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True and spurious eigensolutoins for membrane and plate
problems by using method of fundamental solutions

Jeng-Tzong Chen(1) andYing-Te Lee(2)

Abstract: In this paper, the method of fundamental solutions is utilized to solve free vi-
bration of membrane and plate problems. Single and double-layer potential approaches
are both considered for the membrane problem and 6 (C4

2) options by adopting two po-
tentials from the single, double, triple and quadruple potentials are chosen for the plate
problem. Spurious eigenvalues appear in the method of fundamental solution for the
multiply-connected domain. The occurring mechanism of the spurious eigenvalues for
membrane and plate problems is studied analytically by an annular case. The degenerate
kernels and circulants are utilized to derive the true and spurious eigenequations analyti-
cally in the discrete model. True eigenequation depends on the boundary condition while
spurious eigenequation relies on the formulation. The remedy, Burton & Miller method,
is employed to suppress the occurrence of the spurious eigenvalues. Two examples are
demonstrated to check the validity of the present formulations.

Keywords: method of fundamental solutions, eigenproblem, degenerate kernel, circulant,
Burton & Miller method

1 Introduction

It is well known that the method of fundamental solutions (MFS) can deal with en-
gineering problems when a fundamental solution is known. This method was attributed
to Kupradze in 1964 [1]. The method of fundamental solutions can be applied to poten-
tial [2], Helmholtz [3], diffusion [4], biharmonic [5], Stokes [6] and elasticity problems
[1]. The method of fundamental solutions can be seen as one kind of meshless method.
The basic idea is to approximate the solution by a linear superposition of fundamental
solution with sources located outside the domain of the problem. Moreover, it has some
advantages over boundary element method, e.g., no singularity, no boundary integrals
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and mesh-free model. However, only a limited number of MFS papers have been pub-
lished for problems of multiply-connected domain. Spurious eigenvalue has not been
noticed in the MFS [7]. In this paper, the true and spurious eigenequations for membrane
and plate eigenproblems of multiply-connected domains will be analytically and numer-
ically studied by using the method of fundamental solutions. In the conventional MFS,
only the single-layer potential approach is utilized. Based on the potential theory, two
approaches (single and double-layer potential methods) are adopted for membrane prob-
lems. For plate problems, four potentials (single, double, triple and quadruple potentials)
can be chosen and 6 (C4

2) options can be considered. The spurious eigenvalue appears
in the membrane and plate problems. The occurring mechanism of the true and spurious
eigenequations will be studied analytically by using mathematical tools such as degener-
ate kernel, circulant and singular value decomposition (SVD). We will utilize the Burton
& Miller method to suppress the occurrence of the spurious eigenvalues for membrane
and plate problems. Two examples will be demonstrated to see the validity of the present
approaches.

2 Analysis of membrane and plate eigenproblems using
the method of fundamental solutions

The governing equations for membrane and plate eigenproblems are shown as follows:

Lu=
{

(∇2 +k2)u(x) = 0, x∈ Ω for the membrane problem,
(∇4−λ4)u(x) = 0, x∈ Ω for the plate problem,

(1)

where∇2 is the Laplacian operator,∇4 is the biharmonic operator,Ω is the domain,k
is the wave number which is the angular frequency over the speed of sound,λ is the
frequency parameter andu(x) is the field potential atx. Here, we consider the fundamental
solutionU(s,x) as

U(s,x) =
{

iJ0(kr)−Y0(kr) for the membrane problem,
1

8λ2{[Y0(λr)− iJ0(λr)]+ 2
π [K0(λr)− iI0(λr)]} for the plate problem,

(2)

wherer ≡ |s− x| is the distance between the source and collocation points,i2 = −1, Jn

denotes the first-kind Bessel function of thenth order,Yn denotes the second-kind Bessel
function of thenth order,In denotes the first-kind modified Bessel function of thenth
order andKn denotes the second-kind modified Bessel function of thenth order.
For the purpose of deriving the exact eigensolution, an annular domain is considered.
The radii of inner and outer circles area andb for the real boundary, and the sources
are distributed on the inner (a′) and outer (b′) fictitious circles as shown in Figure 1. For
simplicity, the membrane problem subject to the Dirichlet-Dirichlet boundary condition
is considered by using the single-layer potential approach. We distribute 2N collocation
points on each boundary. The influence matrices can be easily determined by the two-
point function. By matching the boundary condition, we have

