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Abstract 

In this paper, we derive the null-field integral equation for piezoelectricity problems with 
circular inclusions under remote anti-plane shears and in-plane electric fields in two directions. 
To fully capture circular geometries, separable expressions of fundamental solutions in the 
polar coordinate for field and source points and Fourier series for boundary densities are 
adopted to ensure the exponential convergence. Four gains are obtained, (1) well-posed model, 
(2) singularity free, (3) boundary-layer effect free and (4) exponential convergence. The 
solution is formulated in a manner of semi-analytical form since error purely attributes to the 
truncation of Fourier series. Problems with two piezoelectric inclusions for stress and electric 
displacement distributions are revisited to demonstrate the validity of our method. The main 
feature of the present paper is that the new formulation can be generalized to multiple circular 
inclusions in a straightforward way without any difficulty. 
Keywords: anti-plane deformation, null-field integral equation, degenerate kernel, Fourier 
series, circular inclusion, piezoelectricity, Laplace problem 

摘要 

本文使用零場積分方程式，求解同時受反平面剪力及平面電場之含圓形夾雜壓電問

題。為了充分利用圓形邊界的特性，將基本解及邊界物理量分別展開成退化核及傅立葉

級數的形式；因此可以得到四個好處：矩陣良態模式、避免奇異積分、沒有邊界層效應、

指數收歛。由於誤差僅來自於擷取有限項的傅立葉級數，故本方法可視為半解析法。文

中求解含兩圓形夾雜之應力與電位移分布，以示範驗證本方法的有效性。本方法最大的

特色是，可以直接廣泛地求解含多圓形夾雜之壓電問題。 
關鍵字: 反平面位移，零場積分方程式，退化核，傅立葉級數，圓形夾雜，壓電力學，

拉普拉斯方程式 
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Introduction 

The recent technological developments and the increasing market demand have opened promising 
research opportunities and engineering priorities in the field of micromechanics. Coupled 
electro-elastic analysis in smart composites and micro-electro-mechanical systems (MEMS) receives 
much attention. Due to the intrinsic coupling effect of electrical and mechanical fields, the 
piezoelectric material is widely applied to intelligent structures. Regarding the piezoelectric circular 
inclusions, an exact solution of a single inclusion was derived by Pak1 under remote anti-plane shear 
and in-plane electric loadings. For the two piezoelectric inclusions, Honein et al.2 employed the 
Möbius transformation to derive the electromechanical field. Based on the method of analytical 
continuation and the techniques of successive approximation, Chao and Chang3 revisited the problem 
of two piezoelectric inclusions. Wu and Funami4 also solved this problem by using the conformal 
mapping and the theorem of analytical continuation. Wang and Shen5 considered the shear and electric 
loadings in two directions. Chen and Wu6 have successfully solved the anti-plane piezoelectricity 
problems with circular inclusions using the null-field integral equation in conjunction with degenerate 
kernels and Fourier series. Degenerate kernels play an important role7 not only for mathematical 
analysis but also for numerical implementation. For example, the spurious eigenvalue, fictitious 
frequency and degenerate scale have been mathematically and numerically studied by using 
degenerate kernels for problems with circular boundaries. One gain is that exponential convergence 
instead of algebraic convergence in boundary element method (BEM) can be achieved using the 
degenerate kernel and Fourier expansion8. In this paper, we revisited the problem of two piezoelectric 
circular inclusions which has been solved by Wu and Funami4 to demonstrate the generality and 
validity of present method. 

Problem statement of anti-plane displacement field and in-plane electric potential 

The physical problem to be considered is shown in Fig. 1 (a), where multiple circular inclusions are 
imbedded in an infinite piezoelectric medium under the far-field antiplane shear zxσ∞ , zyσ∞  and the 
far-field inplane electric field xE∞ , yE∞ . Bleustein9 has found that if one takes the plane normal to 
poling direction as the plane of interest, only the anti-plane displacement w  couples with the in-plane 
electric field rE  and Eθ . Therefore, we only consider the anti-plane displacement and the in-plane 
electric potential such that 

0u v= = , ( , )w w r θ= ; ( , )r rE E r θ= , ( , )E E rθ θ θ= , 0zE = , (1)

where u , v  and zE  are the vanishing components of displacements and electric field, respectively. 
The governing equation, in the absence of body forces and body charges, can be decoupled and 
simplified to 

