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ABSTRACT 

In this paper, a semi-analytical approach is 
developed for the problem of dynamic stress 
concentration around circular cavities due to shear 
waves. To fully capture the circular geometries, 
separate expressions of fundamental solutions in the 
polar coordinate and Fourier series for boundary 
densities are adopted. The main gain of using 
degenerate kernels is free of calculating the principal 
values. An adaptive observer system is addressed to 
fully employ the property of degenerate kernels in 
the polar coordinate. After moving the null-field 
point to the boundary and matching the boundary 
conditions, a linear algebraic system is obtained and 
the unknown coefficients in the algebraic system can 
be easily determined. The present method is seen as 
a “semi-analytical” solution since error only 
attributes to the truncation of Fourier series. The 
proposed formulation is generalized to a half-plane 
problem with a circular cavity. 

Keywords: SH-wave, dynamic stress concentration, 
half-plane problem, circular cavity, null-field 
integral equation, degenerate kernel, Fourier series, 
Helmholtz equation. 

1. INTRODUCTION 

The concentration of stress around holes plays 
an important role in promoting the design criteria for 
higher factors of safety. Not only static but also 
dynamic stress concentration factors have been 
investigated in the literature. For a simple case, an 
analytical solution may be available. However, 
solutions for problems with several holes may resort 
to the numerical techniques. To develop a 
semi-analytical approach is not trivial. This is the 
main goal of this paper. 

For the problems with circular boundaries, the 
Fourier series expansion method is specially suitable 
to obtain the analytical solution. For Laplace 
problems, Chou [1] used the complex variable 
boundary element method (CVBEM) to solve the 

stress field around holes in antiplane shear. Thakur  
et al. [2] used a second-order accurate 
block-structured finite-volume method with periodic 
boundary conditions along the cylinder axis to solve 
the wake flow of single and multiple yawed 
cylinders. Wang [3] solved the unsteady problem of 
two parallel circular cylinders, moving in an inviscid 
fluid by exploring the technique of conformal 
mapping. For Helmholtz problems, Elsherbeni and 
Hamid [4] used the method of moments to solve the 
scattering problem by parallel conducting circular 
cylinders. They also divided the total scattered field 
into two components, namely a noninteraction term 
and the term due to all interactions between the 
cylinders. Chen et al. [5] employed the dual BEM to 
solve the exterior acoustic problems with circular 
boundaries. Grote and Kirsch [6] utilized Dirichlet to 
Neumann (DtN) method to solve multiple scattering 
problems of multiple cylinders. The DtN solution 
was obtained by combining contributions from 
multiple outgoing wave fields. Kawase [7] used the 
BEM in the domain of wave number, in which the 
discrete wave number Green’s function was adopted 
to solve the scattering problem of a semi-cylindrical 
canyon subject to the plane waves. It compared well 
with the analytical solution which was derived by 
Trifunac [8]. For the biharmonic problems, Ling [9] 
used bipolar coordinates to solve a plate containing 
two circular holes. Howland and Knight [10] used 
the rectangular coordinate system to solve a plate 
containing groups of circular holes. According to the 
literature review, it is observed that exact solutions 
for boundary value problems are only limited for 
simple cases, e.g. a cylinder radiator and scatter, 
half-plane with a semi-circular canyon, a hole under 
half-plane and two holes in infinite plate. Therefore, 
proposing a systematic approach for solving BVP 
with circular boundaries of various numbers, 
positions and radii is our goal in this paper. 
    In this paper, the boundary integral equation 
method (BIEM) is utilized to solve the exterior 
radiation and scattering problems with circular 
boundaries. To fully utilize the geometry of circular 
boundary, not only Fourier series expansion for 
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boundary densities but also the degenerate kernel for 
fundamental solutions is incorporated into the 
null-field integral equation. Senses of principal 
values are not required to determent all the improper 
integrals, but using only series summation. In 
integrating each circular boundary for the null-field 
equation, the adaptive observer system of polar 
coordinate is considered to fully employ the property 
of degenerate kernel. For the hypersingular equation, 
vector decomposition for the radial and tangential 
gradients is carefully considered, especially in the 
eccentric case. Scattering problem subject to the 
incident wave is decomposed into two parts, incident 
plane wave field and radiation field. The radiation 
boundary condition is the minus quantity of incident 
wave function for matching the boundary condition 
of total wave. Three cases are used to check the 
validity of our formulation. 