{0}= [U11
i j ]{φ1

j}+[U12
i j ]{φ2

j}, (3)

{0}= [U21
i j ]{φ1

j}+[U22
i j ]{φ2

j}, (4)
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where the first superscript “α” in [Uαβ
i j ] denotes the position of collocation point (1 for

B1 and 2 forB2), the second superscript “β” identifies the position of source point (1
for B′

1 and 2 forB′
2), {φ1

j} and{φ2
j} are the unknown coefficients on the inner and outer

boundaries, respectively. By assembling Eqs.(3) and (4) together, we have

[SMD1]
{

φ1
j

φ2
j

}
=

[
U11

i j U12
i j

U21
i j U22

i j

]{
φ1

j
φ2

j

}
=

{
0
0

}
, (5)

where the subscript “D1” denotes the Dirichlet-Dirichlet problem by using the single-
layer potential approach. For the existence of nontrivial solution, the determinant of the
matrix must be zero,i.e.,

det[SMD1] = 0. (6)

By plotting the determinant versus the wave number, the curve drops at the positions of
eigenvalues.
In order to check the validity of this approach, the plate problem subject to the clamped-
clamped case on the outer circleB2 (u2 = 0 andθ2 = 0) and the inner circleB1 (u1 = 0 and
θ1 = 0) is considered by using theU-Θ formulation. By matching the boundary condition,
we have{

0
0

}
=

[
U11 U12
U21 U22

]{
φ1

φ2

}
+

[
Θ11 Θ12
Θ21 Θ22

]{
ψ1

ψ2

}
, (7){

0
0

}
=

[
U11θ U12θ
U21θ U22θ

]{
φ1

φ2

}
+

[
Θ11θ Θ12θ
Θ21θ Θ22θ

]{
ψ1

ψ2

}
, (8)

where{φ1}, {ψ1}, {φ2} and{ψ2} are the generalized coefficients forB1 andB2 with a
dimension 2N×1, the matrices[Ui j ], [Θi j ], [Ui jθ] and[Θi jθ] mean the influence matrices
of U , Θ, Uθ andΘθ kernels [8] which are obtained by collocating the field and source
points onBi andB′

j with a dimension 2N×2N, respectively. Similarly, the determinant
of the matrix which is obtained by assembling Eqs.(7) and (8) versus the eigenvalue must
be zero for the existence of nontrivial solutions. By plotting the determinant versus the
frequency parameter, the curve drops at the positions of eigenvalues.

3 Mathematical tools

3.1 Degenerate kernel

The kernel function used can be typically expressed in terms of degenerate kernel as
follows:

U(s,x) =

{
U i(s,x) = ∑∞

m=0
i

λm
Cm(ks)Rm(kx), x∈ Ωi ,

Ue(s,x) = ∑∞
m=0

i
λm

Cm(kx)Rm(ks), x∈ Ωe,
(9)

whereΩi andΩe are the interior and exterior domains, respectively.
For the membrane case, Eq.(9) reduces to

U i(R,θ;ρ,φ) =
∞

∑
m=−∞

Jm(kρ)(iJm(kR)−Ym(kR))cos(m(θ−φ)), R> ρ, (10)

Ue(R,θ;ρ,φ) =
∞

∑
m=−∞

Jm(kR)(iJm(kρ)−Ym(kρ))cos(m(θ−φ)), R< ρ. (11)
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The degenerate kernel of the plate problem is