2 0w∇ = , 2 0∇ Φ= , (2)

where 2∇  is the two-dimensional Laplacian operator 
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2
2 2 2

1 1
r rr r θ

∂ ∂ ∂∇ ≡ + +
∂∂ ∂

, (3)

and Φ  is the in-plane electric potential. The coupling between the elastic field and the electrical field 
occurs only through the constitutive equations 

44 15zr zr rc e Eσ γ= − , 44 15z zc e Eθ θ θσ γ= − , (4)

15 11r zr rD e Eγ ε= + , 15 11zD e Eθ θ θγ ε= + , (5)

where 44c  is the elastic modulus, 15e  is the piezoelectric constant, 11ε  is the dielectric constant, 

ijσ  and iD  are respectively the anti-plane shear stress and in-plane electric displacement, ijγ  and 

iE  are respectively the anti-plane shear strain and in-plane electric field, which are defined as 

zr
w
r

γ ∂=
∂

, 1
z

w
rθγ

θ
∂=
∂

, rE
r

∂Φ=−
∂

, 1E
rθ θ
∂Φ=−
∂

. (6)

By taking free body along the interface between the matrix and inclusions, the problem can be 
decomposed into two systems. One is an infinite medium with N  circular holes under remote 
anti-plane shear and in-plane electric loadings as shown in Fig. 1 (b). The other is N  circular 
inclusions bounded by the kB  contour which satisfies the Laplace equation as shown in Fig. 1 (c). 
From the numerical point of view, this is the so-called multi-domain approach. For the problem in Fig. 
1 (b), it can be superimposed by two parts. One is an infinite medium under remote shear and electric 
loadings and the other is an infinite medium with N  circular holes which satisfies the Laplace 
equation as shown in Figs. 1 (d) and 1 (e), respectively. Therefore, one exterior problem for the matrix 
is shown in Fig. 1 (e) and several interior problems for nonoverlapping inclusions are shown in Fig. 1 
(c). The two problems in Figs. 1 (e) and 1 (c) can be solved in a unified manner since they both satisfy 
the Laplace equation. When the coupled effect between the mechanical and electrical fields is absent 
or the piezoelectric constant are equal to zero, the expressions of the electro-elastic field in the present 
formulation reduces to the results given by Emets and Onofrichuk10 and Chen et al.8, 11, respectively. 

A unified formulation for exterior and interior Laplace problems under anti-plane 
mechanical and in-plane electrical loadings 

Dual boundary integral equations and dual null-field integral equations 
The boundary integral equation (BIE) for the domain point can be derived from the third Green’s 
identity12, we have 

2 (x) (s, x) (s) (s) (s, x) (s) (s), x
B B

w T w dB U t dB Dπ = − ∈∫ ∫ , (7)

x

(x)2 (s, x) (s) (s) (s, x) (s) (s), x
n B B

w M w dB L t dB Dπ ∂ = − ∈
∂ ∫ ∫ , (8)

where (x)w  is the anti-plane displacement field, s(s) (s) / nt w=∂ ∂ , s  and x  are the source and 
field points, respectively, B  is the boundary, D  is the domain of interest, sn  and xn  denote the 
outward normal vector at the source point s  and field point x , respectively, and the kernel function 
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(s,x) lnU r= , ( x sr ≡ − ), is the fundamental solution which satisfies 
2 (s, x) 2 (x s)U πδ∇ = − , (9)

in which (x s)δ −  denotes the Dirac-delta function. By collocating x  outside the domain ( x cD∈ ), 
we obtain the dual null-field integral equations as shown below 

0 (s,x) (s) (s) (s, x) (s) (s), x c

B B
T w dB U t dB D= − ∈∫ ∫ , (10)

0 (s, x) (s) (s) (s, x) (s) (s), x c

B B
M w dB L t dB D= − ∈∫ ∫ , (11)

where cD  is the complementary domain. Based on the separable property, the kernel function 
(s,x)U  is expanded into the degenerate form by separating the source point and field point in the 

polar coordinate13: 

1

1

1( , ; , ) ln ( ) cos ( ),
(s, x)

