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Abstract. In this lecture, recent development of the dual BEM in acoustic problem is
presented. The role of hypersingular integral equation in the dual BEM for the problems
with degenerate boundary is examined. First, the dual integral formulation is proposed.
Based on the formulation, we develop four methods — the dual complez-valued BEM,
the real part of dual BEM, the dual real-valued MRM, and the complete complex-valued
MRM. After constructing the dual MRM, spurious eigenvalues in the conventional MRM
can be filtered out. It is also found that the complete MRM with infinite terms of series
15 equivalent to the dual complex-valued BEM if the constant potential in the zeroth-order
fundamental solution is chosen to be an appropriate complex value. The dual formulation
can be applied to solve acoustic problems with degenerate boundaries. An illustrative ex-
ample of acoustic frequencies of a cavity with an incomplete partition are determined by
the four methods. The results are compared with those of FEM and experiment. Good
agreement is made.
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1. INTRODUCTION

The boundary element method, sometimes referred to as the boundary integral equa-
tion method, is now establishing a position as a natural alternative to the FEM in many
fields of engineering. The dual boundary element method, or so-called the dual boundary
integral equation method developed by Chen and Hong, is particularly suited for problems
with degenerate boundary. Mathematically speaking, the hypersingular integral equation
was first formulated by Hadamard [1] to treat the cylindrical wave equation by spher-
ical means of descent. In the meantime, Mangler derived the same mathematical form
in solving the thin airfoil problem [2]. The improper integral was then defined by Tuck
[3] as the “Hadamard principal value”. In aerodynamics, it was termed the “Mangler’s
principal value” [2, 4]. Such a nonintegrable integral naturally arises in the dual integral
formulation especially for problems with a degenerate boundary, e.g., crack problems in
elasticity [5, 6, 7, 8, 9, 10], heat flow through a baffle [11], Darcy flow around a cutoff
wall [12, 13], the aerodynamic problem of a thin airfoil [4] and acoustic waves impinging
on a screen [14, 15]. The dual formulation also plays an important role in some other
problems, e.g., the corner problem [16], adaptive BEM [17], and the exterior problem [18].
A general application of the hypersingular integral equation in mechanics was discussed
in [19], and a review lecture on recent development of dual BEM was presented in [20].
Combining the conventional integral equation, e.g., the Green’s Identity or Somigliana
Identity, with the hypersingular integral equation, we call the two equations “dual inte-
gral equations” due to the symmetry and transpose symmetry properties of the kernels.
21, 22, 23]. From the above point of view, the definition of the dual integral equations is
quite different from the conventional one used in crack elastodynamics by Buecker [24].
The dual equations in the present paper are independent with respect to each other for
the undetermined coefficients of the complementary solution. The dual integral equations
defined by Buecker resulted from the same equation but by collocating different points.
The present formulation totally has four kernel functions, which make possible a unified
theory encompassing different schemes, various derivations and interpretations. For elas-
ticity, a detailed derivation can be found in [5]. The singularity order of hypersingularity
for the kernel in the normal derivative of the double layer potential is stronger than that
of the Cauchy type kernel by one. The paradox of the nonintegrable kernel is introduced
due to the illegal change of the integral and trace operators from the point of view of the
dual integral formulation [21]. In order to ensure a finite value, the Leibnitz’s rule should
be considered as the derivative of C.P.V. so that the boundary term % can be included to
compensate for the minus infinity. In the literature, many researchers have paid attention
to regularization techniques [25] for hypersingularity and nearly hypersingular integrals.
Therefore, the value for the finite part can be determined by means of regularization
techniques. Based on the theory of dual integral equations, the dual boundary element
method can be implemented[9, 10]. The dual integral representation for the Laplace equa-
tion was proposed in [22] and a general program, BEPO2D, was developed [21]. In the
same way, the acoustic problem with a degenerate boundary also requires the dual integral
formulation. In the literature, a large number of papers have focused on the nonphysical
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solution for the exterior problem of the Helmholtz equation by using the integral equation
method. Burton and Miller [27] first combined the dual integral equations to deal with
fictitious eigenvalues. Furthermore, the conventional multiple reciprocity method(MRM)
also encounters spurious eigenvalues for the interior problem of the Helmholtz equation
[28]. Both cases, the exterior problem by BEM and the interior problem by MRM, have
problems with nonuniqueness for the solution. However, for the interior problem with a
degenerate boundary, conventional BEM also results in a singular system, and the problem
of nonuniqueness also occurs. Terai [14] and Wu et al. [15] solved the three-dimensional
acoustic problem with a screen by using the dual integral formulation. A general program,
DUALHAK, was developed to solve the acoustic frequencies and modes for a cavity with
an incomplete partition in [31, 32].

