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Abstract

Consider the over-determined system Fx = b where F ∈ Rm×n, m ≥ n and rank (F) = r ≤ n,

the effective condition number is defined by Cond eff = ‖b‖
σr‖x‖ , where the singular values of F are

given as σmax = σ1 ≥ σ2 ≥ ... ≥ σr > 0 and σr+1 = ... = σn = 0. For the general perturbed system
(A+∆A)(x+∆x) = b+∆b involving both ∆A and ∆b, the new error bounds pertinent to Cond eff
are derived. Next, we apply the effective condition number to the solutions of Motz’s problem by the
collocation Trefftz methods (CTM). Motz’s problem is the benchmark of singularity problems. We

choose the general particular solutions vL =
L∑

k=0

dk( r
Rp

)k+ 1
2 cos(k + 1

2
)θ with a radius parameter Rp.
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The CTM is used to seek the coefficients Di and di by satisfying the boundary conditions only. Based
on the new effective condition number, the optimal parameter Rp = 1 is found. which is completely in
accordance with the numerical results. However, if based on the traditional condition number Cond,
the optimal choice of Rp is misleading. Under the optimal choice Rp = 1, the Cond grows exponentially
as L increases, but Cond eff is only linear. The smaller effective condition number explains well the
very accurate solutions obtained. The error analysis in [14, 15] and the stability analysis in this paper
grant the CTM to become the most efficient and competent boundary method.

Key words. Stability analysis, condition number, effective condition number, radius parameter, par-
ticular solutions, collocation Trefftz method, singularity problem, Motz’s problem.
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1 Introduction

Consider the over-determined system

Fx = b, (1)

where the matrix F ∈ Rm×n and m ≥ n with full column rank, e.g., rank(F) = n. The traditional
condition number in the 2-norm is defined by [5, 6, 28],

Cond =
σmax

σmin
, (2)

where σmax and σmin are the maximal and the minimal singular values, respectively. The Cond is often too
large, to mislead the true stability of the numerical solutions obtained. Hence, we propose the following
effective condition number for better stability analysis in [11, 12],

Cond eff =
‖b‖

σmin‖x‖ . (3)

The effective condition number was first used in Rice [20], and then studied in [3, 4]. Recently, we
develop the effective condition number in [11, 12], and apply it to the symmetric and positive definite
matrix F ∈ Rn×n from the finite difference method. In this paper, we will apply the effective condition
number for over-determined systems from the spectral and Trefftz methods. Let the rank (F) = r ≤ n.
for (1) and the perturbed system F(x + ∆x) = b + ∆b, there exists the bound in [11, 12],

‖∆x‖
‖x‖ ≤ Cond eff× ‖∆b‖

‖b‖ . (4)

Moreover, for (1) and the general perturbed system (A+∆A)(x+∆x) = b+∆b, where A(= F) ∈ Rn×n

is nonsingular, the errors from the perturbation of both matrix F and all vector b are given by ([1, 8, 6])

‖∆x‖
‖x‖ ≤ 1

1− δ
×

{
Cond× ‖∆A‖

‖A‖ + Cond× ‖∆b‖
‖b‖

}
, (5)

where δ = ‖A‖
σn

< 1. The following errors are derived in [12],

‖∆x‖
‖x‖ ≤ 1

1− δ
×

{
Cond× ‖∆A‖

‖A‖ + Cond eff× ‖∆b‖
‖b‖

}
. (6)

The above bounds are valid for full column rank only; in the next section, new error bounds with rank
deficiency will be explored. For numerical partial differential equations (PDEs), since the discretization
errors are usually much larger than the errors resulting from solution methods, Cond eff in (6) is dominate.
Hence, we may use the effective condition number for stability analysis. In this paper, we will apply
the effective condition number for the Trefftz solutions of Motz’s problem, and seek the optimal choice
of a parameter used in the particular solutions. This paper also illustrates that the Cond eff is more
advantageous than Cond for stability analysis.

The collocation Trefftz method (CTM) has been proved to most effective method among several bound-
ary method in [14, 15]. However, only the error analysis is made, but no stability exists so far. This paper
is devoted to the stability of the CTM, based on the effective condition number. Small effective condition
number explains well the high accuracy of the CTM solutions, and strengthens the CTM. In contrast, the
huge Cond is misleading.
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In [17, 18], Liu tried to use the domain’s characteristic length (e.g., Rp in (7)) for basis functions,
and the accuracy and stability can be improved for the Trefftz method (TM). So he called his new
approaches as the modified TM. Motz’s problem is the benchmark of singularity, and it has been used
as the popular model for testing numerical partial differential equations, see [10]. For Motz’s problem,
choose the admissible functions as in [17],

v∗L =
L∑

k=0

dk(
r

Rp
)k+ 1

2 cos(k +
1
2
)θ, (7)

where dk are the coefficients to be sought, and Rp is the radius parameter. On the other hand, the basic
particular solutions are

vL =
L∑

k=0

Dkrk+ 1
2 cos(k +

1
2
)θ, (8)

with the coefficients Di. Since the convergence radius r = 2 of (8) is proved in [21], Eq. (8) has been used
for Motz’s problem by many researchers, see [9, 10, 13, 14, 15, 16, 21].

Obviously, Eq. (8) is a special case with Rp = 1 of (7). In [17], Liu found the better solutions at
Rp = 1.71 in (7) than (8), based on condition number only. In this paper, based on the effective condition
number, we will give a comprehensive study for Rp used in (7) for Motz’s problem by TM and CTM.

For the spectral methods and TM, choosing a suitable parameter (e.g., Rp) may be helpful for better
accuracy and stability, but not for Motz’s solutions. In preconditioner, such a technique is well known for
better stability. Hence, we should not consider the TM using (7) as the modified TM, because choosing
good basis functions is one of requirements to apply TM.

In this paper, both analysis and computation are carried, to confirm that the basis particular solutions
are optimal (i.e., Rp = 1) for Motz’s problem by CTM. Next, for Rp = 1 we prove that Cond eff = O(L)

and Cond = O
(
L

3
2 (
√

2)L
)
. The Cond grows exponentially as L increases, but Cond eff is only linear.

The smaller effective condition number explains well the very accurate solutions obtained. The error
analysis in [14, 15] and the stability analysis in this paper grant the CTM to become the most efficient
and competent boundary method.

