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radius of a circular hole

Fourier coefficients of boundary density u(s)
area of beam cross section
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boundary

velocity of shear wave

center of the circle (k=0,1,2,---)
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kernel function in the hypersingular formulation
degenerate kernel function of L(s,x) for R>p
degenerate kernel function of L(s,x) for p>R
kernel function in the hypersingular formulation
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normal vector

normal vector at the source point s
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Re() real part of complex variable
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o, density

@ angular frequency

n dimensionless frequency

A wavelength of SH-wave

© warping function

74 bending function

g, & concentrated source point and image source point of Green’s function
Ogr Oy Oy,  Stress components

Owr Oy Oy

T shear stress applied at infinity

0 polar angle measured related to X direction
6 angle of the layout of holes
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(R ) polar coordinate of s

(p, ) polar coordinate of X
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Abstract

In the thesis, boundary value problems with circular boundaries are formulated in a
unified manner by using null-field integral equation in conjunction with degenerate
kernels and Fourier series expansions. Laplace problems of circular holes as well as
Helmholtz problem of SH-wave impinging on circular cavities and/or inclusions were
studied. The fundamental solution is expanded to degenerate form by separating the
source point and field point in the polar coordinate. The main gain of using degenerate
kernels for interior and exterior expansions is free of calculating the principal values. In
order to fully describe the circular boundary, the present method employs the Fourier
series to approximate the boundary potential. By collocating the null-field points on the
real boundary with the same number of Fourier coefficients, the unknown coefficients in
the algebraic system can be easily determined. The present method is treated as a
“semi-analytical” solution since error only attributes to the truncation of Fourier series.
Four advantages, well-posed model, principal value free, elimination of boundary-layer
effect and exponential convergence, are achieved. Besides, the null-field approach in
conjunction with degenerate kernels and Fourier series expansions is also employed to
derive the Green’s function for boundary value problems stated for annular problems of
Laplace equations and the generalized Poisson integral formula is obtained. Finally,
several examples involving torsion, bending, and infinite domain with cavity and
half-plane with alluvial valleys and inclusions problem were given to demonstrate the
validity of the proposed method. Also, the numerical results agree well after comparing
with available solutions in the literature. A general-purpose program for multiple
circular cavities and/or inclusions of various radii and arbitrary positions was
developed.

Keywords: degenerate kernel, Fourier series, null-field integral equation, Laplace and
Helmholtz problem, Green’s function, inclusion.
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Chapter 1 Introduction
1.1 Motivation of the research

Engineering problems with circular holes are often encountered, e.g, missiles, aircraft,
naval architecture, etc., either to reduce the weight of the whole structure or to
increase the range of inspection as well as piping purposes. An analytical approach
using the bi-polar coordinate [49] was developed for two-holes problems. Complex
variable techniques were also employed for the annular case using technique of
conformal mapping. For a problem with several holes, various numerical methods, e.g.
finite difference method (FDM), finite element method (FEM), boundary element
method (BEM) and meshfree method, etc. are always resorted to solve. Among
diverse numerical approaches, FEM and BEM have become popular research tools for
engineers. In the past decade, FEM has been widely applied to carry out many
engineering problems, but one disadvantage is that discretizations on the domain are
time-consuming to set up the mesh models. Regarding to the benefit of using BEM,
only discretizations on boundaries are required and the boundary conditions at infinity
are automatically satisfied. Although BEM has been involved as an alternative method
for solving engineering problems, four critical issues are of concern.

(1) It is well-know that improper integrals (weak, strong and hypersingular) should be
handled particularly when BEM is used. Hong and Chen [101] have developed the
theory of dual boundary integral equation (BIE) and dual BEM containing
hypersingular kernels. In the dual BIEM/BEM formulation, the singular and
hypersingular integrals need special care on the sense of the Cauchy and Hadamard
principal values, respectively. How to determine accurately the free terms has
received more attentions in the past decade and a large amount of papers can be found.
In the past, many researchers proposed several regularization techniques to deal with
the singularity and hypersingularity. Two conventional approaches were employed to
regularize the singular and hypersingular integrals. First, Guiggiani [42] has derived
the free terms for Laplace and Navier equations using differential geometry and bump

contour approach. Second, Gray and Manne [40] have employed a limiting process to



ensure a finite value from an interior point to boundary by using symbolic software.
Two alternatives, fictitious BEM and null-field approach (off boundary approach), can
avoid the singularity since the source and field points never coincide in the boundary
integration. However, they result in an ill-posed matrix which will be elaborated on
later. This indicates that direct problem instead of inverse one is solved by an
ill-posed model. How to extract principle values of singularity and hypersingularity
using the well-posed model is one of our objects in this thesis.

(2) On the other hand, many researchers tried to regularize the approach to regular
formulation. In order to avoid directly calculating the singular and hypersingular
integrals, null-field approach or fictitious BEM yields an ill-condition system which
needs regularization. Achenbach et al. [1] employed the off-boundary approach in
order to overcome the fictitious frequencies free of singularity. Null field integral
equation approach is used widely for obtaining the numerical solutions of engineering
problems. Various names, e.g, T-matrix method [83] and extended boundary condition
method (EBCM) [37] have been coined. A crucial advantage of this method consists
in the fact that the influence matrix can be computed easily. Although many works for
acoustic and water wave problems have been done, we focus on the solid mechanics
here. By moving the null-field points to the real boundary or adjusting the fictitious
boundary to the real boundary, the system can be changed to be well-posed. However,
CPV and HPV need to be calculated. To construct a well-posed mathematical
formulation free of singularity and hypersingularity as well as no need of
regularization technique is not trivial. In the thesis, we may wonder whether it is
possible to push the null-field point on the real boundary but free of calculating
singularity and hypersingularity. The answer is yes. Instead of determining the
singular (hypersingular) integrals using the definition of CPV (HPV), the kernel
function is described in an analytical form from each side (interior and exterior) by
employing the separable technique since the double-layer potential is discontinuous
across the boundary. Therefore, degenerate kernel, namely separable kernel, is
employed to represent the potential of the perforated domain which satisfies the
governing equation.

(3) Boundary-layer effect is inherent in BEM. In real applications, data near boundary



can be artificially smoothened Laplace field satisfies maximum and minimum
principles; nevertheless, it also deserves study to know how to manipulate the nearly
singular integrals. Chen and Hong [23] regularized the boundary-layer effect by
subtracting the boundary density with the constant and linear terms. Chen et al. [18]
in China independently also using the similar idea. Zhou [94] proposed an analytical
approach to calculate the nearly singular integrals and could avoid the appearance of
boundary-layer effect. We may wonder whether it is possible to develop a BIEM
formulation which is free of boundaries-layer effect. Readers can find the answer in
this thesis.

(4) Convergence rate is the main concern of BEM. It is no doubt that dual BEM is
very versatile for boundary value problems (BVPs) with general geometries including
circular holes, ellipse, square and crack boundaries as shown in Figure 1-1. Regarding
to constant, linear and quadratic elements, the discretization scheme does not take the
geometry into consideration. For problems with special geometries, one can propose
the special function to approximate the geometry. Legendre and Chebyshev
polynomials are suited to approximate the boundary densities on the regular and
degenerate boundaries, respectively. Fourier series is specially tailored to problems
with circular geometries. Bird and Steele [6-8] presented a Fourier series procedure to
solve circular plate problems containing multiple circular holes in a similar way of
Trefftz method by adopting the interior and exterior T-complete sets. The Fourier
procedure is an extension of their earlier work for the Laplace equation [8]. The
lateral displacement, slope, bending moment and shear force of plates subject to
different boundary conditions (essential and natural boundary condition and so on)
can be obtained by using the Bird and Steele’s formulation [8]. Either the interior or
exterior bases in the Trefftz method are embedded in degenerate kernels [32]. The
relation between the Trefftz method and the method of fundamental solutions (MFS)
was constructed by using the degenerate kernels by Chen’s Group [32]. The main
advantage by using Fourier series to expand the boundary function on circular
boundaries is that no mesh generation is required. Caulk and Barone [12-15] have
solved the Laplace problem in two-dimensional region with circular holes by using

the special boundary integral equations. In their approach, the boundary potential and



its normal derivative were both approximated by using Fourier series on each hole.
Crouch and Mogilevskaya [36] utilized Somigliana's formula and Fourier series for
elasticity problems with circular boundaries. Mogilevskaya and Crouch [65] have
solved the problem of an infinite plane containing arbitrary number of circular
inclusions based on the complex singular integral equation. In their analysis procedure,
the unknown tractions are approximated by using complex Fourier series. However,
for calculating an integral over a circular boundary, they didn’t express the
fundamental solution using the local polar coordinate. Another disadvantage is that
the cavity can not be treated as a limiting case of inclusion [65]. Kress [48] has
proved that expansion of degenerate kernel and Fourier series yield the exponential
convergence instead of linear algebraic convergence using BEM. This thesis will take
advantage of this expansion to deal with problems containing circular boundary using
Fourier series in conjunction with degenerate kernel.

Since the fundamental solutions can be expanded into separable forms in the polar
coordinate to avoid the singularity and hypersingularity, we focus on the problems
with circular boundaries in this thesis. Once the fundamental solution can be
separated in the other coordinate, e.g. Cartesian or elliptic coordinate; the same idea
can be applied to solve for problems with different shapes of boundaries by
considering corresponding special function to approximate the geometry without any
difficulty. Recently, Chen’s group [16,17,20,22,27-30,33,46,72,73] applied the
null-field integral formulation, Fourier series and degenerate kernels to solve Laplace,
Helmholtz and biharmonic problems with circular holes. Following the success of
their idea, a semi-analytical approach is extended to solve the stress concentration for
Laplace and Helmholtz equations with multiple circular holes and/or inclusions
subject to the SH-wave in this thesis. Half-plane problems containing alluvial valleys,
inclusions and cavities are our concern.