2. PROBLEM STATEMENT AND INTERGAL 
FORMULATION 

2.1 Problem statement 

  The governing equation of the acoustic 
problem is the Helmholtz equation 

2( ) ( ) 0,k x x Dw∇ + = ∈ , (1)

where 2∇ , k  and D  are the Laplacian operator, 
the wave number, and the domain of interest, 
respectively. Consider the radiation and scattering 
problems containing N  randomly distributed 
circular holes centered at the position vector 

jc ( j =1, 2, ..., N ). 
The displacement field of the SH-wave is 

defined as: 
0u v= = , ( , )w w x y= , (2)

where w  is the only nonvanishing component of 
displacement with respect to the Cartesian 
coordinate which is a function of x  and y . For a 
linear elastic body, the stress components are [11] 

13 31
w
x

σ σ µ ∂= =
∂

, (3) 

23 32
w
y

σ σ µ ∂= =
∂

, (4) 

where µ  is the shear modulus. The equilibrium 
equation can be simplified to 

31 32 0
x y
σ σ∂ ∂
+ =

∂ ∂
. (5) 

By substituting Eqs. (3) and (4) into (5), we have Eq. 
(1).What is taken into consideration is an infinite 
medium subject to N  traction-free circular holes 

bounded by the kB  contour and 1, 2, ,k N= . 
The medium is under SH wave equivalently under 
the displacement 

( sin cos )
0

i ik x yw W e γ γ+= , (6)
where 0W  is the constant amplitude. The total 
stress field in the medium is decomposed into 

31 31 31
s iσ σ σ= + , (7)

32 32 32
s iσ σ σ= + , (8)

and the total displacement can be given as 
s iw w w= + , (9)

where the superscript “ s ” denotes the part needed to 
be solved after decomposition. 

Therefore, the scattering problem is reduced to 
find the displacement sw  which satisfies the 
Helmholtz equation and the boundary conditions that 
will be elaborated on later. The problem can be 
converted into the solution of the Helmhotlz 
problem for sw : 

( )2 (x) 0sk w∇+ = , x D∈ . (10)

The shear stress components, rzσ  and zθσ , can be 
superimposed by using 31σ  and 32σ  

rz
wσ µ ∂=

∂n
, (11)

z
w

θσ µ ∂=
∂t

, (12)

where n  and t  are the normal and tangent 
directions, respectively. Before determining rzσ  
and zθσ  on the interior point, we should calculate 

31
sσ  and 32

sσ  by implementing the hypersingular 
equation in the real computation. For shear stress 

zθσ  on the boundary, the same procedure of vector 
decomposition is required, and the nondimensional 
stress *

zθσ is defined as: 

*

0

z
z

θ
θ

σσ
σ

= , (13)

where 0 0kWσ µ=  is the maximum stress of 
incident wave. 

2.2 Dual boundary integral formulation 

    In order to solve the solution of sw , we propose 
a unified null-field integral equation. Based on the 
dual boundary integral formulation of the domain 
point, we have 

2 ( ) ( , ) ( ) ( )

            ( , ) ( ) ( ), ,

s s

B

s

B

w x T s x w s dB s

U s x t s dB s x D

π =

− ∈

∫
∫

 
(14)
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2 ( ) ( , ) ( ) ( )

           ( , ) ( ) ( ), ,

s s

B

s

B

t x M s x w s dB s

L s x t s dB s x D

π =

− ∈

∫
∫

 
(15)

where s  and x  are the source and field points, 
respectively, ( )st s  is the directional derivative of 

( )sw s  along the outer normal direction at s. 
The ( , )U s x , ( , )T s x , ( , )L s x  and ( , )M s x  are 
four kernel functions [12] 

(1)
0 ( )( , )
2

i H krU s x π−
= , (16)

(1)
1 ( )( , )( , )