This paper is organized as follows. In Section 2, for over-determined systems the effective condition
number Cond eff is defined, and the error bounds pertinent to Cond eff are derived. In Section 3, the
collocation Trefftz method (CTM) is used for Motz’s problem, and the general particular solutions (7) are
chosen. In Section 4, the bounds of Cond eff with the parameter Rp are derived, and the optimal radius
parameter Rp = 1 is found. In Section 5, the stability for CTM with Rp = 1 is discussed in detail. In
Section 6, numerical experiments are carried out, and in Section 7, a few remarks are made.

2 Effective Condition Number

For solving the over-determined system of linear algebraic equations, the traditional condition number
was given in Wilkinson [28], and then discussed in the monographs by Stewart [23, Chapter 3.3] and
Higham [7, Chapter 7]. The condition number is used to provide the bounds of relative errors from the
perturbation of both F and b. However, in practical applications, we only deal with a certain vectors b,
and the true relative errors may be smaller, or even much smaller than the worst Cond indicates. Such
a case was studied in Chan and Faulser [3] and Christiansen and Hansen [4], and called the effective

4



condition number. However, the effective condition number was first proposed in Rice [20] in 1981, but
the natural condition number was called. Below, we will explore the computational formulas to evaluate
the effective condition number.

Consider the over-determined system

Fx = b, (9)

where the matrix F ∈ Rm×n and m ≥ n. When there exists a perturbation of F and b, we have

F(x + ∆x) = b + ∆b, (10)
(F + ∆F)(x + ∆x) = b + ∆b. (11)

Since the exact solutions in (9) – (11) may not exist, the solutions are considered as the least squares
solutions: To seek x and x̃ = x + ∆x such that

min
x∈Rn

‖Fx− b‖, (12)

min
x∈Rn

‖Fx̃− (b + ∆b)‖, (13)

min
x∈Rn

‖(F + ∆F)x̃− (b + ∆b)‖. (14)

First, for simplicity, we suppose the full column rank of F is n, and then extend the case for rank
r ≤ n. Let matrix F be decomposed by the singular value decomposition

F = UΣVT , (15)

where matrices U ∈ Rm×m and V ∈ Rn×n are orthogonal, and matrix Σ ∈ Rm×n is diagonal with the
positive singular values σi in a descending order: σ1 ≥ σ2 ≥ · · · ≥ σn > 0. The traditional condition
number in the 2-norm is defined by Golub and Van Loan [6, p.223],

Cond =
σ1

σn
=

σmax

σmin
, (16)

where σmax = σ1 and σmin = σn.

Let us consider (10). Denote U = (u1,u2, · · ·um) and V = (v1,v2, · · ·vn). We have the expansions

b =
m∑

i=1

βiui, ∆b =
m∑

i=1

αiui,

where the expansion coefficients are

βi = uT
i b, αi = uT

i ∆b. (17)

Hence, we have

‖b‖ =

√√√√
m∑

i=1

β2
i , ‖∆b‖ =

√√√√
m∑

i=1

α2
i .

Denote the pseudo-inverse matrix Σ+ ∈ Rn×m of Σ to be diagonal with the entries
1
σi

, see [6, 26]. Hence,

the pseudo-inverse matrix of F is given by F+ = VΣ+UT , and the least squares solution is expressed by

x = F+b = VΣ+UT b. (18)
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Also from (9) and (10), ∆x = F+∆b = VΣ+UT ∆b. Since U is orthogonal, we obtain

‖x‖ = ‖Σ+UT b‖ =

√√√√
n∑

i=1

β2
i

σ2
i

, (19)

and 1

‖∆x‖ = ‖Σ+UT ∆b‖ =

√√√√
n∑

i=1

α2
i

σ2
i

≤ 1
σn

√√√√
n∑

i=1

α2
i ≤

1
σn

√√√√
m∑

i=1

α2
i =

‖∆b‖
σn

. (20)

Hence, we obtain

‖∆x‖
‖x‖ ≤ ‖∆b‖

σn‖x‖ =
‖∆b‖

σn
× 1√√√√

n∑

i=1

β2
i

σ2
i

= Cond eff× ‖∆b‖
‖b‖ , (21)

where

Cond eff =
‖b‖

σn‖x‖ =
‖b‖

σn

√
(β1

σ1
)2 + · · ·+ (βn

σn
)2

. (22)

Note that when vector b (i.e., x) is just parallel to the eigenvector u1, i.e.,

β2 = β3 = · · · = βn = 0, (23)

we have ‖b‖ = |β1| and Cond eff = σ1
σn

from (22) leads to the traditional Cond in (16). However, the cases
in (23) may not happen for the practical vector b. Hence, the effective condition number may provide a
better upper bound of relative errors of the obtained x.

We may extend the above effective condition number for rank deficiency. Suppose rank(F) = r ≤ n.
The singular values are denoted by

σ1 ≥ σ2 · · · ≥ σr > 0, σr+1 = σr+2 = · · · = σn = 0. (24)

The traditional condition number, Cond = σ1
σr

, is defined by Van Loan [25], and the effective condition
number (22) is modified as

Cond eff =
‖b‖

σr

√
(β1

σ1
)2 + · · ·+ (βr

σr
)2

. (25)

On the other hand, when the matrix F is positive definite and symmetric, the effective condition numbers
of this paper are all valid if letting σi = λi, where λi are the eigenvalues of F, see [11, 12].

Below, we consider (11) with rank(F) = r ≤ n by the perturbation theory of matrix analysis. First
from Wedin [27], Stewart [22], Wang, Wei and Qiao [26], and Sun [24], we have the following lemma.

1In practical computation, the worst cases as in (20) may or may not happen. Then in some times, we have ‖∆x‖ <
1

σn
‖∆b‖ which may also give a lower bound of

‖∆x‖
‖x‖ than that in (21).

6



Lemma 2.1 Let matrices F,∆F ∈ Rm×n, (m ≥ n) with rank(F) = rank(F + ∆F) = r ≤ n ≤ m and
denote δ = ‖F†‖ ‖∆F‖ < 1, where F† is the pseudo-inverse matrix of F. Then there exist the bounds,

‖(F + ∆F)†‖ ≤ ‖F†‖
1− ‖F†‖ ‖∆F‖ =

‖F†‖
1− δ

, (26)

‖(F + ∆F)† − F†‖ ≤ µ‖(F + ∆F)†‖ ‖F†‖ ‖∆F‖ ≤ µδ
‖F†‖
1− δ

, (27)

where the constant µ = 1+
√

5
2 if r < n ≤ m, µ =

√
2 if r = n < m, and µ = 1 if r = n = m.

