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1 Vibration of plates

)
A

=

u(x)
Governing Equation: I

Viu(x) = A u(x), xe O

@ 1Is the angle frequency

24 = @7 PN imenicqperHRYe density

D -alidpraedptasen thickness
E h?3 D is the flexyral rigidity
D UERCYs RAEAVIEHY s modulus

12 (1 — v ) aik dif the Rhisspiatatio
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M Fundamental solution
/
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A

=

The fundamental solution satisfies

VU (s, X) =AU (s, X) = -0(X—5)

U (s, X) =&[Wr)—iJo(m+§(Ko<zr)—ilo(zr»l

@ 2004 International Conference on Computational Methods 6 @
Department of Harbor and River Engineering, National Taiwan Ocean University



v Fleld representation using MFS

@ Source point
Interior problem Exterior problem

Field representation
u(x;) = ZCj (S, X)
J
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v The other three kernels

|
]

Displacement to slope operator
(s, X) =@U (S, X))
Displacement to normal moment operator
M (s, %) =(S,IU (s, %))

Displacement to effective shear operator

V (s, X) =®U (s, X))
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Y Explicit forms for operators
/
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Ne () — E

R, ()= W2 () +(1-v) %n(;)

W D a-1)< £ gb

N ()=
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M Displacement, Slope, Moment and Shear
/

|
)

Displacement 2N

(0= X P (s, X)P(s,)+ 2 (s, 0(,)

0(x) = Z Po (S5, %) P(s, )+ZQ9 S5, X)q(s;)

Normal moment 2N

m(x)_ZP (s, X)p(s;) + ZQ (s;,%)a(s;)

Effective shear 2 N

V(X)—Z P,(s;,X)p(s;) + ZQ (s;,%)a(s;)

@ 2004 International Conference on Computational Methods 10 @
Department of Harbor and River Engineering, National Taiwan Ocean University




v Problem statement

.........
..........
. .
°® ®e
TR Se
. .
. .
® ©
.

esescoo®oce,,
.
. ®e

o® ®e

.
ooooo
.

®e

eoe o
°° .
® ®e

v

. .
.....
. .
.
o, o®
........
oooooooooo

.
., .
LY P
. .

.o .o
........
--------------

-....eeeeeeo. Collocation point distribution (real boundary)
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v Matching boundary condition
/

)
A

=

The clamped-clamped case Is considered

0] [U11 u12'”¢1\+'®11 O12 | ¢1]
R < > 3 ;
0] |U21 U22||g2] |©21 ©22]|p2
ro‘> U11, u129'”¢1‘+'®119 12, |[ ol
< = < > < s
0] |U21, U22,||¢2] |©21, ©22, | 02
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v Matrix assembling

U1l
u21
U1l,
u21,

U12
U22
U12,
U22,

e11
®21
e11,
®21,

012
©22
012,
022,

det[SM<c]=0
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Y Degenerate kernels for circular case

Y4 Y,
A A weeeececs 5
........ Pescoe,, . EE
esiyte., U

R, e
(0,0) / - > X2

(0,0)

U'(R6;p,0)= i %{Jm(ip)[Ym (4R) —i~]m(/1R)]+%(—1)m I, (AP)[(-D)" K, (AR) il , (AR)]}cos(m(6 - ¢)), R> p,

UERGp )= Y %{JmuR)[Ym(zp)—iJm(zp)]+§(—1)mIm(zR)[(—l)mKm(zp)—ilm(zp)]}cos(m(e—qﬁ», R<p,
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v Circulants

<
= d

Discritization into 2N nodes on the circular boundary

d, q a, - Ay, Ay,

AN -1 dy Qq ot ANz By
o P d,v . a A,y d,n

[Ull]: 2|?| 2 21.\| 1 .o 2r?| 4 2|?| 3
a, 3 4 d, Y

B a, d; v Ayyg d, |

[U11]= 8l +a,Cyy +a, (CZN )2 T a2N—1(C2N )ZN_l
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Circulants
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1 Elgenvalues
/

|
)

A B3, ()Y (i) -3, ()] +- 1, (1)K, (i)~ (D", (22T}
T
A B, (R, (48—, (D] +2 1, (ZR)K,, (20) ~ (1", (20T}
T
A =B g3, (A0 (D)3, ()] +2 1, (K., () ~ (-1, (D)}
T

I = %{Jm (A0)[Y,, (Ab") —1J  (4D")] 2 I (D)K., (Ab") = (=D)"il , (AD)]}
T
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¥ Similar transformation

By using the similar transformation

u11]=0x,,,,@"

A [U11] 4[U11] 4[U11] [Ull] [U11]
2[U11] _dlag(/lo AT TALTT AN AN )