2
i i

s

y nik H krU s xT s x
n r

π−∂
= =

∂
, (17)

(1)
1 ( )( , )( , )
2

i i

x

y nik H krU s xL s x
n r

π∂
= =

∂
, (18)

2

(1) (1)
2 1

2

( , )( , )

( )
,

2

x s

i j i j i i

U s xM s x
n n

H kr Hik k y y n n n n
rr

π

∂
=

∂ ∂

⎡ ⎤−
= − +⎢ ⎥

⎣ ⎦

 (19)

where (1) ( )nH kr  is the n-th order Hankel function 
of the first kind, | |r x s= − , i i iy s x= − , 2 1i = − , 

in  and in  are the i-th components of the outer 
normal vectors at s and x, respectively. Eqs. (14) and 
(15) are referred to the singular and hypersingular 
boundary integral equations (BIE), respectively. 

2.3 Null-field integral formulation in 
conjunction with the degenerate kernel and 
Fourier series 

    By collocating x  outside the domain 
( cx D∈ ), we obtain the null-field integral equations 
as shown below: 

0 ( , ) ( ) ( )

       ( , ) ( ) ( ), ,

s

B

s c

B

T s x w s dB s

U s x t s dB s x D

=

− ∈

∫
∫

 (20)

0 ( , ) ( ) ( )

      ( , ) ( ) ( ), ,

s

B

s c

B

M s x w s dB s

L s x t s dB s x D

=

− ∈

∫
∫

 (21)

where the collocation point x locates on the outside 
of the domain and can be on the boundary in real 
computations. By using the polar coordinate, we can 
express ( , )x ρ φ=  and ( , )s R θ= . The four kernels, 
U, T, L and M can be expressed in terms of 
degenerate kernels as shown below: 

(1 )

(1)

( , ) ( ) ( ) cos( ( )),   
2

( , )

( , ) ( ) ( ) cos( ( )),  > ,
2

I

m m

m

E

m m

m

i
U s x J k H kR m R

U s x
i

U s x H k J kR m R

π
ρ θ φ ρ

π
ρ θ φ ρ

∞

= −∞

∞

= −∞

−
= − ≥

=
−

= −

⎧
⎪
⎨
⎪
⎩

∑

∑
, 

(22)
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where the superscripts I  and E  denote interior 
and exterior cases for the expressions of kernel. It is 
noted that the degenerate kernels for T and L 
expression for Rρ =  are not given since they are 
not continuous across the boundary. In order to 
incorporate with the Fourier series, the four kernel 
functions can be rewritten as [13]: 

(1)

0

(1)
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2
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=
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(29)

where mε  is the Neumann factor 

1, 0         
.

2, 1,2,...m

m
m

ε
=⎧

= ⎨ = ∞⎩
 (30)

In order to fully utilize the geometry of 
circular boundary, the potential sw  and its normal 
flux st  can be approximated by employing the 
Fourier series. Therefore, we obtain 

0
1

( ) ( cos sin ),s
n n

n

w s a a n b n s Bθ θ
∞

=

= + + ∈∑ , (31)

0
1

( ) ( cos sin ),s
n n

n

t s p p n q n s Bθ θ
∞

=

= + + ∈∑ , (32)
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where 0a , na , nb , 0p , np  and nq  are the 
Fourier coefficients and θ  is the polar angle which 
is equally discredited. Eqs. (20) and (21) can be 
easily calculated by employing the orthogonal 
property of Fourier series. In the real computation, 
only the finite M  terms are used in the summation 
of Eqs. (31) and (32). 

2.4 Adaptive observer system  

  Since the boundary integral equations are 
frame indifferent, i.e. rule of objectivity is obeyed. 
Adaptive observer system is chosen to fully employ 
the property of degenerate kernels. Figure 1 shows 
the boundary integration for the circular boundaries. 
It is worthy noted that the origin of the observer 
system can be adaptively located on the center of the 
corresponding circle under integration to fully utilize 
the geometry of circular boundary. The dummy 
variable in the integration on the circular boundary is 
just the angle (θ ) instead of the radial coordinate 
(R). By using the adaptive system, all the boundary 
integrals can be determined analytically sense of 
principal value. 

