
2M¬Å�þ�!Z	˙ûn}
The 7th National Conference on Structure Engineering

Chung-Li, Taiwan, R. O. C., 22-24 Aug., 2004

A study of free terms for plate problems in the dual BEM

Ching-Sen Wu1, Kue-Hong Chen2 and Jeng-Tzong Chen3

1Graduate student, Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung

2Assistant Professor, Department of Information Management, Toko University, Chia-Yi

3Professor, Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung

Abstract

In this paper, we review the free terms of Lapalce and Navier equations for 2-D and 3-D problems and extend to

biharmonic equation for plate problem. We derive the free terms of the dual BEM with a smooth boundary by

means of the bump-contour technique surrounding the singularity. After using the limiting approach, the free

terms and boundary terms for the sixteen improper integrals in the dual formulation for the plate problems are

derived. The improper integrals due to the sixteen kernels with singularity or hypersingularity are interpreted as

the finite part.
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Introduction

Boundary integral equations (BIE) with strongly singular and hypersingular kernels are currently employed in

many fields of applied mechanics, most of the mathematical issues have been clarified for the evaluation of the

singular integrals. The treatment of singularities has always been a chief subject in the development of boundary

element method (BEM).
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Dual boundary integral equations (DBIEs) for crack problems were derived using the limiting and trace ap-

proaches proposed by Hong and Chen [1]. Also, the DBIEs for the Laplace equation with a degenerate bound-

ary was developed by Chen and Hong [2]. The numerical implementation has been termed the dual boundary

element method by Portelaet al. [11]. How to determine free terms in a hypersingular equation accurately

has received attention in the dual BEM by Guiggiani [7, 8, 9, 10]. Later, an additional free term in the hyper-

singular equation for the Laplace probelm was independently obtained by Guiggiani [10] and Chen and Hong

[3]. Since the hypersingular integral equation can provide an additional constraint for the Dirichlet problems,

the free terms must be examined. Many researchers, for example, Guiggiani has derived the free terms in the

boundary integral formulation by employing the direct method for the Laplace equation, the Navier equation

and the biharmonic equation. He also found an additional free term for the corner problem using the biharmonic

equation instead of using the “dual” formulation. In 2000, Chenet al. [4, 6] have proposed the bump-contour

technique and the limiting approach to determine the free terms of the two- or three-dimensional Laplace and

Navier equations successfully. Also, the free terms of dual BIE for the 2-D Helmholtz equation were solved [5].

In this paper, we focus on the bending of thin plates where the BEM must face the improper integrals of hy-

persingular kernel or finte-part integrals. The unnamed higher-order singularities than hypersingularity occur in

the dual formulation. We derive the free terms on a smooth boundary by means of the bump-contour technique

surrounding the singularity. After using the bump-contour technique and limiting approach, the free terms and

boundary terms for the sixteen improper integrals in the dual formulation are derived. The improper integrals

due to the sixteen kernels with weak singularity, strong singularity, hypersingularity or unnamed singularity are

interpreted as the finite parts.

Review of free terms of the dual integral formulation for 2-D and 3-D Laplace and Navier

equations with a smooth boundary

According to the papers of Chen and his students [4, 5, 6] as well as his colleagues, they derived the free terms

of the dual integral equations in conjunction with the bump-contour technique for the Laplce, Helmholtz and

Navier probelms. By adopting the bump-contour technique, we have the free terms and boundary terms. We

summarize the results for the two and three-dimensional problems in Table 1. It is found that the contributions

from both the hypersingular integrals and the strongly singular integrals for the free terms of the BIE are,

respectively, half and half for the 2-D case, one third and two thirds for 3-D problem. The dual boundary

integral equations for the 2-D and 3-D Navier equations are also considered. Similarly, we summarize the

results for the two and three-dimensional problems in Table 2. Comparing the results of the Laplace equation

with those of the Navier equation, it is found that the free coefficients are the same to half for the smooth
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boundary.