In this thesis, the stress concentration around holes of a beam under torsion or
bending is one of our concerns. Chen and Weng [34] have introduced conformal
mapping with a Laurent series expansion to analyze the Saint-Venant torsion problem.
They determined the torsional rigidity of an eccentric bar containing different

materials with an imperfect interface under torque. Because the conformal mapping is



limited to the doubly connected region, an increasing number of researchers have paid
more attentions on special solutions. Recently, Honein et al. [44] have investigated
the antiplane problem by using the Mobius transformation for two-holes problems.
The effect of stress concentration due to different orientations was also conducted.
Analytical solutions for the flexure of circular cylindrical beams with one eccentric
circular cylindrical hole, according to the Saint-Venant theory [75,78], have been
obtained in a few investigations. In 1991, Naghdi [68] has employed a special class of
basis functions to solve the bending problem of a circular cylinder with
AN(N =1,2,3,...) circular cylindrical cavities in the axial direction. Bird and Steele
[8] have revisited the bending problem with an arbitrary number and various location
by using the Fourier series method. Comparing with the results of Naghdi [68] and
those of Bird and Steele [8], the two approaches disagree by over ten percents. The
grounds for the discrepancy have not yet been identified. However, the extension of
above special solution to multiple circular holes may encounter difficulty. To develop
a systematic method for solving the bending problems with circular boundaries is not
trivial. According to the foregoing reasons, this thesis focuses on a systematic
approach for problems containing multiple circular holes as well as inclusions.

Not only the Laplace problems, but also the Helmholtz problems with circular
boundaries are our focus to solve by using the null-field integral equation approach in
conjunction with degenerate kernels, Fourier series, vector decomposition and the
adaptive observer frame. Half-plane problems with cavities, alluvial valleys, and
inclusions subject to the SH-wave problems are solved by using our approach since
they both satisfy the Helmholtz equation. Simple cases were solved in many studies,
i.e. half-plane problem with cavities or the inclusions [50-56, 58-62, 79-81, 85-93,
95-98, 103, 104]. In order to verify the present formulation, problems containing
multiple circular boundaries, cavities, alluvial valleys, canyons, and inclusions are
tested in this thesis. According to the degenerate kernels, null-field integral
formulation and Fourier series for problems with circular boundaries, a linear
algebraic system is constructed by matching the interface conditions at the collocation
points. The displacement and slope for the problems with circular boundaries can be

obtained by using the boundary integral equations for the domain point. In the polar



coordinate system, the calculation of potential gradients in the normal and tangential
directions for the stress components must be specially taken care. It is interesting that
basin geography subject to the incident wave can also be solved by using the present
method. Alluvial valley subject to the incident wave is decomposed into two parts,
incident plane wave field and radiation field. The radiation boundary condition is the
minus quantity of incident wave function for matching the boundary condition of total
wave for cavity. The effect of harder and softer inclusions on the site response subject
to the incident wave is discussed. Also, half-plane problems with a semi-circular
canyon subject to the SH wave is solved and it can be seen as a limiting case of
semi-circular alluvial problems by setting zero shear modulus. Previous results, e.g.
the Trifunac’s [80] analytical solution and other numerical data, are compared with.
Finally, several examples including two inclusions, successive canyons and alluvial
valleys, are presented to show the validity of the present method and some
conclusions are made. The analytical solution of the Green’s function [41] of annular
case can also be derived using our approach. Since analytical solutions are not
available for eccentric case, our semi-analytical method may provide a datum for

other researcher’s references.

1.2 Organization of the thesis

In this thesis, the null-field integral equations in conjunction with degenerate kernels
and Fourier series are utilized to solve the torsion, bending, radiation and scattering
problems with circular boundaries. We coined it the null-filed integral equation
approach. The comparison of conventional BEM and the present method is shown in
Table 1-1. The organization of each chapter is summarized below.

In the chapter 2, we derive the unified formulation of null-field integral equation
approach for boundary value problems. The degenerate kernels and Fourier series
expansions are adopted in the null-field integral equation to solve boundary value
problems with circular boundaries. The present method is treated as a
“semi-analytical” solution since error only attributes to the truncation of Fourier series.

Four gains of well-posed model, singularity free, boundary-layer effect free and



exponential convergence are our goals to achieve.

In the chapter 3, the application to the Laplace equation of torsion and bending
problems with circular holes are considered. We emphasize on determining the
torsional rigidity for torsion problems and the stress concentration for bending
problems. For the torsion problem, the torsional rigidity is compared with the Caulk’s
[14] and Ling’s data [57]. The result of torsion rigidity is improved over Ling’s data.
On the other hand, the discrepancy between Bird and Steele [6,8] and Naghdi [68]
results in the bending problem is examined by using the present approach. It is found
that the present method is more versatile to calculate the bending problem with
arbitrary number of holes.

In the chapter 4, we focus on the applications to the exterior radiation and scattering
problems with circular boundaries. Not only the cavities but also inclusions are
considered. The stress concentration factor of the cavity under the half-plane is
investigated. Besides, the surface amplitudes are considered for inclusion problems.
Image concept and technique of decomposition are utilized for half-plane problems.
Numerical examples were given to test our programs. The validity of the
semi-analytical method is verified.

In the chapter 5, null-field approach is employed to derive the Green’s function for
annular problems subject to homogeneous Dirichlet boundary conditions. The kernel
function and boundary density are expanded by using the degenerate kernel and
Fourier series, respectively. A series-form Green’s function is derived and plotted.
The Poisson integral formula is extended to an annular case from a circle in the text
book. Finally, we draw out some conclusions item by item and reveal some further

topics in the chapter 6.



Chapter 2 Null-field integral equation formulation
Summary

In the thesis, the degenerate kernels and Fourier series expansions are adopted in the
null-field integral equation to solve boundary value problems with circular boundaries.
Bending problems of a circular beam with circular holes as well as the SH-wave
impinging on the circular inclusions were studied. The main gain of using degenerate
kernels in integral equations is free of calculating the principal values for singular
integrals. An adaptive observer system is addressed to fully employ the property of
degenerate kernels for circular boundaries in the polar coordinate. After moving the
null-field point to the boundary and matching the boundary conditions, a linear
algebraic system is obtained without boundary discretization. The unknown
coefficients in the algebraic system can be easily determined. The present method is
treated as a “semi-analytical” solution since error only attributes to the truncation of
Fourier series. Three gains of singularity free, boundary-layer effect free and
exponential convergence are achieved. It is more friendlily for readers to understand
in mathematics and to compute in numerical aspect. The Laplace problem of torsion
and bending and Helmholtz problem of alluvial and inclusion subject to the incident
SH-wave are studied in the following chapters. Extension to multiple alluvial and
inclusions subject to SH-wave is also done. In this chapter, we focus on introducing
the formulation of null-field integer equation in conjunction with degenerate kernels

and Fourier series.
2.1 Dual boundary integral formulation for domain point

Consider the problem with N randomly distributed circular cavities and/or
inclusions bounded in the domain  and enclosed with the boundaries, B,

(k=0,1,2,---, N) as shown in Figure 2-1. We define

B=UB.. (2-1)
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Suppose the materials of matrix and inclusions are elastic, isotropic and homogenous.
Based on the mathematical physics, many engineering problems can be described by

the equation as shown below:

£{u(x)} =0, xeQ, (2-2)
where u(x) is the potential function, 2 is the domain of interest and £ is the
operator of Laplace or Helmholtz and problem as shown below

V2  :Laplace probelm
= (2-2)

V2 + k?:Helmholtz problem’

Based on the dual boundary integral formulation for the domain point can be derived

from the third Green’s identity [101], we have

27U(X) = fBT(s,x)u(s)dB(s)— fB U (s, X)t(s)dB(s), x€Q, (2-3)
27r‘9;rf’:): fBM(s,x)u(s)dB(s)— fB L(s,X)t(s)dB(s), x €, (2-4)

where s and x are the source and field points, respectively, B is the boundary,

n, denotes the outward normal vector at field point x and the kernel function

X

U (x,s) is the fundamental solution which satisfies

£{U(x,8)} = 2m6(x—5), (2-5)

in which 6(x—s) denotes the Dirac-delta function. The other kernel functions,

T(s,X), L(s,x) and M(s,x), are defined by

_ 0U(s,x) _ 0U(s,x) _0°U(s,X)
T(s,X) = N L(S'X):T' M(s,x):m, (2-6)

S X

where n, is the outward normal vector at the source point s. The null-field integral

equations can be derived by collocating x outside the domain (x € Q°) as follows:

0= [ T(s,u(s)dB(s) — [ U (s, ))t(s)dB(s), x €, (2-9)

0= fBM(s,x)u(s)dB(s)— fB L(s, X)t(s)dB(s), x€Q°, (2-10)

where Q° is the complementary domain. Note that the null-field integral equations
are not singular since s and x never coincide. No matter the problem of Laplace or

Helmholtz is employed to solve the problem. For simplicity, Eq. (2-9) is used to



analyze to solve the problem in the thesis although Eqg. (2-10) also plays an important
role in computational mechanics. In the real implementation, the collocation point in
the null-field integral equation is located exactly on the boundary from Q° such that
the kernel functions can be expressed in term of interior and exterior appropriate form
of degenerate kernels. All the singular integrals disappear in the present formulation
since that the potential across the boundary can be explicitly determined in both sides

by using degenerate kernels.
2.2 Expansions of fundamental solution and boundary density
2.2.1 Degenerate kernels for the fundamental solution

By employing the separation technique for source point and field point, the kernel
function U (s, X) can be expanded in terms of degenerate kernel in a series form as
shown below:
U'x) =Y A B, (x), |x| <[5
U(s,x) = - , (2-11)
Ue(s,x) = JZ; A (X)B(s), x| >|s|

where the superscripts “i” and “e” denote the interior and exterior cases of U (s, X)
kernel depending on the geometry as shown in Figure 2-2 for one, two and three
dimensional cases. The other kernels in the boundary integral equations can be
obtained by utilizing the operators of Eq. (2-6) with respect to the U(s,x) kernel.
Then, the kernel function with the superscript “i” is chosen while the field point is
inside the circular region; otherwise, the kernels with the superscript “e” is chosen.
The details of the degenerate kernels are shown in Section 3.2 and 4.2 for Laplace and

Helmholtz equations, respectively.
2.2.2 Fourier series expansion for the boundary density

In order to fully describe the circular boundary, the present method employs the

Fourier series to approximate the boundary potential and the normal derivative as
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shown in

u@s)=a,+» _(a,cosnd+h, sinnd), sc B (2-12)
n=1

t(s)=p, +Z(pn cosnd+q,sinnd), sc B (2-13)
n=1

where a,, a,, b,, p,, p, and g, are the Fourier coefficients and ¢ is the polar
angle which is equally discretized. In the real computation, the integrations can be
easily calculated by employing the orthogonal property of Fourier series, and only the
finite L terms are used in the summation. The present method is treated as a
“semi-analytical” solution since error only attributes to the truncation of Fourier

series.