In this paper, the dual integral equations was constructed for acoustic problems
with degenerate boundaries. Based on the dual formulations, four methods — the dual
complex-valued BEM, the dual real-valued MRM, the real part of the dual BEM and
complete complex-valued MRM, were proposed. An illustrative example for the acoustic
frequencies of a cavity with an incomplete partition was demonstrated to show the validity
of the four methods. Results were compared with those of FEM by Petyt [33, 34] and
ABAQUS. Also, the experimental data by Petyt [33, 34] are available.

2. DUAL INTEGRAL FORMULATION FOR AN ACOUSTIC PROBLEM
WITH A DEGENERATE BOUNDARY
Consider an acoustic problem which has the following governing equation:

V2p(x) + k*¢(x) =0, x € D, (1)

where D is the domain of interest, x is the domain point, ¢ is the acoustic pressure and
k is the wave number defined by the angular frequency divided by the sound speed. The
homogeneous boundary conditions are shown as follows:

o(x)=0,x € B (2)
O9(x) _
O =0, x € B, (3)

where B is the essential boundary in which the acoustic pressure is prescribed, B, is the
natural boundary where the normal derivative of the acoustic pressure in the n, direction
is specified, and B; and B, construct the whole boundary of the domain D.

The first equation of the dual boundary integral equations for the domain point can
be derived from Green’s third identity :

21 (x) = /B T(s,x)é(s)dB(s) — /B U(s,x)agi)dB(s), x € D, (4)
where T'(s, x) is defined by o
T(s,x) = %, (5)
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in which ng represents the outnormal direction at point s on the boundary and U(s, x) is
the fundamental solution which satisfies

V2U(x,s) + k*U(x,s) = 0(x —s), x € D, (6)

where 0(x —s) is the Dirac delta function. After taking the normal derivative with respect
to Eq.(4), the second equation of the dual boundary integral equations for the domain
point can be derived:

o /Ms x)6(s)dB(s) — /BL(s,x)agi)dB(s), x € D, (7)

where  U(s.x)
L(s,x) = “on. (8)
M(s,x) = %2;:), (9)

in which ny represents the outnormal direction at point x. The explicit forms of the four
kernel functions will be elaborated later on. By moving the field point = in Eqs.(4) and
(7) to the smooth boundary, the dual boundary integral equations for the boundary point
can be obtained as follows:

7H(x) = C.P.V. /B T(s,x)6(s)dB(s) — R.P.V. /B U( ,x)a;ES)dB(s), x € B, (10)
aﬁéx) H.PV. [ M(s,x)6(s)dB(s) — C.PV. [ L(s ‘“ﬁiumsx x € B, (11)

where R.P.V. is the Riemann principal value, C.P.V. is the Cauchy principal value and
H.P.V. is the Hadamard (Mangler) principal value.

It must be noted that Eq.(11) can be derived simply by applying the normal derivative
operator to Eq.(10). Differentiation of the Cauchy principal value should be carried
out carefully using Leibnitz’s rule. The commutative property provides us with two
alternatives for calculating the Hadamard principal value in the same way used for crack
problems [5]. For the problem including a normal boundary S and degenerate boundary
Ct+C,ie,B=S+C"+C7, Egs.(10) and (11) can be reformulated as follows:

For x € S, Eqgs.(10) and (11) become

T6(x) = C.PV. / T(s,x)$(s)dB(s) — R.P.V. /S U(s,x)a;gs)dB(s)

+/ T(s, x)Ad(s)d ()—L+U(s,x)zagés)

dB(s) (12)

