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Spurious eigensolutions of the Laplace operator for annular problems was pointed out by Kitahara when the BIEM and BEM are employed to solve the eigenproblem. Later, Chen et al. treated this problem by using some remedies. The spurious eigensolution also appears for the biharmonic operator in the plate vibration. In this lecture, we demonstrate the occurrence of the spurious eigenvalues in the direct BEM, the null-field integral equation method and the fictitious BEM. Both the continuous formulation (BIEM) and discrete system (BEM) are discussed through an annular case. Three remedies, Burton & Miller approach, SVD updating technique and CHIEF concept, are employed to filter out the spurious eigenvalues. Numerical examples of annular plates and membranes are demonstrated to show the appearance of the spurious eigenvalues and the efficiency of the proposed remedies.  
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1. Introduction. The occurrence of the spurious eigenvalues in the BEM has been reported by Tai and Shaw (1974), De Mey (1976, 1977), Hutchinson et al. (1979, 1985), Kitahara (1985) and Chen and his coworkers (1997~2003). Generally speaking, the spurious eigenvalues occurs in two aspects: one is for the simply-connected eigenproblem by using the real-part or imaginary-part BEM; the other is for the multiply-connected eigenproblem even though the complex-valued BEM is utilized. Chen et al. (2001~2003) studied the spurious eigenvalues and proposed several techniques to avoid the appearance of the spurious eigenvalues for annular problems. However, it was limited for the Laplace operator. Lin (2003) has extended to biharmonic operator for the plate problem instead of membrane or acoustics. In this lecture, three kinds of formulations, the direct BEM, the null-field integral equation method and the fictitious BEM are proposed. We will examine the occurring mechanism of the spurious eigenvalues for the annular problem when the BIEM and BEM are utilized. Not only continuous system in BIEM but also discrete system in BEM are discussed. Three regularization techniques, Burton & Miller method, SVD updating technique and CHIEF method are proposed. Numerical results are illustrated to show the validity. 
2. Boundary integral equations for multiply-connected eigenproblems. The
governing equation of the eigenproblem is
	
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where and μ are the operator and eigenvalue as shown in the Table 1 for membrane and plate cases, u and D are the displacement and the domain of interest, respectively. The boundary conditions which we considered for membrane and plate problems are listed in the Table 1.  

Essential boundary integral equations  

On the basis of the dual boundary integral formulation (Chen 2000), the essential boundary integral equations are shown below:  

For the membrane problem, we have
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where C.P.V. and R.P.V. denote the Cauchy and Riemann principal values, respectively, x is the boundary point, s is the source point, B is the boundary andαis the interior angle of the boundary at x.  
For the plate problem, we have 
	
[image: image6.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

ò

ò

Q

+

-

=

a

B

B

s

dB

s

m

x

,

s

.

V

.

P

s

dB

s

v

x

.

s

U

.

V

.

P

x

u


	(3)

	
[image: image7.wmf](

)

(

)

(

)

(

)

(

)

(

)

ò

ò

+

q

-

B

B

,

s

dB

s

u

x

,

s

V

.

V

.

P

s

dB

s

x

.

s

M

.

V

.

P

 
[image: image8.wmf],

B

x

Î


	

	
[image: image9.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

ò

Q

ò

q

q

+

-

=

aq

B

B

s

dB

s

m

x

,

s

.

V

.

P

s

dB

s

v

x

.

s

.

V

.

P

x

U


	(4)

	
[image: image10.wmf](

)

(

)

(

)

(

)

(

)

(

)

ò

ò

q

q

+

q

-

B

B

,

s

dB

s

u

x

,

s

.

V

.

P

s

dB

s

x

.

s

.

V

.

P

V

M

 
[image: image11.wmf],

B

x

Î


	


Natural boundary integral equations
The natural boundary integral equations are shown below:  

For the membrane problem, we have
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where t(x) is the directional derivative of u(x) along the outer normal direction at x, and H.P.V. denotes Hadamard principal value.  

