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ABSTRACT

In this paper, a semi-analytical approach is
developed for the problem of dynamic stress
concentration around circular cavities due to shear
waves. To fully capture the circular geometries,
separate expressions of fundamental solutions in the
polar coordinate and Fourier series for boundary
densities are adopted. The main gain of using
degenerate kernels is free of calculating the principal
values. An adaptive observer system is addressed to
fully employ the property of degenerate kernels in
the polar coordinate. After moving the null-field
point to the boundary and matching the boundary
conditions, a linear algebraic system is obtained and
the unknown coefficients in the algebraic system can
be easily determined. The present method is seen as
a “semi-analytical” solution since error only
attributes to the truncation of Fourier series. The
proposed formulation is generalized to a half-plane
problem with a circular cavity.

Keywords: SH-wave, dynamic stress concentration,
half-plane problem, circular cavity, null-field
integral equation, degenerate kernel, Fourier series,
Helmholtz equation.

1. INTRODUCTION

The concentration of stress around holes plays
an important role in promoting the design criteria for
higher factors of safety. Not only static but also
dynamic stress concentration factors have been
investigated in the literature. For a simple case, an
analytical solution may be available. However,
solutions for problems with several holes may resort
to the numerical techniques. To develop a
semi-analytical approach is not trivial. This is the
main goal of this paper.

For the problems with circular boundaries, the
Fourier series expansion method is specially suitable
to obtain the analytical solution. For Laplace
problems, Chou [1] used the complex variable
boundary element method (CVBEM) to solve the

stress field around holes in antiplane shear. Thakur
et al. [2] used a second-order accurate
block-structured finite-volume method with periodic
boundary conditions along the cylinder axis to solve
the wake flow of single and multiple yawed
cylinders. Wang [3] solved the unsteady problem of
two parallel circular cylinders, moving in an inviscid
fluid by exploring the technique of conformal
mapping. For Helmholtz problems, Elsherbeni and
Hamid [4] used the method of moments to solve the
scattering problem by parallel conducting circular
cylinders. They also divided the total scattered field
into two components, namely a noninteraction term
and the term due to all interactions between the
cylinders. Chen et al. [5] employed the dual BEM to
solve the exterior acoustic problems with circular
boundaries. Grote and Kirsch [6] utilized Dirichlet to
Neumann (DtN) method to solve multiple scattering
problems of multiple cylinders. The DtN solution
was obtained by combining contributions from
multiple outgoing wave fields. Kawase [7] used the
BEM in the domain of wave number, in which the
discrete wave number Green’s function was adopted
to solve the scattering problem of a semi-cylindrical
canyon subject to the plane waves. It compared well
with the analytical solution which was derived by
Trifunac [8]. For the biharmonic problems, Ling [9]
used bipolar coordinates to solve a plate containing
two circular holes. Howland and Knight [10] used
the rectangular coordinate system to solve a plate
containing groups of circular holes. According to the
literature review, it is observed that exact solutions
for boundary value problems are only limited for
simple cases, e.g. a cylinder radiator and scatter,
half-plane with a semi-circular canyon, a hole under
half-plane and two holes in infinite plate. Therefore,
proposing a systematic approach for solving BVP
with circular boundaries of various numbers,
positions and radii is our goal in this paper.

In this paper, the boundary integral equation
method (BIEM) is utilized to solve the exterior
radiation and scattering problems with circular
boundaries. To fully utilize the geometry of circular
boundary, not only Fourier series expansion for
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boundary densities but also the degenerate kernel for
fundamental solutions is incorporated into the
null-field integral equation. Senses of principal
values are not required to determent all the improper
integrals, but using only series summation. In
integrating each circular boundary for the null-field
equation, the adaptive observer system of polar
coordinate is considered to fully employ the property
of degenerate kernel. For the hypersingular equation,
vector decomposition for the radial and tangential
gradients is carefully considered, especially in the
eccentric case. Scattering problem subject to the
incident wave is decomposed into two parts, incident
plane wave field and radiation field. The radiation
boundary condition is the minus quantity of incident
wave function for matching the boundary condition
of total wave. Three cases are used to check the
validity of our formulation.