2.3 Adaptive observer system

Consider a BVP with circular boundaries of arbitrary locations as shown in Figure 2-1.
The rule of objectivity is obeyed since the boundary integral equations are frame
indifferent. An adaptive observer system is addressed to fully employ the property of
degenerate kernels for circular boundaries in the polar coordinate as shown in Figures
2-3 (a) and (b). For the integration, the origin of the observer system can be
adaptively located on the center of the corresponding boundary contour. The dummy
variable in the circular boundary integration is the angle (&) instead of radial
coordinate (R). By using the adaptive system, all the integrations can be easy to

calculate.

2.4 Vector decomposition technique for the potential gradient in the
hypersingular equation

The hypersingular integral equation in Eq. (2-4) is defined as the normal derivative of
potential for the domain points (x), special treatment is considered here. For the
stress concentration problem, potential gradient is utilized to calculate. Consider the
nonconcentric case as shown in Figure 2-4, the true normal direction (1) with respect

to the collocation point x on the B boundary can be superimposed by using the
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radial direction (3) and angular direction (4) on the B, boundary. According to the

concept of decomposition technique, the degenerate kernels for the higher-order

singular equation as Eq. (2-10) are changed as :

L(s,x) =

M (s,X) =

L'(R,60;p,0) =

L°*(R.6; p, ) =

M'(R.0;p,¢) =

M®(R,0;p,¢) =

oU' (R.6;p,0)

5 cos(¢ —¢)
p
+1—8U|(§’§;p’¢) COS(%—CJNS), R>p
- . (2-14)
ERELD o5t —g)
+%8Ue(§§;p,¢) COS(%—C+§), »>R
8Ti(|:\;0;p,gb) cos(C — )
+18T|(ng;p’¢)c05(g—é+€), R> )
’ . (2-15)
TLRELD gos(¢ — )

L LOT*(ROp0)

T
; 96 cos(E—C+£), p>R

where ¢ and & are shown in Figure 2-4. For the special annular problem, the

decomposition technique is free of special treatment.

2.5 Linear algebraic equation

In order to calculate the Fourier coefficients, 2L +1 boundary nodes are needed. By

moving the null-field point to the jth circular boundary for Eq. (2-9) and (2-10), we

have
0= TEXUSBE - [ U, xe¥, (2-16)
Ozi: j; M(S,X)U(S)dB(s)—ZNj fB LE)HE)ABE), x €. (2-17)

It is noted that the integration path is anticlockwise for the outer circle. Otherwise, it

is clockwise. For the B, integral of the circular boundary, the kernel of U(sx) is

expressed in terms of degenerate kernel of Eg. (2-11), and T(s,x), L(s,x) and
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M (s,x) are respectively obtained by applying the differential operators defined in Eq.
(2-6). The boundary densities u(s) and t(s) are substituted by using the Fourier
series of Egs. (2-12) and (2-13), respectively. Inthe B, integration, we set the origin
of the observer system to collocate at the center ¢, to fully utilize the degenerate
kernel and Fourier series. By moving the null-field point toB;, a linear algebraic
system is obtained

(Ut} =[THu}, (2-18)
[U] and [T] are the influence matrices with a dimension of (N+1)x(2L+1) by
(N+1)x(2L+1), {u} and {t} denote the column vectors of Fourier coefficients
with a dimension of (N-+1)x(2L+1) by 1 in which those can be defined as

follows:
Uoo U01 UON Too T01 TON
U] = U}O U:“ ﬁ" U}” =] M Tfl . Tf“ (2-19)
UNO UNl UNN TNO TNl TNN
Uy to
u, t1
{ub=qu, . {th=1t,¢ (2-20)
Uy tN

where the vectors {u} and {t} are the Fourier coefficients and the first index “ j "
(j=0,1,2,---,N) in [Ujk] and [Tjk] denotes the jth circle where the collocation
point is located and the second index “k” (k=0,1, 2,---, N) denotes the kth circle
with boundary data {uk} and {tk}, L indicates the truncated terms of Fourier
series. The coefficient matrix of the linear algebraic system is partitioned into blocks,
and each off-diagonal block corresponds to the influence matrices between two
different circular boundaries. The diagonal blocks are the influence matrices due to
themselves in each individual circle. After uniformly collocating the points along the

kth circular boundary, the submatrix can be written as
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U ?lf (¢1) U }IS (¢1) U }E (¢1) U U ijC (¢1) U ]Lks(¢1)
U ?kc (¢2) U :]LIS (¢2) U Jli(ﬁbz) "' U J!_kc (¢2) U ]!_ks(gbZ)
[Ujk]: Ujk:(¢3) Ujk:(‘bs) Ujkz(ﬁbs) Ujk :(¢3) Ujk:(¢3) , (2_21)
0c(¢2|_) 1C(¢2|_) 1S(¢2L) LC(¢2L) Ls(¢2|.)
(¢2L+1) U (¢2L+1) U (¢2L+1) (¢2L+1) U (¢2L+1)
TOC(¢1) Tlc(¢1) Tls(¢1) TLC (¢1) TLS(¢1)
TOC(¢2) Tlc(¢z) Tls(¢2) TLC(¢2) TLS(¢2)
[Tjk] _ T (Cbs) T (¢3) T (Cbs) T (Cbs) T (¢3) ’ (2_22)

TOC(¢2L) Tlc(¢2|_) T13(¢2L) TLC(¢2L) TLS(¢2L)
TOC(¢2L+1) T (¢2L+1) TlS(¢2L+1) TLC(¢2L+1) T (¢2L+1)

where ¢;, j=12,---,2L+1, are the angles of collocation along the circular

boundary. Although both the matrices in Egs. (2-21) and (2-22) are not sparse, it is
found that the higher order harmonics is considered, the lower influence coefficients
in numerical experiments is obtained. It is noted that the superscript “0s” in Egs.
(2-21) and (2-22) disappears since sin(0-0)=0. The element of [U,| and |T;,]
are defined respectively as
U;}f(gbm):kaU(sk,xm)cos(n@k) Rdf,, n=0,12-- L, m=12--2L+1, (2-23)
U}}f(qﬁm):fBKU(sk,xm)sin(nek) Rdf,, n=12,,L, m=12-2L+1, (224
Tj’f(gf)m):kaT(sk,xm) cos(ng,) Rdf,, n=0,1,2,---,L, m=12,--,2L+1, (2-25)
TI"IS(¢ )_fﬁT(Sk,Xm)Sln(nHk) R<d9k, n:]., 2,-.-1L, m:l, 2,-..12L+1, (2_26)

where Kk is no sum, s, =(R.,6,), and ¢, is the polar angle of the collocation
point x_ . The analytical evaluation of the integrals for each element in the influence
matrix is listed in the Appendixes and and they are all non-singular. Besides,
the limiting case to the boundary is also addressed. The continuous and jump behavior
across the boundary is also described. The direction of contour integration should be
taken care, i.e., counterclockwise and clockwise directions are for the interior and
exterior problems, respectively. By rearranging the known and unknown sets, the

Fourier coefficients can be obtained.
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2.6 Matching of interface conditions for problems of cavities and
inclusions

Cavity problems
In order to match the traction free condition on the cavity boundary after
decomposition of the original problem as shown below

0=t" =t" +t", (2-27)

where the “t" ” denotes the total field of matrix. The superscript “ f ” represents the
external force where t' =t' for the full-plane plane and t" =t*" for the half-plane
plane. The superscript “i” and “r” are the incident and reflected waves and “t"
denotes the radiation problem of matrix and needed to be solved. All the relations are
shown in Appendix , and Eq. (2-18) can be rewritten as

U{—t} = [T){uM}, (2-28)
Only the Fourier coefficients of boundary density {u“"} are unknown. By
collocating 2L +1 null-field points on each boundary, all the coefficients can be
obtained. After obtaining the unknown Fourier coefficients, the field displacement can

be obtain by employing Eqg. (2-3).

Inclusion problems

According to the linear algebraic system, the two systems of matrix and inclusion

yield
(UM ey =T ) (2-29)
CHILSILNCY: (2:30)
where the superscripts “M ” and “| ” denote the systems of matrix and inclusion,

respectively. By the image concept and the decomposition of superposition as the
Section 4.3, the Eq. (2-29) can be rewritten as

[UM HttM _ti+r} - [TM ]{utM _ui+r}_ (2-31)
where the {tt“"} denotes the “total” displacement field of “matrix” as shown in
Appendix , After decomposition of the original problem, we have the two

constraints of the continuity of displacement and equilibrium of traction along the
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jth interface (B, ). We will employ the two constrains into the formulation as shown

below:
{u'}={u'} on B, (2-32)
e} =W {e'} on B (2-33)
where [uM] and [u'] can be defined as follows:
p 0 -0 u 0 0
[ B U S @2:34)
o 0 - 0 0 - 4

where M and p' denote the shear modulus of the matrix and the kth inclusion,

respectively. By assembling the matrices in Egs. (2-30), (2-31), (2-32) and (2-33), we

have
™ -u™ o0 o0 ||u! ux)" "
o o T Ut | o 2-35)
1 0 -1 o0]|u o |
o M o u' ||t 0
where [I] is the identity matrix, and {u(x)"""| as shown below
) ui_'_ur
u¥) = (T" UM : 2-36
fue )= )Y 220

After obtaining the unknown Fourier coefficients, the origin of observer system is set
to ¢, inthe B, integration as shown in Figure 2-3 (b) to obtain the potential by

employing Eq. (2-3). The flow chart of the present method is shown in Figure 2-5.