S
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wag)g) — H,P,v./ M(s,x)¢(s)dB(s) —C.P.V./SL( ,X)ag(?dB(s)
+/ (s, %) Ag(s)dB(s )—/C+ L(s,x)za;i)dB(s)’ 3)
where
Aofs) = ofs7) — o(s) "
S = s+ ) (15)
For x € C'*, Egs.(10) and (11) reduce to
"So(x) = C.PV. [ +T(S,X)Ad)(s)d (s) - R.PV. / )Za;i)dB(s)
+ [ T(s.x)0(s)dB(s) ~ [ U(s ans 998) 1 3(s), "
82575)() = HPV. [ M(s.x)00(s)dB(s) = C.PV. [ L(S’Xma;:) 4B(s)
e x0(e)Be) - [ 1460 Va6 (%)
where
A SuR R (18)
A%(X) - gi( - gi( ) (19)

Eqgs.(14), (15), (18) and (19) indicate that the unknowns on the degenerate boundary
double, and that the additional hypersingular integral equation, Eq.(17), is correspond-
ingly necessary; i.e., the dual boundary integral equations can provide us with sufficient
constraint relations for the doubled boundary unknowns on the degenerate boundary.

Based on the dual integral formulation, four methods can be treated as special cases
and are discussed in the following subsections.

2.1 Dual complex-valued BEM
For simplicity, a two-dimensional case is considered here. The closed forms of the
four kernels in the dual complex-valued BEM are shown below:

)
i H (

Uls.x) — ”+(T) (20)

T(s,x) = _ZQWH{”(/W)@ (21)
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k i
L(s,x) = %H{”(mﬂ (22)
r
—ikr . HY(k H" (k
M) = Ty, o B, 23
2 r? r
where i = —1, r =| x —s |, H" (kr) denotes the first kind Hankel function with order n,

and n; and n; denote the ith components of the normal vectors at s and x, respectively.

2.2 Dual real-valued MRM
By employing the conventional MRM [26, 29, 36], we have the two kernels

U(s,x) = U%s,x) — k*U'(s,x) + k*'U?(s,%x) + - - (24)
T(s,x) = T°s,x)— k*T"(s,x) + k*T%(s,x) + -, (25)
where the explicit forms of U?(s,x) and T7(s, x) will be introduced later. In order to filter

out the spurious modes, the dual MRM proposed the hypersingular integral equation with
the following two kernels

L(s,x) = L°s,x)—k?L*(s,x) + k' L*(s,x) + - - - (26)
M(s,x) = M°s,x)—k*M"'(s,x) + K*M?*(s,x) + - - -, (27)
in which
, J
L](S7X) = %S;X)? j:071727"' (28)
: 92U (s,x)
j _ — -
Wisx) = 20 G0 (29

The explicit forms of the jth terms in the four kernels by using the dual real-valued MRM
are

U’(s, x) rIn(r)A(j) — r¥ B(j) (30
T (s, x) —[(2jln(r) + )r* " 2ym] A(G) + [25r% 2yini B(j) (31)
L(s,x) +[(2jin(r) + D)r* " 2yn] A(G) — (2572 2] B(5) (32)
M (s,x) —[(45(5 — Din(r) + 45 — 2)r* ymyne] A(5)

~[(21n(r) + 1r¥ i AG)

+[45(5 — 1)r¥ ymyeie] B(5)

+[25r% ;0] B(j). (33)

where A(j) and B(j) in Eq.(30) can be found in [29, 36]. After constructing the hypersin-
gular integral equation, the dual MRM can filter out the spurious modes and frequencies.
Nevertheless, the dual MRM can not solve the problems with impedance boundary con-
ditions since the information on the imaginary part is lost. Also, this is the reason why

6



J. T. Chen

the conventional MRM with only UT' equation can not solve for the exterior problems
since the method can not satisfy the radiation condition. The applications of dual MRM
to the vibration problems of a rod and a beam can be found in [26, 37].