2. PROBLEM STATEMENT AND INTERGAL
FORMULATION

2.1 Problem statement

The governing equation of the acoustic
problem is the Helmholtz equation

(V+K)’W(X) =0, xeD (1)
where V?, k and D are the Laplacian operator,
the wave number, and the domain of interest,
respectively. Consider the radiation and scattering
problems containing N randomly distributed
circular holes centered at the position vector

G ( j=1,2,.., N).
The displacement field of the SH-wave is
defined as:
u=v=0, w=w(xYy), 2)
where w is the only nonvanishing component of

displacement with respect to the Cartesian
coordinate which is a function of x and y. For a

linear elastic body, the stress components are [11]

ow

O3 =03 = ﬂ&! (3)
ow

O3 = 03 :Ma_y’ (4)

where f is the shear modulus. The equilibrium
equation can be simplified to

oy R

By substituting Egs. (3) and (4) into (5), we have Eq.
(1).What is taken into consideration is an infinite
medium subject to N traction-free circular holes

bounded by the B, contour andk =1,2,---, N.

The medium is under SH wave equivalently under
the displacement

V\/j _Weik(xsinﬂ,+y005~() (6)
=W, ,
where W, is the constant amplitude. The total
stress field in the medium is decomposed into

0y =05+ Uial , )
O3 = Ue?z + Jiaz ' (8)

and the total displacement can be given as
w=w+Ww, 9)

where the superscript “ S” denotes the part needed to
be solved after decomposition.

Therefore, the scattering problem is reduced to
find the displacement w*® which satisfies the
Helmholtz equation and the boundary conditions that
will be elaborated on later. The problem can be
converted into the solution of the Helmhotlz

problem for w®:
(V+k)w(x)=0, xeD. (10)

The shear stress components, o,, ando,,, can be
superimposed by using o, and o,

ow

Orz = M% ) (11)
ow

=pu—, 12

0z 1% ot ( )

where n and t are the normal and tangent
directions, respectively. Before determining o,

and o,, on the interior point, we should calculate
oy and o;, by implementing the hypersingular
equation in the real computation. For shear stress
o,, on the boundary, the same procedure of vector
decomposition is required, and the nondimensional
stress o, is defined as:

*

O9z
Opz =

0o

: (13)

where o, =pkW, is the maximum stress of
incident wave.

2.2 Dual boundary integral formulation

In order to solve the solution of w*, we propose
a unified null-field integral equation. Based on the
dual boundary integral formulation of the domain
point, we have

2TW(X) = fB T(s, X)W (s)dB(s) (14)

_ fB U(s Xt°(s)dB(s), xe D,
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2nt5(X) = fB M (s, X)W (5)dB(s) (15)
- fB L(s, X)t*()dB(s), x € D,

where s and x are the source and field points,
respectively, tS5(s) is the directional derivative of
wS(s) along the outer normal direction at s.
The U(s,X) , T(s,X) , L(s,X) and M(s,x) are
four kernel functions [12]

i HO
U (s, x) = —FHo (k) (16)
2
i ®
T(s,X) = oU (s, x) _ ikzH; (kr)yi_ni’ (17)
on 2 r
i ® &
L(s X)= oU(s x) _ ikzH, (kr)yi_ni’ (18)
on, 2 r
_°U(s,X)
M= an,on, (19)
—ik HY (kr _ HP
—'Z’T[—k S gy e,

where H®(kr) is the n-th order Hankel function
of the first kind, r=x-s|, y=s5-%, i°=-1,
n and n are the i-th components of the outer
normal vectors at sand x, respectively. Egs. (14) and
(15) are referred to the singular and hypersingular
boundary integral equations (BIE), respectively.

2.3 Null-field integral formulation in
conjunction with the degenerate kernel and
Fourier series

By collocating x outside the domain

(x € D), we obtain the null-field integral equations
as shown below:

0= f T(s, X)W(s)dB(s)
° (20)
ffBU(s, X)t*(s)dB(s), x€ D°,

0= fBM (s, X)W*(s)dB(s)

(21)
~ [, Ls )t*(9)dB(s), xe D",
where the collocation point x locates on the outside
of the domain and can be on the boundary in real
computations. By using the polar coordinate, we can
express x=(p,¢) ands=(R, ). The four kernels,

U, T, L and M can be expressed in terms of
degenerate kernels as shown below:

U' (5,0 = — 2 3 (kp)H" (KR) cos(m(0 - $)), R = p (22)
U(s x) = 2 ’

E -7l < a
U (s,%) = — D H" (kp)3_(KR) cos(m(d - §)), p >R,

ki =
T (s,%) = B D3 (kp)H ™ (kR) cos(m(0 - ¢), R > p (23)
T(s, x) = Z
. —rki & © ,
T (s 0 = —— 2 H (kp)3' (kR) cos(m(@ — 9}, p >R,
2 .
i -7k & ' W
L (s, = —— 2 3’ (kp)H " (kR) cos(m(é — ¢)), R> p (24)
L(s, x) = 2
3 —rki & )
L (s, %) = —— 2 H'" (kp) 3, (KR) cos(m(& - ), p > R,
2 .
‘ Ko o (25)
L(sx)=— Z J (kp)H ~ (kR)cos(m(€ - ¢)).R = p
M (s, X) = 2