Theorem 2.1 Let matrices F,∆F ∈ Rm×n,m ≥ n with rank(F) = rank(F + ∆F) = r ≤ n ≤ m and
denote δ = ‖F†‖ ‖∆F‖ < 1. Then we have

‖∆x‖
‖x‖ ≤ Cond eff× 1

1− δ

[
µδ +

‖∆b‖
‖b‖

]
, (28)

where Cond eff is defined in (25), and the constant µ = 1+
√

5
2 if r < n ≤ m, µ =

√
2 if r = n < m, and

µ = 1 if r = n = m.

Proof. Since x = F†b and x + ∆x = (F + ∆F)†(b + ∆b), we have

∆x = (F + ∆F)†(b + ∆b)− F†b (29)
= [(F + ∆F)† − F†]b + (F + ∆F)†∆b,

and then

‖∆x‖ = ‖[(F + ∆F)† − F†]b + (F + ∆F)†∆b‖ (30)
≤ ‖(F + ∆F)† − F†‖ ‖b‖+ ‖(F + ∆F)†‖ ‖∆b‖.

It follows from Lemma 2.1 that

‖∆x‖ ≤ µ
δ

1− δ
‖F†‖ ‖b‖+

‖F†‖
1− δ

‖∆b‖

≤ µ
δ

1− δ
× ‖b‖

σr
+

1
1− δ

× ‖∆b‖
σr

=
‖b‖
σr

× 1
1− δ

[
µδ +

‖∆b‖
‖b‖

]
, (31)

by noting that ‖F†‖ = 1
σr

. The desired result (28) is obtained from (31) and the proof is completed.

When rank(F) = n < m, we have from (28)

‖∆x‖
‖x‖ ≤ Cond eff× 1

1− δ

[√
2δ +

‖∆b‖
‖b‖

]
. (32)

When m = n and rank(F) = n,

‖∆x‖
‖x‖ ≤ Cond eff× 1

1− δ

[
δ +

‖∆b‖
‖b‖

]
, (33)

to give (6) in [12]. Note that the error bounds in (28) with the rank deficiency of F are given, while those
in (32) and (33) are valid only for the full column rank of F. This is a development of effective condition
number from [12].
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3 Collocation Trefftz Method for Motz’s Problem

The spectral method and the Trefftz method using the particular solutions of PDEs can provide the ex-
tremely accurate solution, while the traditional Cond are often huge. Since Motz’s problem is a benchmark
of singularity problems, it has been used as a test model for many numerical methods (see [10]). In Lu
et al. [16], the leading coefficient of the Motz’s solution by the CTM can have 17 significant digits, while
Cond = O(106). Such a puzzle can be clarified well by small effective condition number given in this
paper.

X

Y

1

1

A

BC

D O

−1

uν = 0u = 0

uν = 0

uν = 0

u = 500S

Figure 1: Motz’s problem.

Consider Motz’s problem (see Figure 1)

4u = 0 in S, (34)
u = 0 on OD, u = 500 on AB,

uν = 0 on BC ∪ CD ∪OA,

where S = {(x, y)|−1 < x < 1, 0 < y < 1}, and uν = ∂u
∂ν is the outward normal derivative to ∂S. To solve

(34), we may use the collocation Trefftz method (CTM) involving integration approximation. Choose the
admissible solutions as

uL =
L∑

i=0

di(
r

Rp
)i+ 1

2 cos(i +
1
2
)θ in S, (35)

where di are the unknown coefficients to be sought, and Rp is the bounded radius parameter satisfying

Rp ≥ r0 > 0. (36)

In our previous study, we always choose (8). Obviously, when Rp = 1, Eq. (35) (i.e., (7)) leads to (8),
and there exists the relations between the coefficients di and Di,

Di = di(
1

Rp
)i+ 1

2 , i = 0, 1, ... (37)

Since the expansions (35) satisfy the Laplace equation and the boundary conditions at y = 0 already, the
coefficients di should be chosen to satisfy the rest of the boundary conditions,

u
∣∣∣
AB

= 500, uν

∣∣∣
BC

= 0, uν

∣∣∣
CD

= 0, (38)
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as best as possible, where AB, BC and CD are shown in Figure 1. Denote the energy

I(v) =
∫

AB

(v − 500)2d` + w2

∫

BC∪CD

v2
νd`, (39)

where w is a positive weight. A good choice of the weight w = 1
L+1 can be found in [13]. Also denote by

VL the set of the functions (35). The TM reads: To seek uL ∈ VL such that

I(uL) = min
v∈VL

I(v). (40)

The equation (40) leads to the linear algebraic system

Ax = b∗, (41)

where x ∈ RL+1 is the unknown vector consisting of coefficients di, (i = 0, 1, · · · , L), and b∗ ∈ RL+1

is the known vector resulting from the boundary condition u
∣∣∣
AB

= 500 in (38), and the stiffness matrix,

A ∈ R(L+1)×(L+1), is symmetric and positive definite, but not sparse. By the Gaussian elimination
without pivoting in [6], the coefficients di (i.e., x) can be obtained. Once the coefficients di are known,
the errors on AB ∪BC ∪ CD

‖ε‖B = ‖u− uL‖B =
[∫

AB

(500− uL)2d` + w2

∫

BC∪CD

(uL)2νd`

] 1
2

(42)

are computable. For the TM involving numerical quadrature, we may seek ũL ∈ VL such that

Ĩ(ũL) = min
v∈VL

Ĩ(v), (43)

where

Ĩ(v) =
∫̃

AB

(v − 500)2d` + w2

∫̃

BC∪CD

v2
νd`. (44)

The minimization of Ĩ(v) also leads to a linear system as (41). This is a direct implementation to the TM
involving numerical integration, called the normal method (NM).

Now, we turn to the collocation Trefftz method (CTM). Suppose that the simplest central rule is
chosen. The equations (38) can be performed at the boundary collocation nodes,

√
huL(Pi) =

√
h500 for Pi ∈ AB, (45)

w
√

h
∂uL

∂y
(P ∗i ) = 0 for P ∗i ∈ BC, (46)

w
√

h
∂uL

∂x
(Qi) = 0 for Qi ∈ CD, (47)

where h is the integration meshspacing of uniform subsections. Eqs. (45) – (47) are equivalent to (43)
with the central rule, see [14, 15]. When other rules such as the Gaussian rule are chosen, the collocation
equations (45) − (47) are modified as

αi

√
huL(Pi) = αi

√
h500 for Pi ∈ AB, (48)

wαi

√
h

∂uL

∂y
(P ∗i ) = 0 for P ∗i ∈ BC, (49)

wαi

√
h

∂uL

∂x
(Qi) = 0 for Qi ∈ CD, (50)
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where the constants αi ³ O(1) 2. When αi = 1, the equations (48) − (50) lead to (45) − (47). The
equations (48) − (50) can be written in the matrix form

Fx = b, (51)

where F ∈ Rm×(L+1) (m ≥ L + 1) is the stiffness matrix, x ∈ RL+1 is the unknown vector consisting of
the coefficients di, and b ∈ Rm is the known vector. The equation (51) is the over-determined system, and
the equation (41) is its normal equation. Solving (51) directly is more advantageous for better stability,
see [14, 15].