For the plate problem, we have
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In the membrane problem, the U(s,x), T(s,x), L(s,x) and M(s,x) represent the four kernel functions (Chen 2000). In the plate problem, u,θ, m and v mean the displacement, slope, normal moment and effective shear force, respectively. The U(s,x), 
[image: image21.wmf]Q

(s,x), M(s,x), ... and Vv(s,x) kernels represent the sixteen fundamental solutions (Lin 2003). The null-field BIEs of Eqs.(2)~(7) based on the direct method are shown below:  

For the membrane problem, we have
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For the plate problem, we have
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where De is the complementary domain and the kernels are the same as listed in Chen (2000) and Lin (2003). Note that the null-field BIEs are not singular. In order to avoid singularity, the fictitious boundary formulation is another choice as well as the null-field formulations. Here, we present the fictitious BIEs adopting the essential potential and natural potential approaches of the indirect method. For the essential potential approach, the essential density 
[image: image38.wmf]e

f

 is distributed on the fictitious boundary 
[image: image39.wmf]B

¢

 and the field solutions are represented in terms of the essential potential.
For the membrane problem, we have
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For the plate problem, we have
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For the natural potential approach of the indirect method, the formulations are shown below:  

For the membrane problem, we have
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For the plate problem, we have 
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where the natural density 
[image: image52.wmf]n

y

 is distributed on the fictitious boundary
[image: image53.wmf]B

¢

.
3. Occurrence of the spurious eigenvalue in the BIEM (continuous system). Since the membrane case is simpler than the plate problem, only the plate is demonstrated here. We consider an annular plate clamped on the outer circle
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where the superscript “
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 ” denotes the clamped-clamped case, 
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where 
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Also, the coefficients of 
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By using the properties of the determinants, we can decompose the Eq.(36) into
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It is noted that the matrix 
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After comparing with the analytical solution for the annular plate (Leissa 1969), the former matrix 
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By adopting the appropriate degenerate kernels and Fourier series expansion for the singularity distribution, the spurious eigenvalues can be obtained in the null-field integral approach and the fictitious BEM in a similar way. For the easier case of membrane, the corresponding degenerate kernel is also simpler. Also, only one boundary density instead of two boundary densities is needed to be expanded in term of the Fourier series expansion. In addition, only one essential or one natural boundary integral equation is needed to derive the true and spurious eigenequation.

4. Occurrence of the spurious eigenvalue in the BEM (discrete system). In the same way, only the plate case is demonstrated here. We consider an annular plate clamped on the outer circle 
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where the matrices 
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where the superscript “
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 ” denotes the clamped-clamped case and
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For the existence of nontrivial solution, the determinant of the matrix versus 
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 must be zero, i.e.,
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Since the rotation symmetry is preserved for a circular annular boundary, the influence matrices for the discrete system are found to be the circulants. We can obtain the influence matrices (
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Since 
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 is orthogonal, the determinant of 
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By employing the properties of the determinants, matrix decomposition and all the eigenvalues of the sixteen influence matrices, we can simplify the Eq.(47) to
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where
	
[image: image205.wmf][

]

,

)

b

(

I

)

b

(

I

i

)

b

(

J

)

b

(

J

i

0

))

a

(

I

i

)

a

(

K

(

0

))

a

(

J

i

)

a

(

Y

(

)

b

(

I

)

b

(

iI

)

b

(

J

)

b

(

iJ

0

))

a

(

iI

)

a

(

K

(

0

))

a

(

iJ

)

a

(

Y

(

S

4

4

4

4

u

´

´

q

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

l

¢

l

¢

l

¢

l

¢

l

¢

+

l

¢

l

¢

+

l

¢

l

l

l

l

l

+

l

l

+

l

=

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l


	(49)


and
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It is noted that the matrix 
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 formulation. Zero determinant in the Eq.(48) implies that the eigenequation is
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After comparing with the analytical solution for the annular plate (Leissa 1969), the former matrix 
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 in the Eq.(51) results in the spurious eigenequation while the latter matrix 
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 results in the true eigenequation. The results of the Eq.(50) in the discrete system match well with the former one in the continuous system of the Eq.(39).
For the easier case of membrane, all the matrix dimensions in Eq.(48) are reduced half since biharmonic operator is reduced to Laplace operator. By adopting the appropriate degenerate kernels and Fourier series expansion for the singularity distribution, the spurious eigenvalues can be obtained in the null-field integral approach and the fictitious BEM.
5. Treatments of spurious eigenvalues for the plate eigenproblem 

5.1 SVD updating technique
The true eigenvalue must satisfy all the Eqs.(10) ~ (13) at the same time by using the BEM. After rearranging the terms of the Eqs.(41) and (42), we have
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Similarly, the Eqs.(12) and (13) yield
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For the clamped-clamped case by using the SVD technique of updating term (Chen et al. 2003), we have
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where
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By plotting the minimum singular value of [C] versus , one has a curve which drops at the positions of true eigenvalues.