. N IR )
L (.0 = —— 2 H'" (kp) 3| (KR) cos(m(d - §), p > R,
2 .

where the superscripts | and E denote interior
and exterior cases for the expressions of kernel. It is
noted that the degenerate kernels for T and L
expression for p =R are not given since they are

not continuous across the boundary. In order to
incorporate with the Fourier series, the four kernel
functions can be rewritten as [13]:

u' (s, %) = - e 3 (koYY (kR cos(m(@ — g R > p (26)
U(s x) = 2 o 1]
U (s %) = - D HY (kp) 3 (KR) cos(m(@ - ), p > R,
2 m=0
—rki &
T (630 = —— Y3, (oM. (R) cos(m(@ — ), R> 27)
T(s, X) = 2 me ]
E ki & ) ,
T 0 =—— 2o HY (kp)3., (kR) cos(m(@ - #)), p >R,
2 mo
K
L (s %) = —— D3l (ko) HL (kR) cos(m(@ - ), R> (28)
L(s, x) = 2 mo ’
£ —rki & @
L (s = —— e, H" (kp)J_ (R) cos(m(0 - #)), p >R,
2 mo
— i
M'(s,x) = > 3l (ko)H ! (R cos(m(@ - g, R > p
M(s, x) = 2 mo y

. ki & o )
M (s, = —— D s H." (kp) 3 (R) cos(m(6 - §)), p > R,
2 m-o

(29)
where ¢ isthe Neumann factor
1, m=0
gm = ! . (30)
2, m=12,.0

In order to fully utilize the geometry of
circular boundary, the potential w® and its normal

flux t° can be approximated by employing the
Fourier series. Therefore, we obtain

wW(s) =g, Jrf:(an cosnd+b, sinnd), se B, (31)

n=1

t°(s) = p, +Z(pn cosnd+q, sinnd), se B, (32)

n=1
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where &a,, a,, b, p,. p, and q, are the

Fourier coefficients and @ is the polar angle which
is equally discredited. Egs. (20) and (21) can be
easily calculated by employing the orthogonal
property of Fourier series. In the real computation,
only the finite M terms are used in the summation
of Egs. (31) and (32).

2.4 Adaptive observer system

Since the boundary integral equations are
frame indifferent, i.e. rule of objectivity is obeyed.
Adaptive observer system is chosen to fully employ
the property of degenerate kernels. Figure 1 shows
the boundary integration for the circular boundaries.
It is worthy noted that the origin of the observer
system can be adaptively located on the center of the
corresponding circle under integration to fully utilize
the geometry of circular boundary. The dummy
variable in the integration on the circular boundary is
just the angle (@) instead of the radial coordinate
(R). By using the adaptive system, all the boundary
integrals can be determined analytically sense of
principal value.

Figufe 1. Adaptive observer system

2.5 Vector decomposition technique for the
potential gradient in the hypersingular
formulation

Since the hypersingular equation is a key
ingredient to deal with fictitious frequency, potential
gradient on the boundary is required to calculate. For
the eccentric case, the field point and source point
may not locate on the circular boundaries with the
same center except the two points on the same
circular boundary or on the annular cases. Special
treatment for the normal and tangential derivatives
should be taken care. As shown in Figure 2 where
the origins of observer system are different, the true

normal direction & with respect to the collocation
point x on the B, boundary should be
superimposed by using the radial direction & and
angular directiong, .

N

Figure 2. Vector decomposition for potential
gradients in the hypersingular equation.
We call this treatment “vector decomposition
technique”. According to the concept, Egs. (24) and
(25) can be modified as

1 -7k & W
L (5.0 = = 2 3 (kp)H " () cos(m(0 - 9) cos(s, )
A —

m 1) . .
-3, (kp)H " (kR) sin(m(6 - ¢)) sin(¢, - ¢;), R>p
kp

L(s, x) = y
e AR o
L(s,x)=— Z H =~ (kp)Jd_ (KR)cos(m(0 — ¢)) cos(4, — ¢J )
2
m [£3)
-3, (kp)H.” (kR) sin(m(¢ - g)) sin(g, ~¢,). p >R
kp
(33)
I 7”ki X ' "1
M (s,%) = —— 223/ (kp)H,"” (kR) cos(m(@ - ¢)) cos(g, 4,
2 e
m (1)
-3 (kp)H = (kR)sin(m(6 - 4))sin(4, —4,). R = p
M (s, x) = K ’