4 Bounds of Effective Condition Number

In [16], the error analysis of CTM is made for Motz’s problem, to give the exponential convergence rates,

‖u− uL‖B = O
((

1√
2

)L
)

, ‖u− uL‖∞,AB = O
((

1√
2

)L
)

, (52)

which are independent of Rp. The main concern for choosing the radius parameter Rp is that whether or
not the instability may damage the accuracy of the Motz solution under a certain working digits. From
our recent study [11, 12], the stability analysis should be made, based on Cond eff, but not on Cond.

In fact, the matrix F in (51) is given by F = BP−1, where B ∈ Rm×n is the stiffness matrix of
the CTM from the basis particular solutions (8), and P ∈ Rn×n is the diagonal matrix given by P =
Diag{..., (Rp)i− 1

2 , ...}, (i = 1, 2, ..., L + 1), and n = L + 1. Hence the question aries: How to choose the
radius parameter Rp, to reduce of Cond and Cond eff. Since the Cond is often misleading to the true
stability, in this section we focus on Cond eff in (3) and derive its bounds.

Denote

Ĩ(v) =
1
2
(Ãx,x) = ‖v‖20,AB + w2‖vν‖

2

0,BC∪CD, (53)

where (x,x) = ‖x‖2, Ã = FT F, the matrix F is given in (51), and the notations are

‖v‖20,AB =
∫̃

AB

v2d`, ‖vν‖
2

0,BC∪CD =
∫̃

BC∪CD

v2
νd`. (54)

Suppose that the integration rules are chosen such that, to satisfy the following equivalence relations,

‖v‖0,AB ³ O(‖v‖0,AB), ‖vν‖0,BC∪CD ³ O(‖vν‖0,BC∪CD). (55)

An analysis in [16] shows that the integration rules for (55) are not severe, even the simplest central rule
may grant them. Hence, we have

1
2
(Ãx,x) = Ĩ(v) ³ I(v) =

1
2
(Ax,x), (56)

to give the equivalence relations:

σmax(F) ³
√

λmax(A), σmin(F) ³
√

λmin(A), (57)
2The notation a ³ b or a ³ O(b), b > 0 means that there exist two positive constants C1 and C2 such that C1b ≤ |a| ≤

C2b, b > 0.
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where λmax and λmin are the maximal and the minimal eigenvalues of A, respectively, defined by

λmax = max
x 6=0

(Ax,x)
(x,x)

, λmin = min
x 6=0

(Ax,x)
(x,x)

. (58)

In (58), the notations are given by

(x,x) = ‖x‖2 =
L∑

i=0

d2
i , (59)

I(v) =
1
2
(Ax,x) =

∫

AB

v2d` + w2

∫

BC∪CD

v2
νd`

= ‖v‖2
0,AB

+ w2‖vν‖20,BC∪CD
, (60)

where v ∈ VL, and VL is the set of (35). In the following, C and c0 are two constants independent of L
and Rp, but their values may be different in different places.

We have the following lemma.

Lemma 4.1 Suppose that for v ∈ VL there exists a positive constant µ > 0 such that

‖v‖1,AB ≤ CLµ‖v‖0,AB . (61)

Then for (51) of the CTM for Motz’s problem, there exist the lower bounds,

σmin = σmin(F) ≥ c0
1√
Rp

min{L−µ, w}, for Rp ≤ 1, (62)

σmin = σmin(F) ≥ c0

(
1

Rp

)L+ 1
2

min{L−µ, w}, for Rp ≥ 1. (63)

Proof : We have from (61) and Babuska and Aziz [2, p. 21],

‖v‖ 1
2 ,AB ≤ C‖v‖1,AB ≤ CLµ‖v‖0,AB . (64)

Also since ∆v = 0 for v ∈ VL, we have from [2],

‖vν‖− 1
2 ,BC∪CD ≤ C‖vν‖0,BC∪CD. (65)

In (64) and (65), the semi-norms and the negative norms in the Sobolev space are defined by, respectively

‖v‖ 1
2 ,Γ =

{
‖v‖20,Γ +

∫

Γ

∫

Γ

(v(P )− v(Q))2

(P −Q)2
d`(P )d`(Q)

} 1
2

,

‖u‖− 1
2 ,Γ = sup

v 6=0

| ∫
Γ

uvd`|
‖v‖ 1

2 ,Γ

.

Hence, from (60), (64) and (65), there exists a constant c̄0 > 0 independent of L such that

I(v) ≥ c̄0

{
L−2µ‖v‖21

2 ,AB
+ w2‖vν‖2− 1

2 ,BC∪CD

}
(66)

≥ c̄0 min{L−2µ, w2} · {‖v‖21
2 ,AB

+ ‖vν‖2− 1
2 ,BC∪CD

}.
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On the other hand, since ∆v = 0 for v ∈ VL, we have from Oden and Reddy [19, p.189],

‖v‖21,S ≤ C{‖v‖21
2 ,AB

+ ‖vν‖2− 1
2 ,BC∪CD

}. (67)

Combining (66) and (67) yields

I(v) ≥ c0 min{L−2µ, w2}‖v‖21,S . (68)

Denote the semi-disk with the radius ρ,

Sρ = {(r, θ)|0 ≤ r ≤ ρ, 0 ≤ θ ≤ π}.