2.3 Real part of dual BEM
According to the findings by Yeih et al. [28] and Kamiya et al. [35], the series forms
of the kernels in the dual real-valued MRM are no more than the real parts of the closed-

form kernels in the dual complex-valued BEM. The closed-form kernels for the real part
of dual BEM are shown below:

Us,x) — RG{W} (34)
T(s,x) — Re{_gk”Hf”(kr)@} (35)
L(s,x) — Re{ikTWHl(l)(kr)yiTﬁi} (36)
M(s,x) = Re{_gkﬂ{—kHéligkr)yiyjniﬁj+wniﬁi}} (37)

where Re denotes the real part. In the same way, this method has the problem of spurious
modes as the real-valued MRM does if the singular integral equation (UT equation) is
only used. Also, this method as well as the dual real-valued MRM, can not treat the
exterior problems and interior problems with impedance boundary conditions. The main
advantage of this method is that it can solve problems in the real domain without the
lengthy derivation of the series kernels in MRM.

2.4 Complete complex-valued MRM

Recently, Yeih et al. [28] proposed a complete MRM which can recover the informa-
tion of the imaginary part. The main difference between the complete MRM and dual
complex-valued BEM is the kernel representation. The kernels in the complete MRM are
the same as those of dual complex-valued BEM after series expansion. The series forms
can be represented by

Uls.x) = g;)(—k?)wj(s,x) (39)
Tisx) = =X 3)
L(s,x) = %j}’(x) (40)
Mis) = SO ()
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where 1
Us(s,x) = In(r) + (y +In(3)) = 2= =0 (42)
I )
U(s,x) = ARy (1n(r) = S)) + By + () + Ty, j=1.23+  (13)
in which

7=l (35— () (14)

Joe =1
r2
5= Gy )
1
S = Z 7 (46)

It is interesting to find that the difference between U°(s,x) in Eq.(30) for j = 0 and
Up(x,s) in Eq.(42) is only a complex constant which can make the kernel in the complete
MRM satisfy the radiation condition. Also, the kernel functions of the complete MRM in
Eq.(38) with infinite terms can be proved to be equal to that of the dual complex-valued
BEM in Eq.(20) after series expansion.

3. AN ILLUSTRATIVE EXAMPLE

To demonstrate the validity of the four methods using dual formulation, an example
given by Petyt [33, 34] is considered. A two-dimensional cavity enclosed by rigid walls is
shown in Fig.1. The cavity is a rectangle, 236 mm long and 113 mm high, and contains
a rigid partition located halfway along the longer side of the cavity. The thickness of the
partition is modeled as zero thickness; i.e., the boundary of partition is degenerate. The
partition extends from one side of the cavity halfway across to the other wall. The cavity
is filled with an acoustic fluid whose density is 1.0 kg/m? and whose bulk modulus is
0.1183 MPa. The former five acoustic frequencies given in Table 1 were solved using the
four methods, and the results were compared with those of ABAQUS program [29, 30]
and FEM by Petyt [33, 34]. Two types of elements in the ABAQUS program, AC2D4 and
AC2DS8, were considered. Although no mesh convergence studies have been performed,
the close agreement between the acoustic frequencies and the acoustic modes of the present
results in coarse mesh and those given by Petyt et al. suggests that the mesh is adequate.
For the first mode, the present results are also in better agreement with the experimental
data obtained by Petyt than they are with the data obtained using other numerical
methods.

4. CONCLUSIONS

The general formulation of the dual integral equations of the boundary value problem
for the two-dimensional Helmholtz equation with a degenerate boundary has been derived
in this paper. Four methods based on the dual formulation, the dual complex-valued BEM,

8
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the dual real-valued MRM, the real part of dual BEM and the complete complex-valued
MRM, have been proposed. An illustrative example has been successfully solved using
the four methods, and the results have compared well with those obtained using other
numerical methods and experiments.
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Table 1. The former five acoustic frequencies(Hz) using different methods

mode 1 | mode 2 | mode 3 | mode 4 | mode 5
Dual
complex-valued 584 1439 1518 1537 1818
BEM
Dual
real-valued 577 1444 1529 1534 1991
MRM
Real part
of dual 588 1444 1518 1537 1827
BEM
Complete
complex-valued 576 1447 1510 1521 1800
MRM
ABAQUS 618 1421 1496 1527 1780
(AC2D4)
ABAQUS 605 1458 1536 1563 1851
(AC2D8)
FEM by 591 1478 1540 1570 1861
Petyt
Measurement 570 1470 1534 1555 1840
by Petyt
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Figure 1. A cavity with an incomplete partition
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