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Abstract

In the paper, the degenerate kernels and Fourier series expansions are adopted in the
null-field integral equation to solve bending problems of a circular beam with circular holes.
The main gain of using degenerate kernels in integral equations is free of calculating the
principal values for singular integrals. An adaptive observer system is addressed to fully
employ the property of degenerate kernels for circular boundaries in the polar coordinate.
After moving the null-field point to the boundary and matching the boundary conditions, a
linear algebraic system is obtained without boundary discretization. The present method is
treated as a “semi-analytical” since analytical expressions as much as possible before
numerical implementation. Finally, an example, including four holes, is given to demonstrate
the validity of the proposed method. The present formulation can be extended to handle beam
problems with arbitrary number and various positions of circular holes.

Keywords: Null-field integral equation; degenerate kernel; Fourier series; circular holes;
cantilever beam; stress concentration
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Introduction

The stress concentration around holes of a beam under bending or torsion plays an
important role in promoting the design criteria for higher factors of safety. Those problems
have been visited in a few investigations based on the Saint-Venant theory™ . For a simple
case, an analytical solution may be available. Since the analytical solution for more than two
holes may encounter difficulty, several numerical approaches have been employed, e.g.
complex variable boundary element method (CVBEM) by Chou® and Ang and Kang*. The
CVBEM was primarily introduced by Hromadka and Lai® for solving the Laplace problems in
an infinite domain. In 1997, Chou® extended the work of Hromadka to multiply-connected
problems. Recently, Ang and Kang* developed a general formulation for solving the
second-order elliptic partial differential equation for a multiply-connected region in a different
version of CVBEM. The Cauchy integral formulae are offered to solve the boundary value
problem. By introducing the CVBEM, Chou® and Ang and Kang” have revisited the anti-plane
problems with two circular holes whose centers lie on the x axis investigated by Honein et
al.’. In 1991, Naghdi’ employed a special class of basic function, which is the Saint-Venant
flexure function suitable for the problem of the bending of a circular cylinder with 4N
(N =1,2,3---) circular holes in the axial direction. Bird and Steele® used the Fourier series
procedure to revisit the antiplane problems in the Honein’s paper®. Also, they solved the
bending problems which were solved by Naghdi’. In the literature, it is observed that exact
solutions for boundary value problems are only limited for simple cases. Although Naghdi’
has proposed a solution for bending problems with holes, it is limited to 4N (N=1,2,3---)
holes. Therefore, proposing a systematic approach for solving BVP with various numbers of
circular boundaries and arbitrary positions and radii is our goal in this paper. Following the
success of anti-plane problems with circular holes®, the null-field integral equation is utilized
to solve the Saint-Venant bending problem of a beam with circular holes. The mathematical
formulation is derived by using degenerate kernels for fundamental solutions and Fourier
series for boundary densities in formulation. Then, it reduces to a linear algebraic equation by
using collocation approach. After determining the unknown coefficients, series solution for
the bending function is obtained. The location of maximum stress concentration factor (SCF)
is addressed. Numerical examples are given to show the validity and efficiency of our
approach.

Problem statement

Consider a beam with a circular section weakened by four circular holes placed on a
concentric ring of radius a as show in Fig. 1. The radii of outer circle and inner holes are R
and b, respectively. The beam is subject to a shear force Q at the free end, and the

boundary conditions of outer circle and inner holes are traction free. Following the theory of
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Saint-Venant bending, we assume the stress to be

Oo =0 =0 =0, 0= 2x(1-2), @
y

where 1, is the moment of inertia of beam cross section for the y-axis. The other two
stress components are assumed as

op Q oy 1 ., 1),
= _— _ | — = 1—— s
i aﬂ(ax”j 2(1+V)I3[8X+2VX +( 2‘/]@ @)

op Q oy
= _— _ | — 2 y
Oy a'u(aerXJ 2(1+v)ly[8y+( +v)xy} (3)
where ¢(x,y) and w(xy) are the warping function and bending function of the beam,
respectively, and ou is a constant. Since the ¢(x,y) and w(xy) in the Saint-Venant

bending problem satisfies the two Laplace equations subject to the Neumann boundary
condition, we have:

Vi (x, y)_g—(p gy_(pzo in D, (4)
99 _ e
o = yeos(nx)—xcos(ny) xyeB, (5)
and
Vi (xy)=2 7Y 2o in D, ©)
Z_Z:_vaz{l—%vj }cos( —(2+v)xycos(n,y) xyeB,, (7)

where D is the domain of interest, n is the outward normal vector of each boundary, and
B, is the kth circular boundary. In Fig. 1, we define the position vector (x,y,) of the
boundary point on the ithcircular boundary as
X, =bcosg, +Dx,, k=0,1234, 0<6 <27 (8)
y, =bsing, +Dy,, k=0,1,2,3,4, 0<6 <2z (9)
where (Dx,Dy,) is the coordinate for the center of the kth eccentric circle, and the
eccentricity is zero for the outer circle. By substituting Egs. (8) and (9) into Eq. (7) , the
boundary condition is specified.
For the simple case of bending only, we can assume constant ax and v (x,y)to be zero.
Following the definition of stress concentration by Naghdi’, we have
o, A
Q
where A is the area of the cross-section. The shear stress o, in Eq. (10) is obtained from
the Eq. (2). Thus, the problem of bending is reduced to find the bending function y(x,y)

=

: (10)

which satisfies the Laplace equation of Eq. (6) and the Neumann boundary condition of Eq. (7)
on each boundary.
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Dual boundary integral equations and dual null-field integral equations

Employing the Fourier series expansions to approximate the potential u and its normal
derivative t on the circular boundary

u(sk):a§+i(a§cosn0k +bfsinng,), s, €B,, k=12,---,N, (11)

n=1

t(s,)=ps + > (pycosnb, +assinng,), s €B,, k=12--,N, (12)

n=1
where t(s,) =du(s,)/on, inwhich n, denotes the outward normal vector at the source point
s, a, b, p¢ and g (n=0,12,---) are the Fourier coefficients and ¢, is the polar angle
for the kth circular boundary. The integral equation for the domain point can be derived
from the third Green’s identity’®, as shown below:

27U(X) = fBT(s,x)u(S)dB(s)— fBU(s,x)t(s)dB(s), x €D, (13)

27t(x) = fBM (s, X)u(s)dB(s) — fBL(s,x)t(s)dB(s), x €D, (14)

where s and x are the source and field points, respectively, B is the boundary, D is the
domain of interest, and the kernel function U(s,x)=Inr, (r=|x—s|), is the fundamental
solution which satisfies

VU (s,X) = 2m8(X—S5) (15)
in which §(x—s) denotes the Dirac-delta function. The other kernel functions, T(s,x),
L(s,x) and M(s,x), are defined by

AU (s,X) _ 9U(s,%)

L(s, , M, X)=—,
S (8, %) X (s.X) on.on. (16)
By collocating x outside the domain (x € D®), we obtain the dual null-field integral

equations as shown below

T(s,X)= = MNEX)

0= fBT(s,x)u(s)dB(s) - f U (s, )t(s)dB(s), x € D°, (17)

0= fBM (s,X)u(s)dB(s) — fBL(s,x)t(s)dB(s) ,xeD°, (18)

where D° is the complementary domain. Based on the separable property, the kernel
function U(s,x) is expanded into the degenerate form by separating the source point and

field point in the polar coordinate:

U (R :p.) = R Y= (£)"cosmio - o), R>
U(s,x) = " ) (19)
.1 R
U'(RO;p,¢)=Inp— —(=)"cosm(®—¢), p>R
m=1 m P
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where the superscripts “i” and “e” denote the interior (R> p) and exterior (p> R) cases,
respectively. After taking the normal derivative with respect to Eq. (19), the T(s,x) kernel
function yields