1( , ; , ) ln ( ) cos ( ),

i m

m

e m

m

U R R m R
m R

U
RU R m R

m

ρθ ρ φ θ φ ρ

θ ρ φ ρ θ φ ρ
ρ

∞

=
∞

=

⎧⎪⎪ = − − ≥⎪⎪⎪⎪=⎨⎪⎪ = − − >⎪⎪⎪⎪⎩

∑

∑
, (12)

where the superscripts “ i ” and “ e ” denote the interior ( R ρ> ) and exterior ( Rρ> ) cases, 
respectively. The origin of the observer system for the degenerate kernel is ( 0,0 ). By setting the origin 
at o  for the observer system, a circle with radius R  from the origin o  to the source point s  is 
plotted. If the field point x  is situated inside the circular region, the degenerate kernel belongs to the 
interior expression of iU ; otherwise, it is the exterior case. The other kernel functions, (s, x)T , 

(s, x)L  and (s,x)M , are defined by 

s

(s, x)(s, x)
n

UT ∂≡
∂

, 
x

(s, x)(s,x)
n

UL ∂≡
∂

, 
2

s x

(s, x)(s,x)
n n
UM ∂≡

∂ ∂
. (13)

Since the potentials resulted from (s,x)T  and (s, x)L  kernels are discontinuous across the boundary, 
the potentials of (s, x)T  and (s, x)L  for R ρ+→  and R ρ−→  are different. Therefore, R ρ=  is 
not included for degenerate kernels of (s, x)T  and (s, x)L . For problems with the kth  circular 
boundary, we apply the Fourier series expansions to approximate the potential w  and its normal 
derivative t  on the boundary as 

0
1

(s ) ( cos sin )
L

k k k
k n k n k

n

w a a n b nθ θ
=

= + +∑ , sk kB∈ , 0,1, 2, ,k N= , (14)

0
1

(s ) ( cos sin )
L

k k k
k n k n k

n

t p p n q nθ θ
=

= + +∑ , sk kB∈ , 0,1, 2, ,k N= , (15)

where N  is the number of circular inclusions, s(s ) (s ) / nk kt w=∂ ∂ , k
na , k

nb , k
np  and k

nq  
( 0,1, 2,n = ) are the Fourier coefficients and kθ  is the polar angle. In the real computation, only 
2 1L+  finite terms are considered where L  indicates the truncated terms of Fourier series. 
In the present application, both anti-plane mechanical and in-plane electrical fields are modeled by 
using the null-field formulation. Since the electric potential Φ  also satisfies the Laplace equation, the 
variables w  and s(s) (s) / nt w=∂ ∂  in Eqs. (7), (8), (10), (11), (14) and (15) can be replaced by Φ  
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and s(s) (s) / nΨ =∂Φ ∂ . 

Adaptive observer system 
After collocating points in the null-field integral equation, the boundary integrals through all the 
circular contours are required. Since the boundary integral equations are obtained through the 
reciprocal theorem, it is frame indifferent due to the objectivity rule such that the observer system can 
be adaptively to locate the origin at the center of circle in the boundary integration. The adaptive 
observer system is chosen to fully employ the property of degenerate kernels and Fourier series. 
Figures 2 (a) and 2 (b) show the boundary integration for the circular boundary in the adaptive 
observer system. Therefore, the origin of the observer system is located on the center of the 
corresponding circle under integration to entirely utilize the geometry of circular boundary for the 
expansion of degenerate kernels and boundary densities. The dummy variable in the circular 
integration is the angle ( θ ) instead of the radial coordinate ( R ). In the present applications, the 
anti-plane mechanical and in-plane electrical fields can both be modeled by employing the same 
null-field formulation. 

Linear algebraic system for modeling the Laplace equation 
By moving the null-field point x j  to the jth  circular boundary in the limit sense for Eq. (10) in Fig. 
2 (a), we have 

0 0

0 ( , ; , ) ( , ) ( , ; , ) ( , ) , x( , ) ,
k k

N N
c

k k j j k k k k k k j j k k k k j jB Bk k

T R w R R d U R t R R d Dθ ρ φ θ θ θ ρ φ θ θ ρ φ
= =

= − ∈∑ ∑∫ ∫  (16)

where N  is the number of circular inclusions and 0B  denotes the outer boundary for the bounded 
domain. In case of the infinite problem, 0B  becomes B∞ .  Note that the kernels (s, x)U  and 