 
Figure 1. Adaptive observer system 

 

2.5 Vector decomposition technique for the 
potential gradient in the hypersingular 
formulation 

Since the hypersingular equation is a key 
ingredient to deal with fictitious frequency, potential 
gradient on the boundary is required to calculate. For 
the eccentric case, the field point and source point 
may not locate on the circular boundaries with the 
same center except the two points on the same 
circular boundary or on the annular cases. Special 
treatment for the normal and tangential derivatives 
should be taken care. As shown in Figure 2 where 
the origins of observer system are different, the true 
normal direction 1e  with respect to the collocation 
point x on the jB  boundary should be 
superimposed by using the radial direction 3e  and 
angular direction 4e . 

Figure 2. Vector decomposition for potential 
gradients in the hypersingular equation. 

We call this treatment “vector decomposition 
technique”. According to the concept, Eqs. (24) and 
(25) can be modified as 
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(34)

2.6 Linear Algebraic Equation 

  In order to calculate the 2M+1 unknown 
Fourier coefficients, 2M+1 boundary points on each 
circular boundary are needed to be collocated. By 
moving the null-field point on the kth  circular 
boundary for Eqs. (20) And (21), we have 

1

1

0 ( , ) ( ) ( )

     ( , ) ( ) ( ), ,

c

j

c

j

N
s

kBj

N
s c

k kBj

T s x w s dB s

U s x t s dB s x D

=

=

=

− ∈

∑∫

∑∫
 (35)

cφ  

1̂e  

cρ

 
jρ

c jφ φ−  
2 c j

π
φ φ− +  

jφ

3ê
2ê  4ê  

( , )x ρ φ=

1ρ  
2ρ  

2φ  

( , )x ρ φ=  

1o  

2o  

1 

2 

( , )R θ  

1B  

2B

1φ  
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1

1

0 ( , ) ( ) ( )

      ( , ) ( ) ( ), ,
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j

c

j

N
s

kBj

N
s c

k kBj

M s x w s dB s

L s x t s dB s x D

=

=

=

− ∈

∑∫

∑∫
 (36)

where cN  is the number of circles. It is noted that 
the path is anticlockwise for the outer circle. 
Otherwise, it is clockwise. For the jB  integral of 
the circular boundary, the kernels of ( , )U s x , 

( , )T s x  ( , )L s x  and ( , )M s x are respectively 
expressed in terms of degenerate kernels of Eqs. (22), 
(23), (33) and (34) with respect to the observer 
origin at the center of jB . The boundary densities of 

( )sw s  and ( )st s  are substituted by using the 
Fourier series of Eqs. (31) and (32), respectively. In 
the jB  integration, we set the origin of the observer 
system to collocate at the center jc  of jB  to fully 
utilize the degenerate kernel and Fourier series. By 
moving the null-field point to the boundary kB  
from outside of the domain, a linear algebraic 
system is obtained 

[ ]{ } [ ]{ }=s sU t T w , (37)

[ ]{ } [ ]{ }=s sL t M w , (38)

where [ ]U , [ ]T , [ ]L  and [ ]M  are the influence 
matrices with a dimension of (2 1)c MN × +  by 

(2 1)c MN × +  and { }st  and { }sw  denote the 

vectors for ( )st s  and ( )sw s of the Fourier 
coefficients with a dimension of (2 1)c MN × +  by 

1. where, [ ]U , [ ]T , [ ]L , [ ]M , { }sw  and { }st  
are defined as follows: 
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(43)

where the vectors { }s
kw  and { }skt  are in the form 

of { }0 1 1

Tk k k k k
M Ma a b a b and 

{ }0 1 1

Tk k k k k
M Mp p q p q ; the first subscript 

“α ” ( 0,1,2..., Nα = ) in the αβ⎡ ⎤⎣ ⎦U  denotes the 

index of the thα  circle  where the collocation 
point is located and the second subscript “ β ” 
( 0,1,2..., Nβ = ) denotes the index of the thβ  

circle where the boundary data { }s
kw  or { }skt  are 

specified. The integral N is the number of circular 
holes in the domain and M indicates the highest 
harmonic of truncated terms in Fourier series. The 
coefficient matrix of the linear algebraic system is 
partitioned into blocks, and each diagonal block 
( ,   ppU p no sum) corresponds to the influence 
matrices due to the same circle of collocation and 
Fourier expansion. 