Since Sρ|ρ=1 ⊂ S, we have

‖v‖1,S ≥ ‖v‖1,Sρ|ρ=1 ≥ c0|v|1,Sρ|ρ=1 . (69)

From the Green formula,

|v|21,Sρ
=

∫ ∫

Sρ

{(
∂v

∂x

)2

+
(

∂v

∂y

)2
}

ds =
∫

`ρ

vνvd`, (70)

where `ρ = {(r, θ)|r = ρ, 0 ≤ θ ≤ π} is the semi-circle. By calculus, from the orthogonality of cos(i + 1
2 )θ

we obtain from (35)

∫

`ρ

vνvd` =
∫ π

0

1
Rp

{
L∑

i=0

di(i +
1
2
)(

ρ

Rp
)i− 1

2 cos(i +
1
2
)θ

}
·
{

L∑

i=0

di(
ρ

Rp
)i+ 1

2 cos(i +
1
2
)θ

}
ρdθ

=
L∑

i=0

d2
i (i +

1
2
)(

ρ

Rp
)2i+1

∫ π

0

cos2(i +
1
2
)θdθ =

π

2

L∑

i=0

d2
i (i +

1
2
)(

ρ

Rp
)2i+1. (71)

Let ρ = 1, and consider two cases: Rp ≤ 1 and Rp ≥ 1. First when Rp ≤ 1, for ρ = 1 we have

∫

`ρ

vνvd` ≥ π

2
1

Rp

L∑

i=0

d2
i (i +

1
2
) ≥ π

4
1

Rp

L∑

i=0

d2
i . (72)

Combining (68) − (70) and (72) yields

I(v) ≥ c0 min{L−2µ, w2} 1
Rp

L∑

i=0

d2
i , (73)

and then

λmin(A) = min
x 6=0

2I(v)
(x,x)

≥ c0
1

Rp
min{L−2µ, w2}. (74)

Next, when Rp ≥ 1, for ρ = 1 we have

∫

`ρ

vνvd` =
π

2

L∑

i=0

d2
i (i +

1
2
)(

1
Rp

)2i+1 ≥ c0(
1

Rp
)2L+1

L∑

i=0

d2
i , (75)
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to give

I(v) ≥ c0(
1

Rp
)2L+1 min{L−2µ, w2}

L∑

i=0

d2
i . (76)

Hence we have

λmin(A) = min
x 6=0

2I(v)
(x,x)

≥ c0(
1

Rp
)2L+1 min{L−2µ, w2}. (77)

The desire results (62) and (63) follow from (57), (74) and (77). This completes the proof of Lemma 4.1.

Theorem 4.1 Let (61) hold. Then for (51) of the CTM for Motz’s problem, there exist the bounds for
the effective condition number:

Cond eff ≤ C max{Lµ, w−1}, if Rp ≤ 1, (78)
Cond eff ≤ C(Rp)L max{Lµ, w−1}, if Rp ≥ 1. (79)

Proof : By noting (48), the vector b has the components

bT = {· · · , 500αi

√
h, · · · }. (80)

Since h ≤ C 1
m , where m is the dimension of b, we have

‖b‖ =
√∑

i

(500αi

√
h)2 = 500

√∑

i

α2
i h ≤ 500max

i
|αi|

√
mh ≤ C, (81)

where we have used that αi ³ O(1). Also since d0 = D0

√
Rp from (37), and since the true coefficient D0

is known (see Table 2), we have

‖x‖ =

√√√√
L∑

i=0

d2
i ≥ d0 = D0

√
Rp ≥ 400

√
Rp. (82)

Hence, we have from Lemma 4.1, (81) and (82),

Cond eff =
‖b‖

σmin‖x‖ ≤ C max{Lµ, w−1}, if Rp ≤ 1, (83)

Cond eff ≤ C(Rp)L max{Lµ, w−1}, if Rp ≥ 1. (84)

This is the desired results (78) and (79), and completes the proof of Theorem 4.1.

In computation, we choose w = 1
L , and for the sectorial S we can prove that µ = 1, see [13]. Hence,

we have the following corollary from Theorem 4.1 and Lemma 4.1.

Corollary 4.1 Let (61) hold. Also assume µ = 1 and choose w = 1
L . Then for (51) (i.e., the CTM for

Motz’s problem), there exist the bounds:

Cond eff ≤ CL, σmin ≥ c0
1√
Rp

L−1, if Rp ≤ 1, (85)

Cond eff ≤ CL(Rp)L, σmin ≥ c0L
−1

(
1

Rp

)L+ 1
2

, if Rp ≥ 1. (86)

13



From Theorem 4.1 and Corollary 4.1, we find the optimal case at Rp ≤ 1 for small Cond eff. Then we
may choose Rp = 1. Since the errors (52) retain the same for different Rp, we conclude theoretically that
the basis particular solutions (8) (i.e., Rp = 1) is optimal for Motz’s problem by TM and CTM. Note that
this conclusion is against [17].

5 Stability for CTM of Rp = 1

Based on the above analysis, we should choose Rp = 1. In this section we also derive the bound of Cond
for comparison. We have the following lemma.

Lemma 5.1 Suppose that for v ∈ VL, there exists a positive constant µ > 0 such that

‖vν‖0,BC∪CD ≤ CLµ‖v‖1,S . (87)

Then for (51) of the CTM for Motz’s problem, when Rp = 1 there exists the upper bound,

σmax = σmax(F) ≤ C(1 + wLµ)
√

L(
√

2)L. (88)

Proof : From (87) and the embedding theorem,

‖v‖0,AB ≤ C‖v‖1,S , (89)

we obtain from (60)

I(v) = ‖v‖2
0,AB

+ w2‖vν‖20,BC∪CD
≤ C(1 + w2L2µ)‖v‖21,S . (90)

Since v|y=0∧−1<x<0 = 0 for v ∈ VL, there exists the bound from the Poincare inequality,

‖v‖1,S ≤ C|v|1,S , (91)

where |v|1,S is the semi-norm of v on S. Hence, we have from (90) and (91),

I(v) ≤ C(1 + w2L2µ)|v|21,S . (92)

Moreover, since S ⊂ Sρ|ρ=
√

2, we have from (71) with Rp = 1 and di = Di,

|v|21,S ≤ |v|21,S√2
=

∫

`√2

vνvd` (93)

=
π

2

L∑

i=0

D2
i (i +

1
2
)ρ2i+1 ≤ π

2
(L +

1
2
)(
√

2)2L+1
L∑

i=0

D2
i .

Combining (92) and (93) yields

I(v) ≤ C(1 + w2L2µ)L(
√

2)2L
L∑

i=0

D2
i . (94)

Hence the maximal eigenvalue λmax(A) has the following bound,

λmax(A) = max
x 6=0

2I(v)
‖x‖2 ≤ C(1 + w2L2µ) · L(

√
2)2L. (95)

The desired result (88) follows from (57), and this completes the proof of Lemma 5.1.