3 ki & e '
M (5,%) = —— 22 H" (kp)3| (KR) cos(m(6 - ) cos(4, —4,)
2 o

m 1) . -
-3 (kp)H " (R)sin(m(6 - ) sin(g, — ¢}, p >R
kp

(34)

2.6 Linear Algebraic Equation

In order to calculate the 2M+1 unknown
Fourier coefficients, 2M+1 boundary points on each
circular boundary are needed to be collocated. By
moving the null-field point on the kth circular
boundary for Egs. (20) And (21), we have

N
0= [ T(sx)W(9B(9
J:lNc (35)
> [ U KBS, % € D,
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N
0=3" /. M(sX)W(9dB(9)
T (36)
DI ICEARCLCRAS

where N, is the number of circles. It is noted that

the path is anticlockwise for the outer circle.
Otherwise, it is clockwise. For the B, integral of

the circular boundary, the kernels of U(s,X) ,
T(s,x) L(s,x) and M(s,x) are respectively
expressed in terms of degenerate kernels of Egs. (22),

(23), (33) and (34) with respect to the observer
origin at the center of B, . The boundary densities of

w®(s) and t°(s) are substituted by using the

Fourier series of Egs. (31) and (32), respectively. In
the B, integration, we set the origin of the observer

system to collocate at the center ¢, of B, to fully

utilize the degenerate kernel and Fourier series. By
moving the null-field point to the boundary B,

from outside of the domain, a linear algebraic
system is obtained

Ul{t}=[T}{w}, (37)

[L{t} =[M]{we}, (38)

where [U], [T], [L] and [M] are the influence
matrices with a dimension of N.x(2M +1) by
Nex(2M+1) and {t'} and {w*} denote the
vectors for t°(s) and w°(s) of the Fourier
coefficients with a dimension of N, x(2M +1) by
1. where, [U], [T], [L], [M], {w’} and {t°}
are defined as follows:

Uoo U01 UON (39)
[U]:[Uflﬂ]: U:10 U:11 U:lN !

UNO UNO UNN

Too T01 o TON ] (40)

To Ty - T,
[T]:[Taﬂ]: 10 ::ll 1N 1

TNO TNO TNN_

Lo Lo - LON_ (41)
L=lL )= = R,

LNO LNO LNN

Moo M01 MON (42)
M M .. M
[M]:[MaﬂJ: 310 E11 E1N ,

MNO MNO MNN
w t;
w t;

wi=lwl fe}={e, 3
Wy t

where the vectors {wks} and {tj} are in the form

of {a a b - aj bhk,l}T and
(o p o
“a” (2=012.,N) in the [U,, ] denotes the

index of the ath circle where the collocation
point is located and the second subscript “ g~

(f4=0,1,2..,N) denotes the index of the pth

P cfy ] ; the first subscript

circle where the boundary data {vvks} or {ti} are

specified. The integral N is the number of circular
holes in the domain and M indicates the highest
harmonic of truncated terms in Fourier series. The
coefficient matrix of the linear algebraic system is
partitioned into blocks, and each diagonal block
(U, p no sum) corresponds to the influence

matrices due to the same circle of collocation and
Fourier expansion.

3. THE TECHNIQUE FOR SOLVING
SCATTERING PROBLEMS IN THE HALF
PLANE PROBLEMS

3.1 Decomposition of scattering problem into
incident wave field and radiation problem

For the scattering problem subject to the
incident wave, this problem can be decomposed into
two parts. For matching the boundary condition, the
radiation boundary condition is obtained as the
minus quantity of incident wave function, e.g.
t°=—t' for the hard scatter or w*=-w for the
soft scatter, respectively where the subscript s and i
mean radiation and incidence, respectively. The
radiation part can be solved by employing our
method.

3.2 Image concept for solving the half-plane
problem

For the half-plane problem with a circular
cavity as shown in Figure 3 (a), we extend it to a full
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plane with the scatter by using image concept such
that our formulation can be applied. By introducing
the symmetry condition (t=0) on the ground
surface, we merge the half-plane domain into the
full-plane problem in conjunction with the reflective
wave as shown in Figure 3 (b). Figure 3 (c) shows
the transformed problem in the full plane. To solve
the problem, the decomposition technique is
employed by introducing two plane waves, one is
incident and the other is reflective, instead of only
one incident wave. After taking the free body of
Figure 3 (c) through the ground surface, we obtain
the solution which satisfies the Helmholtz equation
of Eg. (1) and all the boundary condition.