Free terms of the DBIEs with a smooth boundary for the biharmonic problems

The dual integral equations for the domain point can be derived from the Rayleigh-Green identity as follows:

8π u(x) =

∫
B

{−U(s, x)v(s) + Θ(s, x)m(s)−M(s, x)θ(s) + V (s, x)u(s)}dB(s), x ∈ Ω, (1)

8π θ(x) =

∫
B

{−Uθ(s, x)v(s) + Θθ(s, x)m(s)−Mθ(s, x)θ(s) + Vθ(s, x)u(s)}dB(s), x ∈ Ω, (2)

8π m(x) =

∫
B

{−Um(s, x)v(s) + Θm(s, x)m(s)−Mm(s, x)θ(s) + Vm(s, x)u(s)}dB(s), x ∈ Ω, (3)

8π v(x) =

∫
B

{−Uv(s, x)v(s) + Θv(s, x)m(s)−Mv(s, x)θ(s) + Vv(s, x)u(s)}dB(s), x ∈ Ω, (4)

whereB is the boundary,Ω is the domain of interest,u, θ, m andv mean the displacement, slope, normal

moment and effective shear force,s andx are the source and field points, respectively.

For the biharmonic equation, we can obtain the fundamental solution as follows:

U(x, s) = r2ln(r), (5)

wherer is the distance between the field point and the source point written asr ≡ |s − x|. The other three

kernels,Θ(s, x), M(s, x) andV (s, x), are defined as follows:

Θ(s, x) = Kθ,s(U(s, x)), (6)

M(s, x) = Km,s(U(s, x)), (7)

V (s, x) = Kv,s(U(s, x)), (8)

whereKθ,s(·),Km,s(·) andKv,s(·) mean the slope, moment and shear force operators with respect tos, respec-

tively, which are defined as follows:

Kθ,s(·) =
∂(·)
∂ns

, (9)

Km,s(·) = ν∇2
s(·) + (1− ν)

∂2(·)
∂n2

s

, (10)

Kv,s(·) =
∂∇2

s(·)
∂ns

+ (1− ν)
∂

∂ts
[(

∂2(·)
∂ns∂ts

)], (11)

wheren andt are the normal and tangential vectors, respectively. By moving the point to the smooth boundary,
Eqs.(1)-(4) reduce to

4πu(x) = −F.P.

∫
B

U(s, x)v(s) dB(s) + F.P.

∫
B

Θ(s, x)m(s) dB(s)− F.P.

∫
B

M(s, x)θ(s) dB(s) + F.P.

∫
B

V (s, x)u(s) dB(s), x ∈ B, (12)

4πθ(x) = −F.P.

∫
B

Uθ(s, x)v(s) dB(s) + F.P.

∫
B

Θθ(s, x)m(s) dB(s)− F.P.

∫
B

Mθ(s, x)θ(s) dB(s) + F.P.

∫
B

Vθ(s, x)u(s) dB(s), x ∈ B, (13)

4πm(x) = −F.P.

∫
B

Um(s, x)v(s) dB(s) + F.P.

∫
B

Θm(s, x)m(s) dB(s)− F.P.

∫
B

Mm(s, x)θ(s) dB(s) + F.P.

∫
B

Vm(s, x)u(s) dB(s), x ∈ B, (14)

4πv(x) = −F.P.

∫
B

Uv(s, x)v(s) dB(s) + F.P.

∫
B

Θv(s, x)m(s) dB(s)− F.P.

∫
B

Mv(s, x)θ(s) dB(s) + F.P.

∫
B

Vv(s, x)u(s) dB(s), x ∈ B, (15)

whereF.P. denotes the finite part for all the improper integrals. The free terms for the sixteen singular integrals

will be derived by using the bump-contour technique and the limiting process in the next section.
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Taylor expansion of boundary density functions

Before deriving the free terms of the improper integral equations, the density functions (displacement, slope,

moment and shear force) are needed to be expanded to series form for order analysis. Therefore, we expand the

density functions by using the Taylor series in the BIE formulation as shown in Table 3. The density functions

are the Taylor expansions atx and they should be substituted into the dual integral equations when deriving the

free terms. The simplified forms of the density functions,u(x), θ(x), m(x) andv(x), under the condition of

nx = (0, 1) andtx = (−1, 0) are shown in Table 4 without loss of generality.