5.2 Burton & Miller method 

By combining the Eqs.(52) and (53) with an imaginary number in the BEM, we have 
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The determinant of the 
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 is obtained by using the circulant and the decomposition technique as
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Since the term 
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 is never zero for any , we can obtain the true eigenvalues by using the BEM with the Burton & Miller concept. Nevertheless, if we combine the u,  and m, v formulations or u, v and , m formulations, the method fails. The reason is that the u, v and , m formulation have the same spurious eigenequation. Only the combination of u, m and , v formulation can obtain the true eigenvalues. Since any two equations in the formulation results in the spurious eigenvalues, we can reconstruct the independent equation by employing the Burton & Miller concept. When we choose the appropriate combinations, the Burton & Miller method works well.
5.3 CHIEF method
By adding the point with a radius  for the null-field integral equation to solve the eigenproblem of annular plate, we have two choices for the location of CHIEF point (b) or CHEEF point (a). If the CHEEF point locates on the outer the domain (a), the CHEEF method fails (Chen et al. 2003 and Lin 2003). By moving the field point x to be outside the domain (b) for the CHIEF points, we have
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where the index C denotes the CHIEF point in the null-field equation and the matrix dimension 
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 kernels due to the CHIEF point. Combining the Eqs.(52) and (58) together to obtain the overdetermined system, we have
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where 
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Therefore, an overdetermined system is obtained to filter out the spurious eigenvalues.
For the easier case of membrane, three remedies, Burton & Miller approach, SVD updating technique and CHIEF concept, can also be employed to filter out the spurious eigenvalues.
6. Numerical results and discussions.
Membrane problem  

An annular membrane with the outer radius of two meter (a = 2 m) and the inner radius of 0.5 meter (b = 0.5 m) of B1 and B2, respectively, is considered.

Fig. 1(a) shows the minimum singular value  of the matrix versus the wave number k for the annular membrane with the Dirichlet boundary condition using the essential boundary integral formulations. Both the true and spurious eigenvalues occur simultaneously. The SVD technique of updating term, Burton & Miller method and CHIEF method can extract the true eigenvalues and filter out the spurious one as shown in Fig. 1(b) ~ 1(d). After the treatment using the three remedies, the drop of the spurious eigenvalues (4.82) disappears. Good agreement is made, only the true eigenvalues are obtained. Spurious eigenvalue of k=4.82 occurs as predicted to be the true eigenvalues of the clamped circular membrane with a radius 0.5 meter.

Plate problem
An annular plate with the outer radius of one meter (a = 1 m) and the inner radius of 0.5 meter (b = 0.5 m) of B1 and B2, respectively, and the Poisson ratio  is considered.
Fig. 2(a) shows the minimum singular value  of the matrix versus the frequency parameter  for the free-free annular plate using the essential boundary integral formulations. Both the true and spurious eigenvalues occur simultaneously. The SVD technique of updating term, Burton & Miller method (u, m and , v formulations) and CHIEF method can extract the true eigenvalues and filter out the spurious one as shown in Figs. 2(b) ~ 2(d). After the treatment using the three remedies, the drop of the spurious eigenvalues (6.392 and 9.222) disappears. Good agreement is made, only the true eigenvalues are obtained. Spurious eigenvalues of 6.392 and 9.222 occur as predicted to be the true eigenvalues of the clamped circular plate with a radius 0.5 meter.  
7. Conclusions. Boundary integral equation method (BIEM) and boundary element method (BEM) have been employed to solve the membrane and plate eigenproblems in a unified way. The essential and natural boundary integral equations are analyzed through degenerate kernels and Fourier series. Boundary element discretization for the annular cases was implemented through circulants. The true and spurious eigenequations were derived analytically by using the Fourier series, degenerate kernels and circulants in both the continuous system (BIEM) and discrete system (BEM) while the eigenvalues were determined numerically. Three alternatives (SVD updating technique, Burton & Miller method and the CHIEF method) were adopted to suppress the occurrence of the spurious eigenvalues for the annular cases in the BEM. Good agreement is made, only the true eigenvalues are obtained. Although the annular case lacks generality, it leads significant insight into the occurring mechanism of true and spurious eigenequation for multiply-connected eigenproblems. The proof is only limited to the annular case, it is a great help to the researchers who may require analytical explanation for the reason why the spurious eigenvalues appears for the multiply-connected problems. The same algorithm in the discrete system can be applied to solve arbitrary-shaped plates numerically without any difficulty. Nevertheless, mathematical derivation in the continuous and discrete systems can not be done analytically. 
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