(c) Radiation problem w®

Figure 3 The image concept to transform
half-plane problem to full plane problem

4. ILLUSTRATIVE EXAMPLES AND
DISCUSSIONS

In order to check the validity of the present
formulation, three cases are tested. All the numerical
results are given below by using ten terms of Fourier
series (M =10).

Casel: Two circular cavitieslie on the y-axis

Figure 4 shows the geometry of the two circles
whose radii are a =1 anda, =2. For the static
case, the displacement field of the anti-plane
deformation is defined as:

we="Y. (44)
n
In the dynamic case with traction free condition on
the circular boundaries, we assume an incident
SH-wave as:
W= T_yeikx . (45)
o
When Kk approaches zero, the problem is reduced
to a static case. Figure 5 (a) and 5 (b) show the graph
of the stress o,, around the smaller circle. Three

different distances (d =2,0.1,0.01) between the
two circles are considered. Our numerical results are
well compared with the data of Honein’s data [14]
when k approaches zero (k =0.001).

@ = @

2, Al e | k=0.01
= -

iy m§ — = — =01

a5 (e ke o s |
r
1
!
\

® F 1 4 1 im ' ‘ T
Figure 5 (b) o,
around the smaller hole
(k=0.001)
Case2: Acircular cylinder in an infinite space
Consider a circular cylinder which is bounded by
r=a as shown in Figure 6. A shear wave is

Figure 5 (a) Honein et
al. [14] data
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defined by

u, = 0,u, = 0,u, =W, (46)
Figure 7 (a) and 7 (b) show the graph of the o,
around the circular boundary. Traction free of the
three lines are different cases with respect
toka=0.1, 1.0 and2.0, respectively. It is worthy
noted that our data agree well with the analytical

solution of Pao and Mow’s data [15] as shown
below:

(47)

092 _ _O_Oe—i(wl—zrlz)
© -n-1 J' k
Z ol {]n (ka) —ﬁ HO (ka)} nsin(ng)
n=0 ka Hn (ka)
////’ y \\\\\
Voo ‘ix ,"
| —> 3 //
b —> e
“Figure 6
. '/' % ‘::.\I.
/

270

Figure 7 (b) the present
method

Figure 7 (a) DSCF

(analytical solution)
Case3: A half-plane problemwith a circular cavity
Consider the scattering of SH-wave around a
circular cavity in half plane as shown in Figure 8.
The boundary conditions are traction free on the
circular boundary and ground surface. Figures 9 and
10 are the Lin and Liu’s data [16] which show the

graph of the o,, around the circular cavity. In the

z

case of y=n/4,h/R=15, the maximum of o,,
is 3.75 on§ =90°, while the maximum of o,, is

216 on #=0" and 180° for the case
of v =n/4,h/ R=12. Before solving the half-plane

problem, an image method is employed to extend the
domain to full domain with two holes by using
symmetry condition as shown in Figure 3. Therefore,
the developed program of our formulation can be
easily applied to solve the problem. Our numerical
results are compared with the data of Lin and Liu’s
data [16], good agreement is obtained.

eik(xsin ¥+YyCosy)

Figure 8 A cavity in the half plane subject to the
incident SH wave

- R
- o 4 :
=72 7  pad
hiR=L 3
,.

X f -\. 3
nq—‘— o] e
TEs T
\ i
o ke /

0
Figure 9 (a) Lin and
Liu’s result [16]
(y=0,h/R=15kR=0.1)
-

310

Figure 10 (c) Lin and
Liu’s result [16]
(y=m/4,h/R=15kR=0.)

Figuremll (e)
(v=0,h/R=15kR=0.1)

Figurem12 (9)
(y=n/4,h/R=15kR=0.1)

=w/2
R=

Figure 9 (b) Lin and
Liu’s result [16]
(y=0h/R=12,kR=0.1)

Figure 10 (d) Lin and
Liu’s result [16]
(y=n/4,h/R=12,kR = 0.1)

Figurémll ()]
(y=0,h/R=12,kR=0.1)

Figure 12 (h)
(y=7/4,h/R=12,kR = 0.1)

5. CONCLUSIONS

For the radiation and scattering problems with

circular boundaries, we have proposed a BIEM
formulation by using degenerate kernels, null-field
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integral equation and Fourier series in companion
with adaptive observer systems and vector
decomposition. This method is a semi-analytical
approach for problems with circular boundaries
since only truncation error in the Fourier series is
involved. Also, the boundary dynamic stress and
stress concentration factor are determined. The
method shows great generality and versatility for the
problems with multiple circular holes of arbitrary
radii and positions. Half plane problem is a special
case of the full plane by using the image concept.
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