(s, x)T  are assumed in the degenerate form given by Eqs. (12) and (13), respectively, while the 
boundary densities w  and t  are expressed in terms of the Fourier series expansion forms given by 
Eqs. (14) and (15), respectively. Then, the integrals multiplied by separate expansion coefficients in Eq. 
(16) are non-singular and the limit of the null-field point to the boundary is easily implemented by 
using appropriate forms of degenerate kernels. Thus, the collocation point x( , )j jρ φ  in the discretized 
Eq. (16) can be considered on the boundary jB , as well as the null-field point. In the kB  integration, 
we set the origin of the observer system to collocate at the center kc  to fully utilize the degenerate 
kernels and Fourier series. By collocating the null-field point on the boundary, the linear algebraic 
system is obtained: 
For the exterior problem of matrix, we have 

{ } { }M M M M∞ ∞⎡ ⎤ ⎡ ⎤− = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦U t t T w w , (17)

{ } { }M M M M∞ ∞⎡ ⎤ ⎡ ⎤− = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦U Ψ Ψ T Φ Φ . (18)

For the interior problem of each inclusion, we have 
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{ } { }I I I I⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦U t T w , (19)

{ } { }I I I I⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦U Ψ T Φ , (20)

where the superscripts “ M ” and “ I ” denote the matrix and inclusion, respectively. M⎡ ⎤⎢ ⎥⎣ ⎦U , M⎡ ⎤⎢ ⎥⎣ ⎦T , 
I⎡ ⎤⎢ ⎥⎣ ⎦U  and I⎡ ⎤⎢ ⎥⎣ ⎦T  are the influence matrices with a dimension of ( 1)(2 1)N L+ +  by ( 1)(2 1)N L+ + , 

{ }Mw , { }Mt , { }∞w , { }∞t , { }MΦ , { }MΨ ,  { }∞Φ , { }∞Ψ , { }Iw , { }It , { }IΦ  and { }IΨ  
denote the column vectors of Fourier coefficients with a dimension of ( 1)(2 1)N L+ +  by 1. The 
explicit forms can be found in the Chen and his coworkers’ paper6, 8, 11. It is noted that { }∞w , { }∞t , 

{ }∞Φ  and { }∞Ψ  in Fig. 1 (d) are the displacement and traction fields due to the remote shear and 
electric loadings, respectively. After uniformly collocating the null-field point along the kth  circular 
boundary, Eq. (16) can be calculated by employing the relations of trigonometric function and the 
orthogonal property in the real computation. Only the finite L  terms are used in the summation of 
Eqs. (14) and (15). Two cases may be solved in a unified manner using the null-field integral 
formulation: 
(1) One bounded problem of circular domain in Fig. 1 (c) becomes the interior problem for each 

inclusion. 
(2) The other is unbounded, i.e., the outer boundary 0B  in Fig. 2 (a) is B∞ . It is the exterior problem 

for the matrix as shown in Fig. 1 (e). 
According to the continuity of displacement and equilibrium of traction along the kth  interface, we 
have the four constraints. For the stress field, the interface condition yields 

M Iw w=  on kB , (21)
M I
zr zrσ σ=  on kB . (22)

For the electric field, the interface condition yields 
M IΦ =Φ  on kB , (23)
M I
r rD D=  on kB . (24)

Invoking the governing equation of piezoelectricity with proper continuity conditions, fully coupled 
equations are obtained. By assembling the matrices in Eqs. (17)-(20) and (21)-(24), we have 

44 44 15 15

15 15 11 11

M M M

I I M

M M I

I I I

M

M I M I M

I

M I M I I

⎡ ⎤⎧ ⎫⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪⎪⎢ ⎥⎪⎪⎨ ⎬⎢ ⎥⎪⎢ ⎥⎪⎪⎢ ⎥⎪⎢ ⎥⎪⎪⎢ ⎥⎪⎪⎢ ⎥⎪⎢ ⎥⎪⎪⎢ ⎥⎪⎢ ⎥⎪⎩⎣ ⎦⎪

T -U 0 0 0 0 0 0 w
0 0 T -U 0 0 0 0 t
0 0 0 0 T -U 0 0 w
0 0 0 0 0 0 T -U t
I 0 -I 0 0 0 0 0 Φ
0 c 0 c 0 e 0 e Ψ
0 0 0 0 I 0 -I 0 Φ
0 e 0 e 0 -ε 0 -ε Ψ

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎨ ⎬⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎩ ⎭⎪⎭⎪ ⎪ ⎪

a
0
b
0

=
0
0
0
0

, (25)

where { }a  and { }b  are the forcing terms due to the far-field antiplane shear and the far-field 
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inplane electric field, [ ]I  is an identity matrix, 44
M⎡ ⎤⎢ ⎥⎣ ⎦c , 44