2.7 Concluding remarks

For the BVPs with circular boundaries, we have proposed a systematic null-field
BIEM by using the null-field integral equation, degenerate kernels and Fourier series
in an adaptive observer system. The method shows great generality and versatility for
the problems for Laplace and Helmholtz with multiple circular holes or inclusions of
arbitrary radii and positions. Several engineering problems with circular boundaries
are solved by using the proposed approach will be elaborated on later in the following

chapters.
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Chapter 3 Application to Laplace problems
Summary

In this chapter, the application to torsion and bending problems with circular holes are
considered. Both problems can be modeled by the Laplace equation. We emphasize
on the torsional rigidity for torsion problem and the stress concentration for bending
problem. For the torsion problem, the torsional rigidity is compared with the Caulk
[14] and Ling’s data [57]. On the other hand, the discrepancy between the data of Bird
and Steele [8] and Naghdi’s [68] results in the bending problem is examined by using
the present approach. It is found that the present method is more general for
calculating the torsion and bending problems with arbitrary number of holes and

various radii and positions than other approach.
3.1 Introduction

The stress concentration around holes of a beam under torsion or bending plays an
important role in promoting the design criteria for higher factors of safety. Those
problems have been visited in a few investigations based on the Saint-Venant theory
[75,78]. For a simple case, an analytical solution may be available. Since the
analytical solution for more than two holes may encounter difficulty. In the past,
multiply-connected problems have been carried out either by conformal mapping or
by special technique approach. Muskhelishvili [67] has formulated the solution of
composite torsion bar in the form of integral equation. He solved the problem of a
circular bar reinforced by an eccentric inclusion by using conformal mapping. Chen
and Weng [34] have also introduced conformal mapping with a Laurent series
expansion to analyze the Saint-Venant torsion problem. They concerned with an
eccentric bar of different materials with an imperfect interface under torque. Because
the conformal mapping is limited to the doubly-connected region, an increasing
number of researchers have paid more attentions on special techniques. However, the

extension of above special techniques to multiple circular holes may encounter
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difficulty. It is not trivial to develop a systematic method for solving the torsion
problems with several holes. Several numerical approaches have been employed, e.g.
complex variable boundary element method (CVBEM) by Chou [35] and Ang and
Kang [3]. The CVBEM was primarily introduced by Hromadka and Lai [45] for
solving the Laplace problems in an infinite domain. In 1997, Chou extended the work
of Hromadka to problems with the multiply-connected domain. Recently, Ang and
Kang [3] developed a general formulation for solving the second-order elliptic partial
differential equation for a multiply-connected region in a different version of CVBEM.
The Cauchy integral formulae are offered to solve the boundary value problem. By
introducing the CVBEM, Chou [35] and Ang and Kang [3] have revisited the
anti-plane problems with two circular holes whose centers lie on the x axis
investigated by Honein et al. [44]. In 1991, Naghdi [68] employed a special class of
basic function, which is a Saint-Venant flexure function suitable for the problem of
the bending of a circular cylinder with 4N (N =1,2,3.--) circular holes in the axial
direction. Bird and Steele [8] used a Fourier series procedure to revisit the antiplane
problems in the Honein’s paper [44]. Also, they solved the bending problems which
were solved by Naghdi [68]. According to the literature review, it is observed that
exact solutions for boundary value problems are only limited for simple cases.
Although Naghdi [68] has proposed a solution for bending problems with holes, it is
limited for 4N (N =1,2,3:--) holes. Therefore, proposing a systematic approach for
solving BVP with various numbers of circular boundaries and arbitrary positions and
radii is our goal in this chapter.

Following the success of anti-plane problems with circular holes [27], the null-field
integral equation is utilized to solve both of the Saint-Venant torsion and bending
problems with circular holes. The mathematical formulation is derived by using
degenerate kernels for fundamental solutions and Fourier series for boundary densities.
Then, it reduces to a linear algebraic equation by using collocation approach.
Mogilevskaya and Crouch [65] have used the Galerkin method instead of collocation
approach. Our approach can be extended to the Galerkin formulation only for the
circular and annular cases. However, it may encounter difficulty for the eccentric

example. Two requirements are needed: degenerate kernel expansion must be
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available and distinction of interior and exterior expression must be separated.
Therefore, the collocation angle of ¢ is not in the range 0 to 27 in our adaptive
observer system. This is the reason why we can not formulate in terms of Galerkin
formulation using orthogonal properties twice. Free of worrying about how to choose
the collocation points, uniform collocation along the circular boundary yields a
well-posed matrix. After determining the unknown Fourier coefficients, series
solution for the torsion and bending functions are obtained. For the torsion problem,
torsional rigidity is our main concern. For the bending problem, the location of
maximum stress concentration factor (SCF) and the boundary-layer effect are
addressed. Numerical examples are given to show the validity and efficiency of our

approach.

3.2 Degenerate kernels of BIE formulation for Laplace problems

Both torsion and bending problems can be modeled by using the Laplace equation,
Vu(x)=0, xeQ (3-1)
where V? and ) are the Laplacian operator and the domain of interest,

respectively. Based on the dual boundary integral formulation of the domain point

[27], we have

27u(X) = fBT(S, X)u(s)dB(s) — fBU(s,x)t(s)dB(s), X, (3-2)
27r88“rf’:): [ M(suE)dB(s)— [ LEXtE)dBE), xeQ, (3-3)

where s and x are the source and field points, respectively, t(s) is the directional
derivative of u(s) along the outer normal direction at s, and n, is the outward
normal vector at the field point x. The four kernel functions, U(s,x), T(s,X),
L(s,x) and M(s,x), will be elaborated on later by using the degenerate kernel

expansion. The kernel function, U (s,X), is the fundamental solution which satisfies
VU (X,8) = 276(x—5), (3-4)

where 6(x—s) denotes the Dirac-delta function. Then, we can obtain the

fundamental solution as follows
U(s,x)=Inr, (3-5)
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where r is the distance between s and x (r =|x—s|). The other kernel functions,

T(s,X), L(s,x) and M(s,x), are defined by

M, L(S,X)EM, M(S,X)EM
n on on.on,

S X

T(s,X) = , (3-6)

where n, denotes the outward normal vector at the source point s. Comparison of
formulation between the present method and conventional BEM is shown in Table 3-1.
In the present method, we adopt the mathematical tools, degenerate kernels and
Fourier series, for the purpose of analytical study. The combination of degenerate
kernels and Fourier series plays the major role in handling problems with circular
boundaries.

Based on the separable property, the kernel function U (s,x) can be expanded into
separable form by dividing the source point (s = (R,#) ) and field point (x = (p,¢)) in
the polar coordinate

U'(s,x) = In R—i%(%)mcosm(e—fb), R> p

U(s,x) = " L R ) (3-7)
Ue(s,x) = Inp—za(—)mcosm(e—gb), p>R
p

m=1
where the superscripts “i ” and “e” denote the interior (R> p) and exterior (p > R)
cases, respectively. It is found that the leading term and the numerator term contain
the larger argument such that log singularity and series convergence can be confirmed.
After taking the normal derivative (0/0R) with respect to Eq. (3-7), the T(s,X)
kernel function yields

o0 m

T‘(s,x):%+Z:1(;m+l)cosm(0—¢), R>p

T(s,X)= N (3-8)
Te(s,X)=—> (—=—)cosm(d —¢), p>R
m=1 P
and the higher-order kernel functions, L(s,x) and M (s,X), are shown below:
00 m-1
U() = =D (o) cosm(e @), R>p
L(s,X) = m : (3-9)

Rm
—)cosm(@ —¢), p>R

1 00
Lo(s,X) = =
(s,X) p+mZ:;(p
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m-1

Mi(s,x):i(%)cosm(e—qb), R>)p

M (s,X) = (3-10)

M*®(s,x) = f:(rZRTT)cosm(e—gb), p>R
m—1
Since the potentials resulted from T(s,x) and L(s,x) are discontinuous cross the
boundary, the potentials of T(s,x) and L(s,x) for R—p" and R—p  are
different. This is the reason why R=p is not included in the expression for the
degenerate kernels of T(s,x) and L(s,x) in Egs. (3-8) and (3-9). The analytical
evaluation of the integrals for each element in the influence matrix is listed in the
Appendix and they are all non-singular. Besides, the limiting case to the boundary
is also addressed. The continuous and jump behavior across the boundary is also
described. After using the Wronskian property of two bases for T(s,x) (R™ and
R™)
W(R",R™)=2mR, (3-11)

the jump behavior is captured by
K”(Ti (s,X) —Te(s,x))cos(me) Rd@ =2zcos(md), xeB, (3-12)
[ (T~ T*(s,%))sin(mg) Rd6 = 2zsin(mp), x < B. (3-13)
Jump behavior is well captured by Wronskian in similar way of two bases for 1-D rod
case.
3.3 Torsion problem for a bar

3.3.1 Problem statements

What is given in Figure 3-1 is a circular bar weakened by N circular holes placed
on a concentric ring of radius b. The radii of the outer circle and the inner holes are
R and a, respectively. The circular bar twisted by couples applied at the ends is
taken into consideration. Following the theory of Saint-Venant torsion [75,78,99], we

assume the displacement field to be

-21-



u=-—ayz, v=axz, w=ap(XYy), (3-14)
where « is the angle of twist per unit length along the z direction and ¢ is the
warping function. According to the displacement field in Eq. (3-14), the strain

components are

E=E =€,=7,=0, (3-15)
ow ou oy

_ —_— _— — y _1
Y=o TS, (- ax y) (3-16)

W N _ ( +X) 3-17
’YYZ (?y az ! ( - )

and their corresponding components of stress are

o,=0,=0,=0,, =0, (3-18)

0o =na(Z2—y), o, = a2+ x 319
= = MK T T H oy ’ (3-19)

where g is the shear modulus. There is no distortion in the planes of cross sections
since ¢, =¢,=¢, =", =0.We have the state of pure shear at each point defined
by the stress components o,, and o,. The warping function  must satisfy the
equilibrium equation
0 0
90 gv f
ox> oy

0 in Q, (3-20)

where the body force is neglected and €2 is the domain. Since there are no external
forces on the cylindrical surface, we have t =t =t, =0. By substituting the normal
vector, the only zero t, becomes

t,=o,n,+o,n,=0 on B. (3-21)
where B is the boundary. By substituting (3-11) into (3-13) and rearranging the

terms, the boundary condition is
dp o dp

—n,+—n,=yn, —xn, =Vp-n=—— on B, -
ox ay =yn ¥ an (3-22)
In Figure 3-1, we introduce the expressions for the position vector (x.,Y,) of the

boundary point on the kth circular hole

X, = acosf, + bcos(zik) k=12,---,N, 0<6, <27, (3-23)

Yy, = asiné, +bsm(2ik) k=12,---,N, 0<6, <27, (3-24)

and the unit outward normal vector n=(n,n )= (—cosf,—sing) for the inner
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circular boundaries, we have

Oy 27k, . .27k
— =Dbcos(——)sind, —bsin(——)cosf, on , -
o ( N )siné, ( N ) cos 6, B, (3-25)

where B, (k=12,:--,N) is the kth boundary of the inner hole, 6, is the polar
angle with respect to the origin of the kth hole. For the outer boundary, the
traction-free condition is specified. Thus, the problem of torsion is reduced to find the
warping function ¢ which satisfies the Laplace equation of Eg. (3-20) and the
Neumann boundary conditions of Eq. (3-25) for the inner boundary and zero traction

on the outer boundary.
3.3.2 Hlustrative examples and discussions

Based on the formulation described in Chapter 2, we demonstrate its validity in
solving torsion problems. In this section, we deal with the torsion problems which
have been solved by Caulk in 1983 [14]. The torsional rigidity of each example is

calculated after obtaining the unknown Fourier coefficients.

