the transformation law for the slant crack
or slant rigid-line inclusion subjected to two different observer systems.

6. Remarks for the Rizzo special issue

In 1986, Prof. Y H Pao, a teacher of the first author, invited Prof.
Rizzo to give a BEM workshop in Institute of Applied Mechanics, Taiwan
University. During that week, June 23 to 28, the first author was Prof.
Rizzo’s TA to prepare the execution files of his Fortran files. Prof. Shippy
and Mukherjee also accompanied with Prof. Rizzo to have lectures. Now,
three proceedings for the seminar on boundary element method are still
on the desk of the first author as shown in Fig. 5. Prof. Rizzo said that
he enjoyed a good time like a king in Taiwan. At the same time, Prof.
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H-K Hong and the first author developed the dual BIEM/BEM for prob-
lems containing degenerate boundaries using the hypersingular equa-
tion. This article is also an extension work of the dual BEM. We appre-
ciated very much that Prof. Rizzo stimulated the BEM research at that
time in Taiwan. Since 1986, many researchers paid attention to BEM
study in Taiwan. A series domestic meeting was open since 2010, the
11th annual BEM meeting was held in National Taiwan Ocean Univer-
sity, Keelung, 2020. The group photo is shown in Fig. 6. Besides, the
organizer and plenary lecturer are also given in Fig. 7. Now the BEM
power of Taiwan is Top 5 country in the world.
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