Based on Lemmas 4.1 and 5.1, we have the following theorem.
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Theorem 5.1 Let (61) and (87) hold. Then for (51) of the CTM for Motz’s problem, when Rp = 1 there
exists the bound for the traditional condition number:

Cond ≤ C(1 + wLµ)
√

Lmax{Lµ, w−1} · (
√

2)L. (96)

In computation, we choose w = 1
L , and for the sectorial S we can prove that µ = 1, see [13]. Hence

we have the following corollary from Lemmas 4.1 and 5.1.

Corollary 5.1 Let (61) and (87) hold. Also assume µ = 1 and choose w = 1
L . Then for (51) of the CTM

for Motz’s problem, when Rp = 1 there exist the bounds:

σmin ≥ c0L
−1, (97)

σmax ≤ C
√

L(
√

2)L, (98)
Cond eff ≤ CL, (99)

Cond ≤ CL
3
2 (
√

2)L. (100)

Corollary 5.1 indicates clearly that for the highly accurate solutions of Motz’s problem by the CTM,
the small Cond eff is the correct criterion of numerical stability, but the huge Cond is misleading.

6 Numerical Experiments

6.1 Choice of Rp

In order to see the effects of Rp in (7) on the errors and stability, new numerical experiments are carried
out. We use the Gaussian rule with six nodes, and let M denote the number of integration nodes along
AB. Hence m = 6M . First, we choose Rp = 1, i.e., the basic particular solutions (8). The errors
and condition numbers are listed in Table 1, where ε = u − uL. When L = 34 the Motz’s solution by
the CTM is given by the coefficients Di in Table 2. This solution is the best in accuracy, stability and
complexity of algorithms under double precision computation, compared with other TMs in [14]. Note
that all computation in this paper is completed by the Fortran programs under double decision. From
Table 1, we can see the numerical asymptotes,

‖u− uL‖B = O (
(0.55)L

)
, ‖u− uL‖∞,AB = O (

(0.56)L
)
, (101)

which are consistent with (52).

Next we choose different radius parameters Rp ∈ [0.8, 2.5]. Once the coefficients di are obtained by
the CTM, the original coefficients Di are obtained from (37). We list the computed di and Di, the errors,
Cond and Cond eff in Table 3. From Table 3, we can draw the following conclusions:

(1) The errors ‖u − uN‖B = 0.493(−8) and ‖u − uN‖∞,AB = 0.520(−8) are exactly the same for
different Rp used. This result also coincides with (52).

(2) When the basic particular solutions (8) (i.e., Rp = 1) are used, the leading coefficient D0 is the
most accurate, because its error is less than the rounding error τ = 1

2 × 10−7 of double decision.

(3) There exists a minimum of Cond at Rp = 1.4 ≈ √
2, which is much smaller than the Cond at Rp = 1;

this result is consistent with [17]. However, the stability based on Cond is misleading, see Corollary 5.1.
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(4) The effective condition number Cond eff = 30.2 at Rp = 1 is very small. This explains well the
highly accurate Motz solution in Table 2, see Section 6.2.

For Rp = 0.8, 1, 1.2, 1.7, the errors of D0, and condition numbers are listed in Tables 4 – 6. Note that
all values of ‖ε‖B and ‖ε‖∞,AB are the same for different Rp. From Tables 1 and 4 - 6, we can find the
following asymptotes:

Cond eff = O(L), σmin = O(L−1), for Rp = 1, (102)
Cond eff = O(L), σmin = O(L−1), for Rp = 0.8, (103)
Cond eff = O (

(1.1)L
)
, σmin = O (

(0.9)L
)
, for Rp = 1.2, (104)

Cond eff = O (
(1.5)L

)
, σmin = O (

(0.67)L
)
, for Rp = 1.7. (105)

Eqs. (102) and (103) agree with (85) very well, but Eqs. (104) and (105) have a better performance than
(86):

Cond eff = O (
(1.2)L

)
, σmin = O

((
1

1.2

)L
)

= O (
(0.83)L

)
, for Rp = 1.2, (106)

Cond eff = O (
(1.7)L

)
, σmin = O

((
1

1.7

)L
)

= O (
(0.59)L

)
, for Rp = 1.7. (107)

From the above analysis and computation, we conclude that the basic particular solutions (8) (i.e.,
Rp = 1 in (7)) are optimal for Motz’s problems by the CTM. From Table 1 we can see that

Cond = 0.676(6), Cond eff = 30.2, (108)
|∆D0|

D0
= 0. (109)

Eq. (109) implies that the computed D0 by the CTM is extremely accurate, in the sense that the error is
less that the rounding error of computer.

6.2 Extreme Accuracy of D0

To estimate the relative errors of the leading coefficients D0, D1 and D2, we can have the following
proposition.

Proposition 6.1 Suppose that the leading coefficients Di, (i = 0, 1, 2), are dominant in x such that

|Di| ≥ ᾱi‖x‖, (i = 0, 1, 2), (110)

where ᾱi ≥ ᾱ > 0. Then there exists the bound

|∆Di|
|Di| ≤ 1

ᾱ
× Cond eff × ‖∆b‖

‖b‖ , (111)

where ∆Di = Di −D∗
i , and D∗

i and Di are the true and the approximate coefficients respectively.

Proof : From (110) we have

|∆Di|
|Di| ≤

√
L∑

i=1

∆D2
i

|Di| ≤ ‖∆x‖
ᾱi‖x‖ . (112)
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Also from (21) we have

‖∆x‖
‖x‖ ≤ Cond eff · ‖∆b‖

‖b‖ . (113)

Combining (112) and (113) yields the desired result (111).

We choose Rp = 1. From (108), Cond eff = 30.2 may explain the highly accurate solution in Table 2
with L = 34, and Proposition 6.1 indicates that the D0 has 16 significant digits, provided that ‖∆b‖

‖b‖ is just
the rounding error. This is the most cases. Occasionally, D0 has 17 significant digits due to cancelation
of rounding errors, or to ‖∆x‖ < 1

σn
‖∆b‖, see (20). Moreover, the singular values σi and the coefficients

βi are listed in Table 7. From Table 8, we can see the empirical rates

σmin ³ O(L−1), Cond eff ³ O(L), (114)

σmax ³ O
(

(
√

2)L

√
L

)
, Cond ³ O

(√
L(
√

2)L
)

. (115)

The equation (114) verifies (97) and (99) very well, but the equations (115) have a better performance
with a factor O( 1

L ), than those in (98) and (100).