Explicit forms for the kernel functions and the order analysis for the asymptotic behavior

From the dual boundary integral equations in Eqs.(1)-(4), the contour integration pathB can be separated

asB = B′ + B− + Bε + B+ including the domainΩ surrounding the singularity as shown in Fig.1. For

convenience, it was assumed thatBε is an arc of a semi-circle centered at the field pointx with radiusε. The

integration pathBε denotes the contour integration around the singular point, andB′+B−+B+ is the definition

of the integration region of the Cauchy principal value. By adopting the boundary integral formulations and the

sixteen kernel functions, the notations generally employed in the Kirchhoff plate theory are briefly summarized.

Without loss of generality, we have the following notations as shown in Fig.1: (1) The position of the field

point: x = (x1, x2) = (0, 0). (2) The position of the source point:s = (s1, s2) = (ε cos θ, ε sin θ). (3)

Distance:r = |s − x|. (4) Vector component:yi = xi − si, i = 1, 2. (5) Normal vector of the field point:

n(x) = (n1, n2) = (0, 1). (6) Normal vector of the source point along the arc:n(s) = (n1, n2) = (cos θ, sin θ).

(7) Tangential vector of the field point:t(x) = (t1, t2) = (−1, 0). (8) Tangential vector of the source point:

t(s) = (t1, t2) = (− sin θ, cos θ). By employing the bump-contour technique and substituting the notations of

(1)∼(8) in Fig.1, we can derive the explicit forms of the sixteen kernels of the dual integral formulation. From

the asymptotic analysis of the above-mentioned kernels, the order analysis for the asymptotic behavior in the

kernels can be found in Table 5.

Potential due to the sixteen kernels for the bump integral

After defining the related symbols, sixteen kernel funtions and the density functions for the bump-contour
technique, we substitute them into the boundary integral formulations in Eqs.(1)-(4) and derive the free terms.
It is interesting to find that the order descends in a successive order for the sixteen integrals. Collecting all the
previous results after using the bump-contour technique, the finite part can be defined as

F.P.

∫
B

U(s, x)v(s)dB(s) = C.P.V.

∫
B′+B−+B+

U(s, x)v(s)dB(s), (16)

F.P.

∫
B

Θ(s, x)m(s)dB(s) = C.P.V.

∫
B′+B−+B+

Θ(s, x)m(s)dB(s), (17)
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F.P.

∫
B

M(s, x)θ(s)dB(s) = C.P.V.

∫
B′+B−+B+

M(s, x)θ(s)dB(s), (18)

F.P.

∫
B

V (s, x)u(s)dB(s) = C.P.V.

∫
B′+B−+B+

V (s, x)u(s)dB(s), (19)

F.P.

∫
B

Uθ(s, x)v(s)dB(s) = C.P.V.

∫
B′+B−+B+

Uθ(s, x)v(s)dB(s), (20)

F.P.

∫
B

Θθ(s, x)m(s)dB(s) = C.P.V.

∫
B′+B−+B+

Θθ(s, x)m(s)dB(s), (21)

F.P.

∫
B

Mθ(s, x)θ(s)dB(s) = C.P.V.

∫
B′+B−+B+

Mθ(s, x)θ(s)dB(s), (22)

F.P.

∫
B

Vθ(s, x)u(s)dB(s) = C.P.V.

∫
B′+B−+B+

Vθ(s, x)u(s)dB(s) +
4(3 − ν)

ε
u(x), (23)

F.P.

∫
B

Um(s, x)v(s)dB(s) = C.P.V.

∫
B′+B−+B+

Um(s, x)v(s)dB(s), (24)

F.P.

∫
B

Θm(s, x)m(s)dB(s) = C.P.V.

∫
B′+B−+B+

Θm(s, x)m(s)dB(s), (25)

F.P.

∫
B

Mm(s, x)θ(s)dB(s) = C.P.V.

∫
B′+B−+B+

Mm(s, x)θ(s)dB(s) − 4(1 − ν)(1 +
5ν

3
)
θ(x)

ε
, (26)

F.P.

∫
B

Vm(s, x)u(s)dB(s) = C.P.V.

∫
B′+B−+B+

Vm(s, x)u(s)dB(s) + [
8(ν − 1)(ν + 7)

3ε
]m(x)

+ [
(1 − ν)

3ε2
[3π(ν − 5) + 16ν]]θ(x), (27)

F.P.