Case 1: Acircular bar with an eccentric hole

A circular bar of radius R with an eccentric circular holes removed is under torque

T atthe end. The torsional rigidity G of cross section can be expressed by

G 2 2 . Dy

—= | (X +Yy |JdA— —dB,, -

PR AL AL Y - (3-26)
The exact solution derived by Muskhelishvili [67] is shown below

. K
G:ﬂz(l _I')_,uzﬂlzrlz _Z,Uz”lzplzz

.«
= (1_ azplzak )2 ' (3-27)

where all of notations in Eq. (3-27) follows the reference [67], and they aren’t the
same with the thesis. Our results are better than those of Caulk obtained by BIE when

the hole is closely spaced as shown in Table 3-2.

Case 2: Acircular bar with multiple circular holes of equal angles

Consider a circular bar weakened by N circular holes placed on a concentric ring of

radius b under torque T atthe end. The radii of the outer circle and the inner holes
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are R and a, respectively. The boundary curve of kth inner hole is described by
using the parametric form of (., Y, ) in Egs. (3-23) and (3-24). What is brought out is
the problem subject to zero traction on the outer boundary and Neumann boundary
condition defined in Eq. (3-25) on all the inner circles. Twenty-one collocating points
are selected on all the circular boundaries in the numerical implementation. Results
obtained by using the present method for the problem of two, three and four holes are
listed in Table 3-3. After comparison, our results agree well with Caulk’s datas

obtained by using special BIE formulation.

Case 3: Ling's examples [57]

Table 3-4 shows a comparison of the torsional rigidities of three cases with different
geometries of circular holes computed from the present method, BIE formulation [14]
and the first-order approach [14]. We have not only calculated the torsional rigidity
but also tested the rate of convergence of Fourier terms of the case with seven holes as
shown in Figure 3-2. The present solutions show improvement over Ling’s results in
every case. The large difference in the second example in Table 3-4 may ascribe to the

Ling’s lengthy calculation in error as pointed out by Caulk [14].

3.4 Bending problem for a cantilever beam
3.4.1 Problem statements

Consider a beam with a circular section weakened by four circular holes placed on a
concentric ring of radius b as show in Figure 3-3. The radii of outer circle and inner
holesare R and a, respectively. The beam is subject to a shear force Q at the free
end, and the boundary conditions of outer circle and inner holes are traction free.

Following the theory of Saint-Venant bending [99], we assume the stress to be

On=0,=0,=0, O'ZZ=—|9X(|—Z), (3-28)

XX yy
y

where I is the moment of inertia of cross section for the y—axis. The other two

stress components are assumed as
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0 0 1 ., 1 2
G”:aﬂ(a_iwj_z(lg/)liav;+§VX *(1‘?% } (3-29)
0 0
Uw:“”(%”}z(lfv)li;;+(2+V)Xy] (3-30)

where ¢(x,y) and w(xy) are the warping function and bending function of the
beam, respectively, « is the angle of twist per unit length, and s is the shear
modulus. Since the ¢(x,y) and w(xy) in the Saint-Venant bending problem

satisfies the two Laplace equations subject to the Neumann boundary condition, we

have:
Vip(X, y):g%o+g;—f:0 in Q, (3-31)
Z—:: ycos(n,x)—xcos(n,y), x,yeB,, (3-32)
and
Vi (xy)= v OV _oin q, (3-33)

oX*

0
aa—'é/: —vaz +(1—%vj yz}cos(n, X)—(2+v)xycos(n,y), xyeB, (3-34)

y2

where Q is the domain of interest, n is the outward normal vector of each
boundary, and B, is the kth circular boundary. In Figure 3-3, we define the

position vector (x,,Y,) of the boundary point on the ithcircular boundary as

X =Rsing +x., k=0,1234, 0<6, <27 (3-35)
y, =—R.cosg, +vy,, k=01234, 0<6, <27 (3-36)

where
R =R and R =a, j=1234 (3-37)

and 6, is the polar angle with respect to the origin of the kth hole. The coordinate
of (X.Y) Iis for the center of the kth eccentric circle, and the eccentricity is zero
for the outer circle. By substituting Egs. (3-35) and (3-36) into Eq. (3-24), the
boundary condition is specified. To find ¢(x,y) function for torsion problems was
solved in the previous sections. For the simple case of bending only, we can assume
constant au and ;//(x, y) to be zero. Following the definition of stress concentration
by Naghdi [68], we have

=—2—, (3-38)
where A is the cross-section area of the beam. The shear stress o, in Eq. (3-38) is
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obtained from Eq. (3-29). Thus, the bending problem is reduced to find the bending
function y(x,y) which satisfies the Laplace equation of Eq. (3-33) and the

Neumann boundary condition of Eq. (3-34) on each boundary.

3.4.2 lllustrative examples and discussions

Based on the formulation described in Chapter 2, we demonstrate its validity in
solving bending problems. In the section, we deal with the bending problems with
4N circular holes which have been solved by Naghdi in 1991 [68] and two holes

with various distances which have been solved by Bird and Steele [8].

Case 1. Four circular holes[8,68]

In order to check the validity of the present formulation, the beam problems [68] with
four holes symmetrically located with respect to the x and y axis were revisited.
All the numerical results were obtained by using ten terms of Fourier series (L =10).
We set the value of Poisson’s ratio v =0.3 and R=L1. In Figures 3-4 (a), (b), (d) and
(e), the values of the stress concentration Sc along AB and CD (as Figure 3-1)
are plotted versus the position Y, =17Y,/AB, and Y, =17Y,/CD, respectively.
Figures 3-4 (c) and (f) show the stress concentration Sc along OT, and the
£ =18xOT for the case of b=0.5,  =z/4 and a=0.1. Our numerical results
are well compared with those of Naghdi’s data [68]. In order to find the stress
concentration, we plot the stress around the hole where these numerical results
indicate that Sc reaches maximum near point B as shown in Figure 3-5. Figures
3-4 (a) and (b) show the maximum value of Sc occurs at the point B and the point
C respectively, where are on the boundaries of inner holes. For the Sc distribution
along OT, the maximum value of Sc occurs at the position near the center of the
two upper holes. Good agreement is made after comparing with Naghdi’s results [68].
In the literature, Naghdi [68] and Bird and Steele [8] also calculated the stress
concentration factor at the point B for a=0.12 with various values of b. Bird
and Steele [8] stated that the deviation by Naghdi’s data is 11%. The grounds for this

discrepancy were not identified in their paper. Our numerical results are more
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agreeable to the Naghdi’s data as shown in Figures 3-6 and 3-7, where Figure 3-7 was
not provided by Bird and Steele [8]. In order to examine the boundary-layer effect at
the present formulation, Figure 3-8 shows the Sc distribution close to the boundary.
According to the convergence test in Figure 3-9, only eight terms (L =8) is sufficient
in real implementation. In Figure 3-10, contour plots are shown for b=0.4 and
a=0.12 with various orientations of @ =z/8, @ =x/4 and 6 =3z/8 and it is

anti-symmetric with respect to the horizontal axis.

Case 2: Two circular holes [6,8]

Consider a circular beam with two circular holes under bending as shown in Figure
3-11. One of the holes is concentric, and the other lies on the x—axis. In order to
compare with the Bird and Steele’s result, we assume R=16 and a=1,
respectively. All the numerical results are also obtained by using ten terms of Fourier
series (L=10). The stress concentration at the point P versus D/2a (D is the
neatest distance between the two holes) is shown in Figure 3-12. The stress
concentration is expected to approach the case of a single hole in the center of beam
cross section when D/2a becomes large. The contour of stress concentration for the
case of D/2a=0.0625 is shown in Figure 3-13. Our numerical results are well

compared with the Bird and Steele’s data.

3.5 Concluding remarks

The torsion problems of circular shaft weakened by several holes have been
successfully solved by using the present formulation. Our solutions match well with
the exact solution and other BIE solutions for the three Caulk’s cases [14]. Only
forty-one collocation points were uniformly distributed on each boundary to obtain
more accurate results of torsional rigidity with error less than 1% after comparing
with the known exact solution. Regardless of the number of circles, the proposed
method shows great accuracy and generality. Through the demonstration of several

examples, our method was successfully applied to cases of multiple holes.

For the bending problems with circular holes, an advantage of the present method
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over the Naghdi’s approach [68] is that the extension to multiple circular holes of
arbitrary radii and positions is flexible and straightforward. Results obtained by using
the present approach matched well with those of Naghdi’s although Bird and Steele’s
data seems to deviate. Other gain of the present method over BEM is free of
boundary-layer effect and exponential convergence. Although only two and four holes
were tested to compare with Naghdi’s [68] and Bird and Steele’s results [8], our
general-purpose program can solve problems with circular holes of arbitrary number
and various positions of holes. Furthermore, our method presented here can be used to

solve engineering problems which satisfy the Laplace operator.
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Chapter 4 Application to exterior Helmholtz
problems

Summary

In this chapter, we extend the unified formulation to the exterior Helmholtz problems
with circular boundaries. Earthquake analysis for the site response of alluvial valley
or canyon subject to the incident SH-wave is the main concern. Not only the cavities
but also inclusions are considered. Stress concentration factor of the cavity under the
ground surface is studied. Besides, the surface amplitudes are examined for the
inclusion problems. Image concept and technique of decomposition are utilized for
half-plane problems. Numerical examples are given to test our program. The validity
of the semi-analytical method is verified. Our advantages, well-posed model,
principal value free, elimination of boundary layer effect and exponential convergence,

by using the present method are achieved.
4.1 Introduction

One of the major concerns of engineering seismology is to understand and explain
vibrational response of the soil excited by earthquakes. The problem of the scattering
and diffraction of SH-waves by a two-dimensional arbitrary number and location of
cavities and inclusions in full and half-planes is revisited in this chapter by using our
unified formulation. In 1971, Trifunac [79] has solved the problem of a single
semi-circular alluvial valley subject to SH-wave. Later, Pao and Mao [70] have
published a book on the stress concentration in 1972. In 1973, Trifunac [80] has also
derived the closed-form solution of a single semi-circular canyon subject to the
SH-wave. The earliest reference to a closed-form solution of the scattering and
diffraction of the incident SH-wave by an underground inclusion exists in an article
concerning an underground circular tunnel by Lee and Trifunac [55]. In order to
extend to arbitrary shape inclusion problems, Lee and Manoogian [53] have used the

weighted residual method to revisit the problem of scattering and diffraction of
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SH-wave with respect to an underground cavity of arbitrary shape in a
two-dimensional elastic half-plane. In the following years, they extended to the
half-plane problem with a inclusion of arbitrary shape [61,62]. According to the
literature review, it is observed that exact solutions for boundary value problems are
only limited for simple cases, €.g. half-plane with a semi-circular canyon, a cavity
under half-plane, an inclusion under half-plane. Therefore, proposing a systematic
approach for solving exterior Helmholtz problems with circular boundaries of various
numbers, positions and radii is our goal in this chapter. Our approach can deal with a
cavity problem as a limiting case of an inclusion problem with zero shear modulus.