I⎡ ⎤⎢ ⎥⎣ ⎦c , 15
M⎡ ⎤⎢ ⎥⎣ ⎦e , 15

I⎡ ⎤⎢ ⎥⎣ ⎦e , 11
M⎡ ⎤⎢ ⎥⎣ ⎦ε  and 11

I⎡ ⎤⎢ ⎥⎣ ⎦ε  are the 
diagonal matrix for each material constant. After obtaining the unknown Fourier coefficients in Eq. 
(25), the origin of observer system is set to kc  in the kB  integration as shown in Fig. 2 (b) to obtain 
the field potential by employing Eq. (7). In determining the stress and electric fields, gradient of 
potential should be determined with care by employing the vector decomposition technique in the 
hypersingular equation6, 8, 11. 

Numerical results and discussions 

The exact solution for a single piezoelectric inclusion, which was derived by Pak1, can be derived by 
using the present formulation. Although our formulation is general for multiple inclusions, we 
consider the two-inclusion problem to demonstrate the validity of present method. The radii of two 
piezoelectric circular inclusions are 1r  and 2r  with 1 2r r=  centered on the x  axis and perfectly 
bonded to an infinite piezoelectric matrix subjected to the remote shear and the electric field as shown 
in Fig. 3 (a). The distance d  between the two inclusions, the applied loadings and material properties 
of the matrix and two inclusions are assumed as the same of Wu and Funami4. Figure 3 (b) shows the 
stress and electric displacement distributions along the contour (1.01,θ ) when only the remote shear 

zyσ τ∞
∞=  is applied. It can be seen that the electro-elastic fields zrσ  and rD  have an asymmetric 

distribution and zθσ  and Dθ  have a symmetric distribution for θ π= . In comparison with zrσ , the 
value of stress component zθσ  is relatively low. Figure 3 (c) illustrate the stress and electric 
displacement distributions along the x  axis when the electric field yE E∞

∞=  is applied at infinity. 
From this figure, it can be observed that the stress component zyσ  in two piezoelectric inclusions has 
a different sign from one in the matrix. Particularly, the stress component zyσ  between two 
piezoelectric inclusions has a large varying gradient. In comparison with the stress field, the electric 
displacement field has a smooth varying tendency. The present results using twenty terms of Fourier 
series ( 20L= ) agree very well with those of Wu and Funami4. 
 

Conclusions 

The present work not only demonstrated an elegant method for solving boundary value problems but 
also understood the interesting coupling behaviors between mechanical and electrical fields that have 
not been studied previously by using BIE. It was shown that the electro-elastic field depends on the 
distance between two piezoelectric inclusions, the mismatch in the material constants and the 
magnitude of mechanical and electromechanical loadings. In addition, the mechanical and electrical 
loadings applied at infinity also have an important effect on the distribution of the electro-elastic field. 
Singularity free, boundary-layer effect free, exponential convergence and well-posed model are the 
main gains using the present formulation. 
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Figure 1 (a) Infinite anti-plane piezoelectricity problem with arbitrary piezoelectric circular inclusions 
under remote shear and electric loadings. 

 

 

 
 

 

Figure 1 (b) Infinite piezoelectric medium with 
circular holes under remote shear and electric 

loadings. 

Figure 1 (c) Interior Laplace problems for each 
piezoelectric circular inclusion. 

 

 

 

 

Figure 1 (d) Infinite piezoelectric medium under 
remote shear and electric loadings. 

Figure 1 (e) Exterior Laplace problems for the 
piezoelectric medium. 
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Figure 2 (a) Sketch of the null-field integral 
equation for a null-field point in conjunction with 

the adaptive observer system ( x , x kD B∉ → ). 

Figure 2 (b) Sketch of the boundary integral 
equation for a domain point in conjunction with 
the adaptive observer system ( x , x kD B∈ → ). 

 
Figure 3 (a) Two circular inclusions embedded in a matrix under remote shears and electric fields. 
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Figure 3 (b) Stress and electric displacement 
distributions along the contour (1.01,θ ) when 

11.5d r= , zyσ τ∞
∞= . 

Figure 3 (c) Stress and electric displacement 
distributions along the x  axis when 10.5d r= , 

yE E∞
∞= . 
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