U i(R,θ;ρ,φ) =
1

8λ2

∞

∑
`=−∞

{J̀ (λρ)[Ỳ (λR)− iJ`(λR)]

+
2
π
(−1)`I`(λρ)[(−1)`K`(λR)− iI`(λR)]}cos(`(θ−φ)),R> ρ, (12)

Ue(R,θ;ρ,φ) =
1

8λ2

∞

∑
`=−∞

{J̀ (λR)[Ỳ (λρ)− iJ`(λρ)]

+
2
π
(−1)`I`(λR)[(−1)`K`(λρ)− iI`(λρ)]}cos(`(θ−φ)),R< ρ, (13)

wherex = (ρ,φ) ands= (R,θ).

3.2 Circulant

By superimposing 2N lumped strength along the fictitious boundary, we have the influence matrix,

[Ui j ] =


a0 a1 a2 · · · a2N−2 a2N−1

a2N−1 a0 a1 · · · a2N−3 a2N−2

a2N−2 a2N−1 a0 · · · a2N−4 a2N−3
...

...
...

...
...

...
a1 a2 a3 · · · a2N−1 a0

 (14)

The matrix,[Ui j ], is found to be a circulant. By introducing the following bases for the ciruclants,
I , (C2N)1, (C2N)2, · · · , and(C2N)2N−1, we can expand[U ] into

[U ] = a0I +a1(C2N)1 +a2(C2N)2 + · · ·+a2N−1(C2N)2N−1, (15)

whereI is the unit matrix and

C2N =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0


2N×2N

. (16)

Based on the circulant theory, the eigenvalues for influence matrix,[U ], is found as follows:

λ` = a0 +a1α` +a2(α`)2 + · · ·+a2N−1(α`)2N−1, ` = 0,±1,±2, · · · ,±(N−1),N, (17)

whereλ` andα` are the eigenvalues for matrices[U ] and[C2N], respectively.

4 Numerical results and discussions

Example 1: An annular membrane with the inner radius of 0.5 meter and the outer radius of 2
meter are considered, respectively. The source points are distributed ata′ = 0.4m andb′ = 2.2m.
The outer and inner fictitious boundaries are both distributed 36 nodes as shown in Figure 1,
respectively. Figures 2(a) and (b) show the determinant versus wave number by using the single-
layer potential approach and double-layer potential approach, respectively. The drop location
indicates the possible eigenvalues. As expected, the spurious eigenvalue of k=6.01 (Jm(ka′) = 0)
for the single-layer potential approach and k=4.61 (J′m(ka′) = 0) for the double-layer potential
approach appear. Figure 2(c) shows the determinant versus wave number by using the Burton &
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Miller method for the annular membrane where the spurious eigenvalues are suppressed. After
comparing the result with the analytical solution, good agreement is made.
Example 2: An annular plate with the inner radius of 0.5 meter and the outer radius of 1 meter
are considered, respectively. The source points are distributed ata′ = 0.4m meter andb′ = 1.2m
meter. Forty-six nodes are uniformly distributed on the inner and outer fictitious boundaries.
Figure 3(a) and (b) shows the determinant versus frequency parameter by using theU −Θ and
M−V formulations, respectively. The drop location indicates the possible eigenvalues. Figure
3(c) shows the determinant versus frequency parameter by using the Burton & Miller method for
the annular plate. It is found that the appearance of spurious eigenvalues is suppressed. After
comparing the result with the analytical solution, good agreement is made.

5 Conclusions

Mathematical analysis has shown that spurious eigenvalues occur by using degenerate kernels and
circulants when the method of fundamental solutions was used to solve the eigenvalue of annular
membrane and plate. The positions of spurious eigenvalues for the annular problem depend on the
location of inner fictitious boundary where the sources are distributed. The spurious eigenvalues
in the annular problem are found to be the true eigenvalues of the associated simply-connected
problem bounded by the inner sources. Finally, we have successfully employed the Burton &
Miller method to filter out the spurious eigenvalues for membrane as well as plate problems.
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