In this chapter, the boundary integral equation method (BIEM) is utilized to solve the
half-plane radiation and scattering problems with circular boundaries. To fully utilize
the geometry of circular boundary, not only Fourier series for boundary densities as
previously used by many researchers but also the degenerate kernel for fundamental
solutions in the present formulation is incorporated into the null-field integral
equation. The key idea is that we can push the null-field point exactly on the real
boundary by using appropriate degenerates kernel in real computation. All the
improper boundary integrals are free of calculating the principal values (Cauchy and
Hadamard) in place of series sum. In integrating each circular boundary for the
null-field equation, the adaptive observer system of polar coordinate is considered to
fully employ the property of degenerate kernel. For the hypersingular equation, vector
decomposition for the radial and tangential gradients is carefully considered,
especially in the nonfocal case. A scattering problem subject to the incident wave is
decomposed into two parts, incident plane wave field and radiation field. The
radiation boundary condition is the minus quantity of incident wave function for
matching the boundary condition of total wave for cavity. Not only the stress
concentration of the cavity is addressed, but also the surface displacements of alluvial

valley and inclusion problems are solved in this chapter.

4.2 Degenerate kernels of BIE formulation for the Helmholtz
problem
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The governing equation of the incident SH-wave problem is the Helmholtz
equation as shown below

(V2 +KHU(x)=0, xeQ (4-1)

where V?, k and Q are the Laplacian operator, the wave number, and the domain
of interest, respectively. Based on the dual boundary integral formulation of the

domain point [101], we have
27U(x) = f T(s,%)u(s)dB(s) - f U (s, 0U9)B(s), x€Q, (4-2)
8u(x)

27 f M (s, x)u(s)dB(s) — f L(s, x)t(s)dB(s), (4-3)

where s and x are the source and field points, respectively, t(s) is the directional
derivative of U(s) along the outer normal direction at s, and n_ is the outward
normal vector at the field point x. The U(s,x), T(s,x), L(s,x) and M(s,x)
represent the four kernel functions which will be elaborated on later by using the
degenerate kernel expansion. The kernel function, U(s,x), is the fundamental

solution which satisfies
(V2 +kHU (x,8) = 216 (x—Ss) (4-4)

where O6(x—s) denotes the Dirac-delta function. Then, we can obtain the

fundamental solution as follows
—izH, M (kr)

U(s , 4-5
(8,X) = 5 (4-5)
oU (s, X) oU (s, X) 0’U(s,X)
T(s,X)= , L(s,x)= , M(s,X)=——2—=, ,
(&%) on, (%) on &%) on_on (4-6)
where H"(kr) is the nth order Hankel function of the first kind, r=[s-x|, n,

denotes the outward normal vector at the source point s. In the present method, we
adopt the mathematical tools, degenerate kernels, for the purpose of analytical study.
The combination of degenerate kernels and Fourier series plays the major role in
handling problems with circular boundaries. Based on the separable property, the
kernel function U(s,x), T(s,x), L(s,x) and M(s,x) can be expanded into
separable form by dividing the source point (s = (R,8) ) and field point (x = (p,¢)) in

the polar coordinate [25].
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U'(sx) =‘T’ﬂieme(ka;P(kR)cos(m(e—¢)>,R >

U(sx) = e , @4-7)
U(80 =53 £H (ko) I (KR)cos(m(& ). p > R
T'(s%) =ikiieme<kp)H;§”<kR>cos<m(e—¢>), R> p

T(s,X) = i ) (4-8)
Té(s%) = L AHP (kp) 3, (kR) cos(m(@ - 4)), p > R
l(sx) =ikiiekap)HéP(kR)cos(m(e—¢>>, R> p

L(s,x) = " ’ (4-9)
L(s,%) = LzemH 1 (kp)J,, (KR)cos(M(6 — ¢)). p > R
M8 = K5 2 37 (Kp)HID (KR)cos(m(0— ). R >

M (s,X) = - . (4-10)

_ 27w
M2(s,) = LY 2 HIO (k) Iy (KR)cos(m(@— ), p > R
m=0
where i’ =—1, the superscripts “i” and “e” denote the interior and exterior cases

for the expressions of kernel, respectively, and &, is the Neumann factor

L m=0 4-11
E = . -
" 12, m=12,..0 ( )

It is noted that the larger argument is imbedded in the complex Hankel function (H )
instead of real Bessel function (J) to ensure the Ho(kr) singularity and series
convergence. Since the potential resulted from T(s,x) and L(s,x) kernels are
discontinuous cross the boundary, the potentials of T(s,x) for R—p" and
R— p~ are different. This is the reason why R=p is not included in expressional
degenerate kernels of T(s,x) and L(s,x) in Egs. (4-8) and (4-9). The analytical
evaluation of the integrals for each element in the influence matrix is listed in the
Appendix and they are all non-singular. Besides, the limiting case to the boundary
is also addressed. The continuous and jump behavior across the boundary is also

described. After using the Wronskian property of J,, and Y
W(J,, (kR).Y,, (kR)) =Y, (kR)J,, (KR) - Y,, (kR) I, (kR)
2 : (4-12)
kR
the jump behavior is well captured by
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J.ozﬁ(Ti (s,%)=T*(s,x) cos(n@) RdO
=kRz?J, (kR)[Yn'(kR) —iJ! (kR)]cos(n¢)

(4-13)
—kR7?J; (KR)| Y, (kR)—1J, (KR) |cos(ng)

=27 cos(ng),

[ (T 6.0~ T*(s.))sin(n0) Rd@

=kRr’J, (KR)[ Y, (kR)-iJ/ (kR)]sin(ng) a1

—kR7*J; (KR)| Y, (kR)—iJ, (kR) |sin(ng)
=27xsin(ng),

The above equation is similar to the Wronskian of two bases for 1-D rod case.
4.3 Image technique for solving scattering problems of half-plane

Image concept for half-plane problems

For the half-plane problem with a circular cavity and/or inclusion as shown in
Appendixes and , we extend the problem into a full plane with the scatter by
using image concept such that our formulation can be applied. By applying the
concept of even function, the symmetry condition is utilized to satisfy the traction free
(t=0) condition on the ground surface. We merge the half-plane domain into the
full-plane problem by adding with the reflective wave. To solve the problem, the
decomposition technique is employed by introducing two plane waves, one is incident
and the other is reflective, instead of only one incident wave. After taking the free
body of full-plane problem through the ground surface, we obtain the desired solution
which satisfies the Helmholtz equation and all the boundary conditions in the

half-plane domain.

Decomposition of scattering problem into incident wave field and radiation problems
For the scattering problem subject to the incident wave, this problem can be
decomposed into two parts. One is the incident wave field and another is the radiation

field as shown in Appendixes and . The relations between two parts are shown
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below

u' =u +u +u", (4-15)
t =t +t"+t", (4-16)

where the “t" ” denotes the total field of matrix including radiation and scattering.

[T L]
|

The subscripts and “r ” are the incident and reflected waves and the “t" * denotes
the radiation part of matrix and needs to be solved. To match the boundary condition
for the cavity case, the total traction is defined as t =0. For the inclusion case, we
have the two constraints of the continuity of displacement and equilibrium of traction

along the kth interface (B,, k=1,---,N) as shown below:

u" =u'" on B, 4-17)

pMt" =—p't' on B. (4-18)

The radiation parts of matrix (u" and t") and inclusion (u' and t') can be solved

by employing our method.

4.4 Half-plane problems with a cavity subject to the incident
SH-wave

4.4.1 Problem statement

The anti-plane motion model to be analyzed is shown in Figure 4-1. Consider a
half-plane problem with a circular cavity of radius a. The governing equation of the

incident SH-wave problem is the Helmholtz equation

(VP +kKHWX) =0, XxeQ, (4-19)

where V?, k and Q are the Laplacian operator, the wave number, and the domain

of interest, respectively. The displacement field of the SH-wave is defined as
u=v=0, w=w(xYy), (4-20)

where W is the only nonvanishing component of displacement with respect to the

Cartesian coordinate which is a function of X and Y. For a linear elastic body, the
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stress components are [99]

ow

O3 =05 = /L&a (4-21)
ow

Oy =03 = ﬂa_ya (4-22)

where 4 is the shear modulus. The incident excitation of the half-plane problem, W,
is defined as a steady-state plane SH-wave, and motion in the z direction. It may be

expressed as follows

W — \/VOeik(xsin",/ercosw) , (4_23)

where W, is the constant amplitude. By using the image concept and the
decomposition of superposition as shown in Appendix , the total stress field in the

medium is decomposed into

oy =0y +0y, 05, (4-24)

0% =03 + 03, + 05, (4-25)

and the total displacement can be given as
w=w"+w+w, (4-26)
where W, W and W' are the displacements due to the incident, reflected and

M» heed to be solved

radiation field of matrix. Only the radiation displacement “wW
after decomposition. In order to satisfy the traction free condition on the cavity, the
traction is in equilibrium as shown below

0=t" +t' +t", (4-27)
Therefore, the scattering problem is reduced to find the displacement W" which

satisfies the Helmholtz equation and the boundary conditions. The shear stress

components, o,, and o,,, can be superimposed by using o,, and o,, as shown

below:
O, = M_@W > (4-28)
on
ow
= ME’ (4-29)

where n and t are the normal and tangent directions, respectively. Before

determining o,, and o, of the interior point, we calculate o, and o,, by
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implementing the hypersingular equation in the real computation. For calculating
shear stress o,, on the boundary, the same procedure of vector decomposition is

. . . * .
required, and the nondimensional stress o,, is defined as:

*

g
5 0z
0z

> (4-30)

0o

where o, = ukW, is the amplitude of incident wave.
4.4.2 lllustrative examples and discussions

In order to check the validity of the present formulation, the limiting case of
incident SH-wave reduces to the static case of Honein et al. [44] is conducted. For the
incident SH-wave problem, one cavity in the infinite plane subject to SH-wave is
solved and is compared with the Pao and Mow’s analytical solution [70]. Lin and
Liu’s half-plane problems with a cavity are also revisited [57]. All the numerical

results are given below by using ten terms of Fourier series (L =10).