T'(R6;p,9) :%Jri(:mﬂ)cosm(e—@, R>p
T(s,x) = " : (20)

% R"H
T*(R6;p,0)=—y  (—)cosm(d —¢), p>R

m

P
and the higher-order kernel functions, L(s,x) and M(s,x), are shown below:

m-1

L(RO:p.6) == (o) cosmi0— ), R>p

L(s,X) = L e o : (21)
Le(R,Q;p,szﬁ)=;+Z(pm+l)cosm(9—¢), p>R

M (R0:,6) = 3 (o) cosmi0—6), R>p

M (s, %) = (22)

m-

MAR 01p.6) =D S)cosmio o), >R

Since the potentials resulted from T(s,x) and L(s,x) are discontinuous cross the
boundary, the potentials of T(s,x)and L(s,x) for R—p" and R— p~ are different. This is
the reason why R=p is not included in the expression for the degenerate kernels of T(s,x)
and L(s,x) inEqgs. (20) and (21).

Adaptive observer system

After moving the null-field point of Eq. (17) to the boundary, the boundary integrals
through all the circular contours are required to be calculated. Since the boundary integral
equations are frame indifferent due to the energy or work form, namely, objectivity rule, the
observer system is adaptively to locate the origin at the center of circle under integration.
Adaptive observer system is chosen to fully employ the property of degenerate kernels. The
origin of the observer system is located on the center of the corresponding circle under
integration to entirely utilize the geometry of circular boundary for the expansion of
degenerate kernels and boundary densities.

Vector decomposition technique of the potential gradient for the stress calculation in the
hypersingular formulation

Equation (12) shows the normal derivative of potential for domain points, special
treatment is considered here. Not only for calculating the stress but also for degenerate
scales' , potential gradient on the boundary using hypersingular formulation is required to
calculate. For the non-concentric case, special treatment for the normal derivative should be
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taken care as the source point and field point locate on different circular boundaries. As
shown in Fig. 2, the normal direction on the boundary (1, 1’) should be superimposed by the
radial derivative (3, 3’) and angular derivative (4, 4’). We called this treatment “vector
decomposition technique”. According to the concept of vector decomposition technique,
L(s,x) and M(s,x) in Egs. (21) and (22) can be rewritten as shown bellow

m-1

pRm Ycosm(f — ¢) cos(¢ — &)

L(RO:p.6) = -3 (

—i(pRm )sin m(0—¢)cos(g—g+g), R>p

L(s,X) = L = R ; (23)
L(R0:p.0) =+ () cosmii—0)os(C ~6)
—i(;l)sin mo—o)cosC—(+8). p>R
M (R.0:,6) = > (") cos i — ¢)cos( — )
—i(r‘;pmf)sinm(e—¢>)cos(§—<+s), R>p
M (s,x) = o , (24)

mR

;1) cosm(f — ¢)cos(C —&)

m-1

—)sin m(9—q5)cos(%—(+§), p>R

ME(R 00, 6) =3 ( -

_z"o:(mR

P

where ¢ and ¢ are shown in Fig. 2. For the concentric case, the circles with respect to the

same origin of observer, the potential gradient is derived free of special treatment since
¢=¢.

Linear algebraic system

We need to collocate 2M +1 null-field point on the boundary to calculate 2M +1
unknown Fourier coefficients. By moving the null-field point x, on the kth circular

boundary in the sense of limit for Eq. (17), we have

0:kzclkaT(Sjo)U(Sk)dBk(S)—kZifBKU(Sk,X,-)t(Sk)dEﬁ((s),xe DS, (25)

where N, is the number of circles including the outer boundary and the inner circular holes.
If the domain is unbounded, the outer boundary B, isanull setand N.= N . By moving the
null-field point on the boundary, a linear algebraic system is obtained