1 (eZﬂi/ZN)O
1 (e27ri/2N)1
1 1 (eZﬁiIZN)Z

1 (e27ri/2N)2N—2
_l (627z'i/2N)2N—1

&

(e—27ri/2N )0
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(e—2ﬂ'i/2N )2
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¥ Similar transformation
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- r - ~H
® 0 0 Of 2y 2y Zeuwy Z[®12] ® 0 0 O
[SMCC]— 0 & 0 O Z[uzl] Z[u22] Z[@21] Z[@22] 0O & 0 O
0 0 @ 0| 2y, Zuw,) 2w Zez;| [0 0 @& 0
0 0 0 @ 2ua, 2wz, Zez] 22| 0 0 0 @
I Ly 2] Zen]  X[ei] _
> > > >
det[SM CC]:det [U 21] [U 22] [©21] [©22]
Zuw,] iz, Zen,] 1z,
2[u21¢9] L, Ze2,] 2[(9229]_8,\]}(8,\1
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True and spurious eigenequations

det[sM * |= lﬂ[det([TrﬁC][Sﬁ]@])

J,(da) Y,(4a) 1,(4a) K,(4a)
[T = Jn(4b) Y, (4b) 1,(4b) K (4b)
"1 an(aa) Yi(da) I;(Za) Kj(a)
35, (4b) Y, (Ab) 17 (Ab) K[ (4b)]
True eigenequation
~iJ, (1a") Y, (Ab) —iJ,, (Ab") —iJ! (1a")
J, (1) 0 J (Aa')
- (=D"i 2 l, (1a) E[|<m (A0") = (=D)"il ,(Ab)] - (=D)"i 2 I, (1a)
EIm(/la') 0 EIr’n(/la’)

m=—(N-1)

Spurious eigenequation

&

Y!(A') —id! (Ab')

2 Ik (D) — (“D)"il, (4]
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v Discussion of spurious eigenequation

)
A

=

det[SY°] = det[S (a")]det[S,. (b")] = O

det[s,, (b)] ==

T

Y. (Ab)—id_(Ab") Y! (Ab)) =i’ (Ab")
Kn(A0)=i(=D)" 1, (Ab") K (Ab")—i(=1)" I (4b")

Never zero for any A
I (") I, ()
| (1a") |, (4a")

det[S, ()] = =

T

J, (@), (A2) +1,(22)],.,(Aa) =0
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v True eigenequation of clamped plate
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‘] v (ﬂ“a) I /+1 (Za) + I v (ﬂ“a) ‘J /+1 (Za) — O
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v SVD updating technique
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_(SM CC)H i

| My

By using SVD technique and the least-squares method, we have

J,(48) Y, (4a) 1,(ia) K, ()
J,(Ab) Y, (4b) I,(4b) K, (Ab)
J(Aa) Y(ha) 14(da) K, (Aa)
J5,(Ab) Y, (Ab) 1. (Ab) K/ (Ab)
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v Burton & Miller method

/

|
)

[sm 1+ i[SMfC]]{ﬁ} -{0}

True eigenequation is obtained

1,(48) Y,(4a) 1,(ia) K, (la)
J,(Ab) Y, (4b) I, (4b) K, (ib)
Ji(Aa) Yi(da) 1,(28) K (a)
J7,(Ab) Y. (Ab) 1, (Ab) K/ (Ab)
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Numerical example
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«+seseeeeeees Collocation point distribution

s+eeeeeeeeeee Source point distribution
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Numerical result (U- @ formulation)

-320 — b !
|
I |
o1 :
o1 |
T |
-360 — <9.450>1 | |
94471 1|
— [
= T :
L <9.500>1
© (9.499) |
S, T
D -400 — [
3 <9.660> |
(9.660) |
T,
<9.940>
(9.945)
-440 —
< >:present approach T: True eigenequaiton
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v Burton & Miller method
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¥ Conclusions
/

1. The mathematical analysis has shown that spurious eigenvalues
occur by using degenerate kernels and circulants.

2. The positions of spurious eigenvalues for the annular problem
depend on the location of inner fictitious boundary where the
sources are distributed.

3. The spurious eigenvalues in the annular problem are found to be
the true eigenvalues of the associated simply-connected problem
bounded by the inner sources.

4. SVD updating technique and Burton & Miller method were used
to filter out the spurious eigenvalues successfully.

5. For the membrane case, one paper of EABE Is in press.
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Welcome to Mechanics, Sound and
Vibration Laboratory

http://ind.ntou.edu.tw/~msvlab/
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The End

Thanks for your Kind attention
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