Casel: Two circular cavitieslie on the y-axis
Figures 2 (a) and (b) shows the geometry of the two circles whose radii are a =1
and a, =2. For the static case, the displacement field of the anti-plane deformation

1s defined as:

SER 4 (4-31)

14

In the dynamic case with traction free condition on the circular boundaries, we

assume an incident SH-wave with amplitude of linear function in the Yy direction as:

w="TYgw (4-32)
L

When Kk approaches zero, the problem is reduced to a static case where Honei et
al.’s solution can be compared with for D=2, 0.1 and 0.01. Figures 2 (¢) and (f)
show the graph of the stress o,, around the boundary of smaller circle for various
distances, D, between the two circles. Our numerical results are well compared with

the data of Honein et al.’s data [44] when k approaches zero (k= 0.001) by using
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ten Fourier terms (L =10).

Case2: Acircular cylinder cavity in an infinite plane
Consider a circular cylinder with a radius “a” as shown in Figure 4-3 (a). An incident

SH-wave is defined by

u, = 0,u, = 0,u, =W,e', (4-33)

Figures 4-3 (b) and (c) show the graph of the o,, along the circular boundary for
various wave numbers ka=0.1, 1.0 and 2.0. It is worth noting that our data agree

well with the analytical solution of Pao and Mow’s data [70].

Case3: Half-plane problems with a circular cavity

Consider the scattering problem of SH-wave around a circular cavity in half-plane as
shown in Figure 4-1. The boundary conditions are traction free on the circular
boundary and ground surface. Figures 4-4 (e) to (h) are the Lin and Liu’s data [89]
which show the graph of the o), around the circular cavity. In the case of y=7/4
and h/R=1.5, the maximum value of o, is3.75 on 6 =90°, while the maximum
value of o,, is2.16 on §=0° and 180° for the case of y=n/4 and h/R=12.
Before solving the half-plane problem, an image method is employed to extend the
half-plane to full-plane with two holes by using the symmetry condition as shown in
Appendix . Therefore, the developed program of our formulation can be easily
incorporated to obtain the solution. Our numerical results are compared with the data
of Lin and Liu’s data [89], good agreement is obtained. By setting y =0°,h/a=100
for the half-plane problem, the limiting case of a single cavity in the full plane is
obtained due to the far distance between the ground surface and circle. After

comparing the Figure 4-4 (i) with Figure 4-3 (c), good agreement is also obtained.

4.5 Half-plane problems with inclusions subject to the incident
SH-wave

4.5.1 Problem statement
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Half-plane problems with alluvial or inclusions to be analyzed is shown in
Figures 4-5, 20, 25 and 31. The matrix and alluvial are assumed to be elastic, isotropic
and homogenous, and the interface between the alluvial and matrix is assumed to be

perfect. The governing equation of the anti-plane SH-wave harmonic motion is
LV W(X) + po’W(x) =0, xeQ (4-34)

where u, p and @ are the material properties of shear modulus, the density and
the frequency, V> and Q are the Laplacian operator and the domain of interest,

respectively. The anti-plane displacement field of the anti-plane is defined as
u=v=0, w=wXYy), (4-35)

where W is the only nonvanishing component of displacement with respect to the
Cartesian coordinate which is a function of X and Y. The traction free boundary

condition at the ground surface of the half-plane is defined as follows

ow
T,=p—=0, y=0, -
e — H dy y (4-36)
or can be represented in the polar coordinate as
[ OW
7T, =———=0, #=0and 7. 4-37
"1 o (#437)

The incident excitation of the half-plane, W, is defined as a steady-state plane

SH-wave, and motion in the z direction. It is expressed as shown below:

Vvi — \/\/()eik(xsinA,ercosw) , (4—38)

where W, is the constant amplitude. By using the image concept and the
decomposition of superposition as shown in Appendix , the problem can be
extended to a full-plane problem with two inclusions. In order to satisfy the traction
free condition on the surface, the reflective wave is chosen to satisfy the symmetry

condition as
\Nr :\/\/()eik(xsinq/—ycosv) ) (4_39)

Assuming the perfect bounding between the matrix and inclusion, the continuity of

displacement in the interface is given by
WHw +wM —w =0, (4-40)

and the equilibrium of traction is shown below
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where W, W, w" and W' are the displacements due to the incident, reflecting,
radiation of the matrix and inclusion, respectively. The unit normal vectors of
n“=nMe +n)'e, and n'=nle +nie, are the outward vectors for the boundaries of the
matrix and the inclusion, respectively. Therefore, the incident SH-wave problem is
reduced to find the displacement W and W' which satisfies the Helmholtz
equation and the two interface conditions. The total displacement field of matrix can

be obtained by
W =w +w +w', (4-42)

where the displacement field within the inclusion is defined as W' . Assuming perfect
bounding between the matrix and inclusion, the continuity of displacement
(W (X)=w'(x)) and traction equilibrium ( £"t" (X)=—p't' (X)) are satisfied on the
interface boundary. In order to check the validity of the formulation, the Manoogian
[61] and Trifunac’s [79] problem with an alluvial valley is revisited. We follow the
same parameter, 77, for comparison purpose. The dimensionless frequency 7 is
defined as shown below:
=g§:kMa_ wa

= , 4-43
g A i acV ( )

where a is the half-width of the alluvial valley, @ is the angular frequency, k"
and c" are the shear wave number and the velocity of shear wave for the matrix

wedium, and the shear wave number K is defined as

(0]
k=—. 4-44
c (4-44)

Substituting Eq. (4-43) into Eq. (4-44), the wave number of matrix field is rewritten

as

I (4-45)

and the shear wave number for the inclusion field is obtained by
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| M M 1 \Y2
kK _c _ (”_'O_J . (4-46)

Equation (4-46) indicates that various mediums yield different wave numbers. The
surface amplitude is an important index for the earthquake engineering. If the
amplitude of incident plane SH-wave is one, the responses at different locations
represent amplifications of the incident wave. The resultant motion is defined by the

modulus

Amplitude = \/ Re’ (W) +Im’ (W), (4-47)

where Re(w) and Im(w) are the real and imaginary parts of total displacement,
respectively. For both the alluvial valley and inclusion under the ground surface,
observation points are located on the free surface in the range of —-1<x/a<l.
Therefore, the observation point locates on the matrix for inclusion under the ground

surface, while the observation is on the inclusion for the alluvial valley problem.
4.5.2 lllustrative examples and discussions

In the section, we revisit the same problems of Lee and Manoogian [62], Trifunac [79]
and Tsaur et al. [103] for the alluvial problem. The half-plane medium subject to
SH-wave with an inclusion under the ground surface as previously solved by Lee and
Manoogian and Tsaur €t al. are also revisited. In order to check the accuracy of the
present method, the limiting case is conducted. All the numerical results are given

below by using ten terms of Fourier series.

Case 1. Half-plane problem with an alluvial valley subject to the SH-wave

In the following examples, we choose the same parameters h/a=1.0,4' /" =1/6
and p'/p" =2/3 which were previously adopted in the Ph. D dissertation of
Manoogian [61]. Figures 4-6 to 4-9 show the surface amplitudes for various
paramaters of 7. In each figure, four various incident angles (» =0, 30°, 60° and
90) are considered. The figures show the displacement amplitude on the ground

surface only. Displacements are plotted with respect to the dimensionless distance
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x/a for a specified parameter 7. In order to verify the limiting case of the general
program, we set ' /u™ =107 to reduce to four canyon cases of 7 (0.5, 1.0, 1.5
and 2.0). In Figures 4-10 to 4-13, good agreements are obtained after comparing with
Lee and Manoogian’s results [53] for various frequency parameters of 7 for the
semi-circular canyon case. Another limiting case of the rigid alluvial is also of interest
in the foundation engineering. For example, rigid footing is a popular model in
geotechnical engineering. By setting ' /4" to be infinity, the limiting case of rigid
inclusion can be obtained. Figure 4-14 plots the surface displacement by setting
u' /™ =10" and 7=2 in the real computation. In the range of x/a=-1 to 1,
the amplification is a constant as expected, because it is undeformed due to the rigid
alluvial.

Figures 4-15 to 4-17 show the surface displacement for 7 =0.25,---,2.50, for various
values of p'/p" and c'/c" | subject to the vertically incident SH-wave (y =0°)
whose amplitude is one. The point X/a=1 corresponds to the edge of the alluvial
valley, and the position of x/a=0, shows the center of alluvial valley. Since all
displacement amplitudes are symmetric about the center, for the vertically incident
SH-wave, only the positive X/a axis is illustrated. In Figures 4-15 and 4-16, they
show the effect of ¢'/c" on the surface amplitudes. The soft-basin effect of high
amplitude is observed in this study. Figure 4-17 is an example of harder material in
the alluvial valley and softer matrix. It is found that the surface amplitude is two as
expected when 7 is small. For the far field response, the surface amplitude is found
to be two since the perturbation due to the alluvial/inclusion is small. Figure 4-18
compares the surface displacement amplitude for the vertical and horizontal incidence
wave versus the dimensionless frequency 7 at x/a=0.8, while Figure 4-19 shows
the same comparison for X/a=-0.8. Good agreement is made after comparing with

Trifunac’s [79] results.