Ut} =[T}{u}. (26)
where [U] and [T] are the influence matrices with a dimension of N.(2M +1) by
N.(2M +1), {u} and {t} denote the column vectors of Fourier coefficients with a
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dimension of N.(2M +1) by 1 in which [U], [T], {u} and {t} can be defined as
follows:

Uoo U01 UON Too T01 TON
[U]— Uzlo U‘11 | UslN ,[T]: Tzlo T11 TéN . (27)
UNO UNl UNN TNO TNl TNN
u, t,
u, t,
fub={u.t, {&=1et, (28)
Uy t,
where the vectors {u,} and {t,} are in the form of {& a b - abbﬁn}T and
{pg pEogf - pl qhk,,}T,respectiver; the first subscript “j” (j=0,4,2,---,N) in [Ujk]

and [Tjk] denotes the index of the jth circle where the collocation point is located and the
second subscript “k” (k=0,1,2,---,N) denotes the index of the kth circle where the
boundary data {u,} or {t,} are specified, M indicates the truncated terms of Fourier
series. By rearranging the known and unknown sets, the unknown Fourier coefficients are
determined. Equation (17) can be calculated by employing the orthogonal property of Fourier
bases in the real computation. Only the finite M terms are used in the summation of Egs.
(11) and (12). After obtaining the unknown Fourier coefficients, the boundary stress and
interior potential can be easily calculated.

Ilustrative examples and discussions

Four circular holes”® 2

In order to check the validity of the present formulation, the Naghdi’s beam problems’
with four holes symmetrically located with respect to the x and y axis were revisited. All
the numerical results were obtained by using ten terms of Fourier series (M =10). We set the
value of Poisson’s ratio v=0.3 and R=1. In Figs. 3(a) and 3(b), the values of the stress
concentration Sc along AB and CD (as Fig. 1) are plotted versus the position
Y, =17Y,/ AB, and Y, =17Y,/CD, respectively. Figure 3(c) shows the stress concentration Sc
along OT, and the & =18xOT for the case of a=0.5, d=x/4 and b=0.1. Figures 3 (a)
and 3(b) show that the maximum Sc occurs at B and C on the boundaries, respectively.
For the S along OT in Figure 3(c), the maximum Sc occurs at the position near the
center of the two above holes. Good agreement is made after comparing with the Naghdi’s
results’. In the literature, Naghdi’ and Bird and Steele® also calculated the stress concentration
factor at the point B for b=0.12 and different values of a, Bird and Steele’ stated that the
deviation by the Naghdi’s data is 11%. The grounds for this discrepancy were not identified in
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their paper. Our numerical results are more agreeable to the Naghdi’s data’ as shown in Figs.
4, where Fig. 4(c) and 4(f) was not provided by Bird and Steele®.

Conclusions

For the bending problem with circular holes, we have proposed a BIEM formulation by
using degenerate kernels, null-field integral equation and Fourier series in companion with
adaptive observer systems and vector decomposition. This method is a semi-analytical
approach since only truncation error in the Fourier series is involved. An advantage of the
method over Naghdi’s approach’ is that the extension to multiple circular holes of arbitrary
radii and positions is straightforward. Results obtained by the present approach matched well
with those of Naghdi’s’ although Bird and Steele’s data® seems to deviate. Although only four
holes were tested to compare with the Naghdi’s’ and Bird and Steele’s results®, our
general-purpose program can solve problems with arbitrary number and various positions of
circular holes.
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1’: Normal direction
2’: Tangential direction

3’: True normal direction
4’: True tangential direction

»l

« R

Figure 1 Cross-section of cantilever beam Figure 2 Vector decomposition for the
of symmetrical holes. potential gradient for stress calculation in
the hypersingular equation.
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Figure 3 The stress concentration for a=05, 6 =z/4 and b=0.1.
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Figure 4 The stress concentration versus a for b=0.12
0 =14, respectively.
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