3. THE TECHNIQUE FOR SOLVING 
SCATTERING PROBLEMS IN THE HALF 

PLANE PROBLEMS 

3.1 Decomposition of scattering problem into 
incident wave field and radiation problem 

  For the scattering problem subject to the 
incident wave, this problem can be decomposed into 
two parts. For matching the boundary condition, the 
radiation boundary condition is obtained as the 
minus quantity of incident wave function, e.g. 

s it t= −  for the hard scatter or s iw w= −  for the 
soft scatter, respectively where the subscript s and i 
mean radiation and incidence, respectively. The 
radiation part can be solved by employing our 
method. 

3.2 Image concept for solving the half-plane 
problem 

For the half-plane problem with a circular 
cavity as shown in Figure 3 (a), we extend it to a full 
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plane with the scatter by using image concept such 
that our formulation can be applied. By introducing 
the symmetry condition ( 0t = ) on the ground 
surface, we merge the half-plane domain into the 
full-plane problem in conjunction with the reflective 
wave as shown in Figure 3 (b). Figure 3 (c) shows 
the transformed problem in the full plane. To solve 
the problem, the decomposition technique is 
employed by introducing two plane waves, one is 
incident and the other is reflective, instead of only 
one incident wave. After taking the free body of 
Figure 3 (c) through the ground surface, we obtain 
the solution which satisfies the Helmholtz equation 
of Eq. (1) and all the boundary condition. 

 

 
(a) Real problem 

 
(b) Extended problem iw  

 
(c) Radiation problem sw  

Figure 3 The image concept to transform 
half-plane problem to full plane problem 

4. ILLUSTRATIVE EXAMPLES AND 
DISCUSSIONS 

In order to check the validity of the present 
formulation, three cases are tested. All the numerical 
results are given below by using ten terms of Fourier 
series ( 10M = ). 
Case1: Two circular cavities lie on the y-axis 
Figure 4 shows the geometry of the two circles 
whose radii are 1 1a =  and 2 2a = . For the static 
case, the displacement field of the anti-plane 
deformation is defined as: 

yw τ
µ

∞ = . (44)

In the dynamic case with traction free condition on 
the circular boundaries, we assume an incident 
SH-wave as: 

i ikxyw eτ
µ

= . 
(45)

When k  approaches zero, the problem is reduced 
to a static case. Figure 5 (a) and 5 (b) show the graph 
of the stress zθσ  around the smaller circle. Three 
different distances ( 2, 0.1, 0.01d = ) between the 
two circles are considered. Our numerical results are 
well compared with the data of Honein’s data [14] 
when k  approaches zero ( 0.001k = ). 

 
Figure 4 
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Figure 5 (a) Honein et 
al. [14] data  

Figure 5 (b) zθσ  
around the smaller hole 

( 0.001k = ) 
Case2: A circular cylinder in an infinite space 
Consider a circular cylinder which is bounded by 
r a=  as shown in Figure 6. A shear wave is 

s it t= −  

s it t= −  

x  

y

2h  
R  

( sin cos )
0

ik x yW e γ γ+  

( sin cos )
0

ik x yW e γ γ−  
γ  

γ  

it t=  it t=  

it t=  

2h  
R  

γ  ( sin cos )
0

ik x yW e γ γ+  

x  

y

R  
h  

0t =  

0t =  
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defined by  

00, 0, ikx
x y zu u u W e= = = , (46)

Figure 7 (a) and 7 (b) show the graph of the  zθσ  
around the circular boundary. Traction free of the 
three lines are different cases with respect 
to 0.1ka= , 1.0  and 2.0 , respectively. It is worthy 
noted that our data agree well with the analytical 
solution of Pao and Mow’s data [15] as shown 
below: 

( )

( ) ( )
( )

( ) ( ) ( )