Moreover, we may compute the true condition number, defined by

Cond true =
‖∆x‖
‖x‖ × ‖b‖

‖∆b‖ . (116)

We use the true coefficients in [10], and compute Fx as the b on the right hand. By solving Fx = b, the
approximate solution x̃ = x + ∆x is obtained. Then we obtain ∆x = x̃ − x and ∆b = Fx̃ − b. Based
on x, ∆x, b, ∆b, the Cond true in (116) is obtained, and listed in Table 9. It is interesting to note that
Cond true ≈ 1, and the bounds of the traditional Cond are too large and misleading. In contrary, the new
Cond eff ³ O(L) is much close to Cond true. From the viewpoint of Cond, there is a severe instability
of the CTM for Motz’s problem, but from the viewpoint of Cond eff, its stability is very well. This is a
significant contribution of the new effective condition number, not only to the CTM, but also to numerical
partial differential equations.

7 Concluding Remarks

To end this paper, let us make a few final remarks.

1. For solving the over-determined system (1) the traditional condition number (2) in the 2-norm is
defined for all b and ∆b. In this paper, by following Chan and Fouler [3] and Rice [20] for the given
vector b, we define the new effective condition numbers, to provide a better upper bound of the solution
errors from the rounding perturbation. In Section 2, the error bounds pertinent to the effective condition
number are derived in (28), which can be applied to all kinds of numerical methods for linear algebraic
equations, numerical differential equations and numerical integral equations.

2. We apply the effective condition numbers for the CTM for Motz’s problem in [16], where the highly
accurate solutions are obtained with the exponential convergence rates. In this paper, we focus on the
stability analysis, and drive the bounds, Cond eff = O(L) and Cond= O

(
L

3
2 (
√

2)L)
)
, where L is the

number of the singular particular functions used. The Cond eff = O(L) explains well the highly accurate
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solutions in [16]; while the huge traditional Cond is misleading. The results of effective condition number
for the cracked beam problem in [16] are also similar; details are omitted. The TM is a popular method of
boundary methods, and its study has become a very active subject in the last two decades. A review of its
recent progress is given in Li et al. [14, 15], where only the error analysis is made. This paper is the first
time to provide the stability analysis of CTM. It is due to the error analysis in [14, 15] and the stability
analysis in this paper that the CTM becomes the most efficient and competent boundary method.

3. Different radius parameter Rp may have an influence on the errors of the leading coefficient D0,
but not on the errors ‖ε‖B and ‖ε‖∞,AB . Since their error bounds in (52) are independent of Rp, the
better choice on Rp is relevant only to stability and the error of D0. The bounds of Cond eff are derived
in Section 3 for Motz’s problem by the CTM. Moreover, the computed results and the theoretical bounds
of Cond eff are consistent with each other.

4. Based on Cond eff and the error of D0, we conclude that the basic particular solutions (8) are
optimal among (7) (see Table 3). The Motz solution in Table 2 with L = 34 and Rp = 1 is the highly
accurate and stable solution under the double precision. In particular, the leading coefficient D0 is exact,
in the sense that the error of D0 is less than the rounding error of computer. These conclusions are against
to those made in [17], purely based on Cond.

5. In summary, the stability based on Cond eff is a new development (see [11, 12]), and a new interesting
application is given in this paper. The effective condition number may provide a new trend of stability
analysis for numerical linear algebraic equations and numerical partial differential equations.
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L ‖ε‖B ‖ε‖∞,AB |4D0
D0

| σmax σmin Cond Cond eff

10 0.146(-1) 0.108(-1) 0.698(-6) 7.06 0.704(-1) 95.2 9.49
14 0.986(-3) 0.623(-3) 0.620(-8) 23.9 0.543(-1) 440 12.9
18 0.780(-4) 0.580(-4) 0.640(-10) 84.4 0.429(-1) 0.197(4) 16.4
22 0.655(-5) 0.550(-5) 0.671(-12) 306 0.354(-1) 0.864(4) 19.8
26 0.578(-6) 0.531(-6) 0.765(-14) 0.113(4) 0.302(-1) 0.374(5) 23.3
30 0.527(-7) 0.522(-7) 0.142(-15) 0.420(4) 0.263(-1) 0.160(6) 26.7
34 0.493(-8) 0.520(-8) 0∗ 0.158(5) 0.233(-1) 0.679(6) 30.2

Table 1: Error norms, condition number and errors of leading coefficients from the CTM for Motz’s
problem for M = 30 along AB and Rp = 1.0, where 0∗ denotes the error less than the computer rounding
errors in double precision.
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i All digits Sig. digits Num. of Sig. digits
0 401.162453745234416 401.16245374523442 17
1 87.6559201950879299 87.6559201950879 15
2 17.2379150794467897 17.2379150794468 15
3 -8.0712152596987790 -8.07121525970 12
4 1.44027271702238968 1.44027271702 12
5 0.331054885920006037 0.33105488592 12
6 0.275437344507860671 0.27543734451 11
7 -0.869329945041107943(-1) -0.869329945(-1) 9
8 0.336048784027428854(-1) 0.336048784(-1) 9
9 0.153843744594011413(-1) 0.153843745(-1) 9
10 0.730230164737157971(-2) 0.7302302(-2) 7
11 -0.318411361654662899(-2) -0.3184114(-2) 7
12 0.122064586154974736(-2) 0.1220646(-2) 7
13 0.530965295822850803(-3) 0.530965(-3) 6
14 0.271512022889081647(-3) 0.271512(-3) 6
15 -0.120045043773287966(-3) -0.12005(-3) 5
16 0.505389241414919585(-4) 0.5054(-4) 4
17 0.231662561135488172(-4) 0.2317(-4) 4
18 0.115348467265589439(-4) 0.11535(-4) 5
19 -0.529323807785491411(-5) -0.529(-5) 3
20 0.228975882995988624(-5) 0.229(-5) 3
21 0.106239406374917051(-5) 0.106(-5) 3
22 0.530725263258556923(-6) 0.531(-6) 3
23 -0.245074785537844696(-6) -0.25(-6) 2
24 0.108644983229739802(-6) 0.11(-6) 2
25 0.510347415146524412(-7) 0.5(-7) 1
26 0.254050384217598898(-7) 0.3(-7) 1
27 -0.110464929421918792(-7) -0.1(-7) 1
28 0.493426255784041972(-8) / 0
29 0.232829745036186828(-8) / 0
30 0.115208023942516515(-8) / 0
31 -0.345561696019388690(-9) / 0
32 0.153086899837533823(-9) / 0
33 0.722770554189099639(-10) / 0
34 0.352933005315648864(-10) / 0