∫
B

Uv(s, x)v(s)dB(s) = C.P.V.

∫
B′+B−+B+

Uv(s, x)v(s)dB(s), (28)

F.P.

∫
B

Θv(s, x)m(s)dB(s) = C.P.V.

∫
B′+B−+B+

Θv(s, x)m(s)dB(s) + [
4(−ν2 + 6ν + 7)

3
]
m(x)

ε
, (29)

F.P.

∫
B

Mv(s, x)θ(s)dB(s) = C.P.V.

∫
B

Mv(s, x)θ(s)dB(s) + [
8(ν − 1)(ν + 7)

3ε
]m(x) + [

(1 − ν)

3ε2
[3π(ν − 5) + 16ν]]θ(x), (30)

F.P.

∫
B

Vv(s, x)u(s)dB(s) = C.P.V.

∫
B

Vv(s, x)u(s)dB(s) + [
4(ν − 1)(ν − 1)

ε
]m(x)

+ [
1 − ν

3ε2
[3π(ν − 5) + 16(ν − 3)]]θ(x) + [

8(ν − 1)2

ε3
]u(x), (31)

whereC.P.V. andF.P. denote the Cauchy principal value and finite part, respectively. For the biharmonic

problem, we have the kernels with higher singularity than the hypersingularity which is termed unnamed singu-

larity by Guiggiani. Therefore, we denote them as the “finite part”. The boundary terms of the kernel integration

arise from the boundary integral equations naturally and can compensate the infinity of C.P.V.. Combining the

sixteen improper integrals, we have the boundary integral equations with the free coefficient of4π for a smooth

boundary. The free terms may result from different kernels instead of only one Cauchy kernel. Finally, all the

results of free terms and boundary terms are summarized in Table 6.

Conclusions

In this paper, the free terms of the DBIEs for the biharmonic problem were derived successfully. We adopted

the bump-contour technique surrounding the singularity and expanded the density functions by using the Taylor

series. After collecting the sixteen improper integrals for the smooth boundary, it is interesting to find that the

sum of the free terms in the four boundary integral equations are4π. Finally, the order analysis and the free
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terms of the sixteen kernels of the biharmonic equation are summarized in Table 6. The potentials of the sixteen

kernels can be interpreted as finite part and Cauchy pricipal value.
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Table 1 Free terms of dual BIE for the 2-D and 3-D Laplace problems 
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Table 2 Free terms of dual BIE for the 2-D and 3-D elasticity problems 

 
  2-D [4,6] 

 ),( xsUki  ),( xsTki  

2,2
2,1
1,2
1,1

==
==
==
==

ki
ki
ki
ki  

No jump 
2

)(
0
0

2
)(

2

1

xu

xu

−

−  

 ),( xsLki  ),( xsM ki

2,2
2,1
1,2
1,1

==
==
==
==

ki
ki
ki
ki

 

xs

xs

xs

xs

s
u

s
uG

s
u

s
uG

s
u

s
uG

s
u

s
uG

=

=

=

=









∂
∂

+
∂
∂

−
−−

−









∂
∂

+
∂
∂

−
−









∂
∂

+
∂
∂

−
−−

+−









∂
∂

+
∂
∂

−
−

1

1

2

2

1

2

2

1

2

2

1

1

1

2

2

1

)1(
)21)(1(8

)45(

)1(16
)43(

)1(
)21)(1(8

)41(

)1(16
)43(

νν
νν

ν

ν
ν

νν
νν

ν

ν
ν

 

xs

xs

xs

xs

s
uG
s
uG
s
uG
s
uG

=

=

=

=

∂
∂

−
−

∂
∂

−
−

∂
∂

−
−

∂
∂

−
−

|
)1(8

3

|
)1(8

|
)1(8

|
)1(8

2

2

1

2

1

1

2

1

ν

ν

ν

ν

 

       
 
 
 

 
 
 

Table 3 Taylor expansions for the density functions in the BIE formulation of plate problem 
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Table 4 Simplified forms of the density functions 
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Table 5 Order analysis for the sixteen kernels of biharmonic problem 
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Table 6 Free terms due to the bump integral for the biharmonic equation 
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Fig. 1 The considered boundary integration path for the 

two-dimensional biharmonic problem. 