/ 2
0

'1
1

'
0

sin

i t
z

n
nn

n n
nn

e

J kai
J ka H ka n n

ka H ka

ω π
θσ σ

ε
θ

− −

∞ −

=

= −

−
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑
 

(47)

 
Figure 6 

 

0

30

60

90

120

150

180

210

240

270

300

330

0 0.5 1 1.5 2 2.5

ka=0.1

ka=1.0

ka=2.0

Figure 7 (a) DSCF 
(analytical solution) 

Figure 7 (b) the present 
method 

Case3: A half-plane problem with a circular cavity 
Consider the scattering of SH-wave around a 
circular cavity in half plane as shown in Figure 8. 
The boundary conditions are traction free on the 
circular boundary and ground surface. Figures 9 and 
10 are the Lin and Liu’s data [16] which show the 
graph of the  *

zθσ  around the circular cavity. In the 
case of / 4, / 1.5h Rγ π= = , the maximum of *

zθσ  

is 3.75 on 90θ = , while the maximum of *
zθσ  is 

2.16 on 0θ =  and 180  for the case 
of / 4, / 12h Rγ π= = . Before solving the half-plane 
problem, an image method is employed to extend the 
domain to full domain with two holes by using 
symmetry condition as shown in Figure 3. Therefore, 
the developed program of our formulation can be 
easily applied to solve the problem. Our numerical 
results are compared with the data of Lin and Liu’s 
data [16], good agreement is obtained. 

 
Figure 8  A cavity in the half plane subject to the 

incident SH wave 

  
Figure 9 (a) Lin and 

Liu’s result [16] 
( 0, / 1.5, 0.1)h R kRγ = = =

Figure 9 (b) Lin and 
Liu’s result [16] 

( 0, / 12, 0.1)h R kRγ = = =

  
Figure 10 (c) Lin and 

Liu’s result [16] 
( / 4, / 1.5, 0.1)h R kRγ π= = =

Figure 10 (d) Lin and 
Liu’s result [16] 

( / 4, / 12, 0.1)h R kRγ π= = =
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Figure 11 (e) 

( 0, / 1.5, 0.1)h R kRγ = = =
Figure 11 (f) 

( 0, / 12, 0.1)h R kRγ = = =
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Figure 12 (g) 

( / 4, / 1.5, 0.1)h R kRγ π= = =

Figure 12 (h) 
( / 4, / 12, 0.1)h R kRγ π= = =

5. CONCLUSIONS 

For the radiation and scattering problems with 
circular boundaries, we have proposed a BIEM 
formulation by using degenerate kernels, null-field 

0
ikxW e  

a
x  

y  

γ ( sin cos )
0

ik x yW e γ γ+  

x  
y  

R
h

0t =  

0t =  
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integral equation and Fourier series in companion 
with adaptive observer systems and vector 
decomposition. This method is a semi-analytical 
approach for problems with circular boundaries 
since only truncation error in the Fourier series is 
involved. Also, the boundary dynamic stress and 
stress concentration factor are determined. The 
method shows great generality and versatility for the 
problems with multiple circular holes of arbitrary 
radii and positions. Half plane problem is a special 
case of the full plane by using the image concept. 
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半解析法求解含圓型孔洞赫姆茲問

題之動應力集中因子 

陳柏源、陳佳聰、陳正宗 

國立台灣海洋大學河海工程學系 

摘要 

本文發展一新方法來求解由 SH 波引

致於圓形孔洞周圍之動應力集中因子。為

了充分利用圓形幾何外形，將基本解以分

離核形式及邊界密度函數以傅立葉級數

展開。使用退化核最主要可免去主值的計

算。為了於極座標系統下充分使用退化核

的特性，使用自適性參考座標系統。將觀

察點移動至邊界並滿足邊界條件後，可獲

得一個線性代數系統，且未知之傅立葉係

數可輕易的被求得。誤差僅來自於所取之

傅立葉級數項數的多寡。本法可廣泛應用

於含圓形孔洞之全平面或半平面問題之

分析。 

關鍵字:剪力波、動應力集中、半平面問

題、圓孔洞、零場積分方程式，退化核、

傅立業級數、赫姆茲方程 

 