Table 2: The leading coefficients Di from the CTM for Motz’s problem as L = 34, Rp = 1 and M = 30
along AB.
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Rp d0 D0 |4D0
D0

| σmax σmin Cond Cond eff

0.8 358.810606637983767 401.162453745234473 0.142(-15) 0.331(8) 0.294(-1) 113(10) 26.9
1.0 401.162453745234416 401.162453745234416 0∗ 0.158(5) 0.233(-1) 0.679(6) 30.2
1.2 439.451450280775305 401.162453745234359 0.142(-15) 35.2 0.150(-1) 0.239(4) 42.4
1.4 474.661816468163579 401.162453745234700 0.708(-15) 0.734 0.337(-3) 0.218(4) 0.172(4)
1.7 523.051846666585220 401.162453745234018 0.992(-15) 0.523 0.123(-5) 0.424(6) 0.415(6)
2.0 567.329382801379779 401.162453745234302 0.283(-15) 0.463 0.690(-8) 0.671(8) 0.658(8)
2.5 634.293532788443258 401.162453745234700 0.708(-15) 0.400 0.377(-11) 0.106(12) 0.176(11)

Table 3: Errors of D0, condition numbers, with the numerical d0 and D0 from the CTM for Motz’s problem
for L = 34 and M = 30, where ‖ε‖B = 0.493(−8) and ‖ε‖∞,AB = 0.520(−8), and 0∗ denotes the error less
than the computer rounding errors in double precision.

L |4D0
D0

| σmax σmin Cond Cond eff

10 0.698(-6) 70.2 0.933(-1) 75.4 8.49
14 0.620(-8) 580 0.685(-1) 0.846(4) 11.6
18 0.640(-10) 0.499(4) 0.541(-1) 0.923(5) 14.6
22 0.670(-12) 0.441(5) 0.447(-1) 0.987(6) 17.7
26 0.666(-14) 0.397(6) 0.381(-1) 0.104(8) 20.8
30 0.425(-15) 0.361(7) 0.332(-1) 0.109(9) 23.9
34 0.142(-15) 0.331(8) 0.294(-1) 0.113(10) 2.69

Table 4: Errors of D0 and condition numbers from the CTM for Motz’s problem for Rp = 0.8 and M = 30,
where ‖ε‖B and ‖ε‖∞,AB are the same as those in Table 1.

L |4D0
D0

| σmax σmin Cond Cond eff

10 0.698(-8) 1.37 0.597(-1) 23.0 11.6
14 0.620(-8) 2.19 0.438(-1) 49.9 14.5
18 0.640(-10) 3.65 0.346(-1) 106 18.3
22 0.671(-12) 6.30 0.286(-1) 220 22.2
26 0.581(-14) 11.1 0.243(-1) 455 26.1
30 0.283(-15) 19.8 0.212(-1) 934 29.2
34 0.142(-15) 35.7 0.150(-1) 0.239(4) 42.4

Table 5: Errors of D0, condition numbers from the CTM for Motz’s problem for Rp = 1.2 and M = 30,
where ‖ε‖B and ‖ε‖∞,AB are the same as those in Table 1.

L |4D0
D0

| σmax σmin Cond Cond eff

10 0.698(-8) 0.523 0.125(-1) 42.0 41.1
14 0.620(-8) 0.523 0.279(-2) 188 183
18 0.640(-10) 0.523 0.608(-3) 860 841
22 0.672(-12) 0.523 0.131(-3) 0.400(4) 0.391(4)
26 0.723(-14) 0.523 0.278(-4) 0.188(5) 0.184(5)
30 0.142(-15) 0.523 0.587(-5) 0.891(5) 0.871(5)
34 0.992(-15) 0.523 0.123(-5) 0424(6) 0.415(6)

Table 6: Errors of D0, condition numbers from the CTM for Motz’s problem for Rp = 1.7 and M = 30,
where ‖ε‖B and ‖ε‖∞,AB are the same as those in Table 1.
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i σi βi i σi βi

0 .158(5) .420(2) 18 .156(1) -.375(2)
1 .121(5) .610(2) 19 .126(1) -.602(1)
2 .846(4) .133(2) 20 .113(1) -.101(3)
3 .595(4) .274(1) 21 .974 .130(2)
4 .558(3) .584(2) 22 .827 -.117(3)
5 .386(3) .246(2) 23 .720 .144(3)
6 .269(3) .278(1) 24 .677 -.747(2)
7 .195(3) -.177(2) 25 .560 .295(2)
8 .513(2) -.591(2) 26 .463 .243(2)
9 .345(2) -.544(1) 27 .368 -.180(2)
10 .249(2) .146(2) 28 .305 -.136(2)
11 .189(2) -.320(2) 29 .249 .134(2)
12 .931(1) -.554(2) 30 .188 -.120(2)
13 .619(1) .231(2) 31 .141 -.898(1)
14 .470(1) -.421(2) 32 .102 -.908(1)
15 .381(1) -.416(2) 33 .556(-1) .815(1)
16 .267(1) -.306(2) 34 .233(-1) -.440(1)
17 .202(1) .777(2)

Table 7: The singular values σi and the coefficients βi for matrix F from the CTM solution in Table 2,
where the Cond = 0.676(6) and Cond eff = 30.2.

k 0 1 2 3
Lk = 10 + 8k 10 18 26 34

σ
(k)
max 7.06 84.4 0.113(4) 0.158(5)

σ(k)
max

σ
(k−1)
max

12.0 13.4 14.0

(
√

2)8√
Lk

Lk−1

12.0 13.3 14.0

σ
(k)
min 0.740(-1) 0.429(-1) 0.320(-1) 0.233(-1)

σ
(k−1)
min

σ
(k)
min

1.72 1.42 1.29
Lk

Lk−1
1.80 1.44 1.30

Cond 95.5 0.197(4) 0.375(5) 0.679(6)
Cond eff 9.50 16.4 23.3 30.2

Table 8: The maximal and the minimal singular values and their empirical asymptotes by the CTM
method with Rp = 1.
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L 10 18 26 34

‖ε‖0 0.508(-12) 0.447(-13) 0.924(-13) 0.130(-12)
Cond 95.5 0.197(4) 0.374(5) 0.679(6)

Cond eff 9.50 16.4 23.3 30.2
Cond EE 20.5 35.6 50.7 65.7
‖∆x‖
‖x‖ 0.222(-14) 0.144(-15) 0.288(-15) 0.442(-15)
‖∆b‖
‖b‖ 0.176(-14) 0.155(-15) 0.320(-15) 0.451(-15)

Cond true 1.26 0.932 0.900 0.979

Table 9: Errors, condition numbers, effective condition numbers, and true condition numbers by the CTM
method with Rp = 1.
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