Case 2: Half-plane problem with two alluvial valleys subject to the SH-wave
Two semi-circular alluvial valleys subject to the incident SH-wave of » angle are
shown in Figure 4-20. Figures 4-21 and 4-22 show the surface displacements versus

x/a for various incident angles with ' /u™ =1/6 and p'/p™ =2/3 subject to
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four cases of n (0.5, 1.0, 1.5 and 2.0). By setting ' /u™ =107°, the limiting case
of successive canyons is obtained as shown in Figures 4-23 and 4-24. Tsaur et al. [103]
and Fang [93] have both calculated the problem of two semi-cylindrical alluvial
valleys for the incident SH-wave. Tsaur et al. [103] pointed out that the deviation by
Fang [93] is that Fang improperly used the orthogonal property. Good agreement is
made after comparing with the results of Tsaur et al. [103]. For the incident angle of
zero-degree, the surface displacement amplitude is symmetric. By increasing the
incident angle, the displacement amplitude is gradually smaller in the back side of the
alluvial valley or canyon due to the shield effect of two alluvial valleys or canyons.
As the incident angle approaches ninety-degrees, the surface displacement amplitudes
are all smaller than the “free field” in the back of the second alluvial. It indicates that

two alluvial valleys can be the wave trap for the incident wave.

Case 3: Aninclusion under the ground surface subject to the SH-wave

A circular inclusion under the ground surface subject to the incident SH-wave of
incident angle of y is shown in Figure 4-25. The surface displacement amplitude of
Eq. (4-42) versus X/a is plotted in Figures 4-26 and 4-27 for various incident angles
with ' /™ =1/6,p' /1 p™ =2/3 . Figure 4-26 shows the comparison with the
Tsaur’s data [102] and Manoogian and Lee’s [62] result for the nondimensional
frequency 7 =2. The surface displacements of the present method match well with
the Tsaur’s data, but it deviates to Lee and Manoogian and Lee’s [62] result. The
discrepancy was explained by Manoogian [60] due to the precision limit in the
FORTRAN code ten years ago. In order to verify the limiting case of the general
program, we set u' /u™ =107 for four cavities cases of 7 (0.5, 1.0, 1.5 and 2.0).
Good agreement is made after comparing with the results of the cavity cases of Lee
and Manoogian [53,61]. The comparisons are shown in Figures 4-28 and 4-29 for
different distances (h) from the cavity to the ground surface of the half-plane.
Another limiting case of the rigid inclusion is of interest for the foundation
engineering. By setting #' /" to infinity, the limiting case of rigid inclusion can be
obtained. Figure 4-30 shows the surface displacement when we set u'/u" =10*

and 7 =2 in the real computation.
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Case 4: Half-plane problem with two inclusions subject to the SH-wave

In order to verify that the present approach can be extended to handle arbitrary
number and various positions of circular inclusions, we consider the problem with
two inclusions under the ground surface subject to SH-wave as shown in Figure 4-31.
Figure 4-32 shows the surface amplitude of the two-inclusions problem with
u/uM=1/6,p" / pM =2/3 for four cases of n (0.1, 0.25, 0.75 and 1.25). For the
limiting case, the two inclusions problem reduces to two cavities problem when we
set ' /pu™ =10"*. Good agreements are obtained after comparing with the results of
two- cavities problem of Jiang et al. [95] as shown in Figure 4-33.

All the figures show that amplitude profiles are relatively simple for the lower
frequency incident waves and become complicated with higher peak amplitudes for
the higher one. Surface responses are symmetrical for vertically incident SH-wave as
the angle of incidence increases towards ninety degrees. Amplitudes tend to be
somewhat larger and profiles are more complicated for the place in front of the first
inclusion (X/a<-1). This is due to the interference of incident, reflected, and
scattering waves near the inclusion.

Consequently, we have high confidence in the results of the present method after

testing the program through several examples.

4.6 Concluding remarks

The first attempt to employ degenerate kernel in BIEM for problems with circular
boundaries subject to the SH-wave was achieved. Not only cavity but also inclusion
problems were treated. We have proposed a BIEM formulation by using degenerate
kernels, null-field integral equation and Fourier series in companion with adaptive
observer systems and vector decomposition. This method is a semi-analytical
approach for problems with circular boundaries since only truncation error in the
Fourier series is involved. Good agreements are obtained after comparing with
previous results. The stress concentration factor of cavity case and the surface motion

of half-plane problem with inclusions were determined. Parameter study on the
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surface amplitudes was also addressed. Successive canyons and/or alluvial valleys as
well as several inclusions beneath the ground surface were considered. The analysis
of amplification and interference effects for valley and inclusions subject to
SH-waves may explain the ground motion either observed or recorded during
earthquake. The method shows great generality and versatility for the problems with

multiple circular cavities and inclusions of arbitrary radii and positions.
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Chapter 5 Derivation of Green’s function and Poisson
integral formula for annular Laplace problems

Summary

Null-field approach is employed to derive the Green’s function for annular Dirichlet
problems of the Laplace equation. Kernel functions and boundary densities are
expanded by using the degenerate kernel and Fourier series, respectively. Series-form
Green’s function is derived and plotted. The Poisson integral formula is extended to
an annular case from a circle. The Green’s function of an exterior problem bounded

by a circle is found to be the limiting case of the present solution.

5.1 Introduction

Green’s function has been studied and applied in many fields by mathematicians as
well as engineers [47,63]. According to the superposition principle, it can solve
problems with distributed loading. The main difference between the fundamental
solution (free-space Green’s function) and Green’s function is that it not only satisfies
the governing equation with a concentrated source but also matches the boundary
condition of the bounded domain. Poisson integral formula was constructed after the
special Green’s function is obtained. It is well known that the kernel function in the
Poisson integral formula is the normal derivative of the Green’s function for the
Dirichlet problem of a circle. In deriving the Green’s function, Thompson [77]
proposed the concept of reciprocal radii to find the image source to satisfy the
homogeneous Dirichlet boundary condition. Sommerfeld [74] and Greenberg [41]
both utilized the concept of reciprocal radii of Thompson [77] to drive the Poisson
integral formula. On the other hand, Chen and Wu [31] proposed an alternative way to
find the location of image through the degenerate kernel. For problems with a
complicated domain, a closed-form Green’s function as well as series form is not easy
to obtain. Analytical Green’s functions have been presented for only a few
configurations in two-dimensional problems using the theory of complex variable.
Numerical Green’s functions have received attention from BEM researchers by Telles
et al. [76]. Melnikov [64] used the method of modified potential (MMP) to calculate
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the Green’s function of eccentric ring and half-plane problems with a circular
boundary. Boley [9] analytically constructed the Green’s function by using successive
approximation. Adewale [2] proposed an analytical solution for an annular plate
subjected to a concentrated load which also belongs to one kind of Green’s function
for the biharmonic operator.

In this chapter, we focus on the null-field approach to determine the Green’s function
for the annular Laplace problem. Based on the obtained Green’s function, the
extended Poisson formula for the annular problem subject to Dirichlet boundary

conditions can be constructed.
5.2 Derivation of the Green’s function for annular Laplace problems

5.2.1 Problem statement and null-field approach to construct the Green’s

function

For two-dimensional annular problems as shown in Figure 5-1, the Green’s function
satisfies

ViG(x,&)=0(x-¢&), xeQ, (5-1)

where €2 is the domain and o(x—¢&) denotes the Dirac-delta function for the
source at &. For simplicity, this Green’s function is subject to the Dirichlet boundary
condition

G(x,£)=0, xeB, (5-2)

where B is the boundary. In order to employ the Green’s third identity as follows

j j [U()V?V(x) ~v(X)Vu(x) |dD(x) = j [(u(x) M) _

2 v, (53
we need two systems, u(x) and v(X). By choosing u(x) as G(x,&) and setting
v(X) as the fundamental solution U (x,s) such that
VU (X,8) =215(Xx—s), XeQ, (5-4)
we can obtain the fundamental solution as follows
U(s,x)=Inr, (5-5)

where r is the distance between s and x (r s|x—s|). After exchanging with the
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variables x and s, we have

27G(x, &) = j T(s,X)G(s,£)dB(s) — j U, X)MdB(sHU (£,X), (5-6)
where T(s,X), is defined by
_ 0U(s,x)
T(s,x)= “on (5-7)

S

in which n_ denotes the outward normal vector at the source point s. To solve the
above equation, we utilize the null-field integral equation to analytically derive the
Green’s function. To solve the unknown boundary density t for the annular Dirchlet
problems, the field point x is located outside the domain to yield the null-field

integral equation as shown below:

0= | T(s,X)G(s,)dB(s)— | U (s,x)%rig)dB(S)JrU(flx)' XeW,  (58)

where €Q° is the complementary domain. By using the degenerate kernels, the BIE
for the “boundary point” can be easily derived through the null-field integral equation

by exactly collocating x on B in Eq. (5-8) [28].
5.2.2 Expansions of kernel and boundary density

Based on the separable property, the kernel function U (s,x) can be expanded into
series form by separating the field point (p,¢) and source point (R,0) in the polar
coordinate:

U'(R&;p,¢)=INR- Z (Ej cosm(6-¢), Rz p

m—l

U(s %)= , (5-9)

U*(R &;p,4)=Inp— Z (Ej cosm(6—-¢), p>R

m—l

It is noted that the leading term and the numerator in the above expansion involve the
larger argument to ensure the log singularity and the series convergence, respectively.

According to the definition of T(s,X), we have
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o0

Ti(R,e;p,¢):%+Z(Ffm+l)cosm(9—¢), R>p

T(s,x) = - , (5-10)

T*(RO;p,.6) = - cosmio-a), p>R

The boundary densities for the annular Dirichlet problem can be represented by using

the Fourier series as shown below:

G(s,£)=0, seB andB,, 511
0G(s.£) Po +;(pmcosm¢9+qmsinmg), seB
S ! (5-12)

P+, (P, cosm+7,sinmY), se B,
m=1

where B, and B, denoted the inner and outer boundary of circles, respectively.
5.3 Series representation for the Green’s function of an annular case

For the annular case subject to the Dirichlet boundary condition, the unknown Fourier
series can be analytically derived. By collocating x on (b",¢) and (a ,¢) in Eq
(5-8), the null-field equations yield

0=(1-27bp, —27ap,)Inb

2 1 a)"_ (R ay"_ (R . .
—Z— brp,+ar| —| P,+|—| cosmy, [cosmp+|bzq, +az| —| ,+|— | sinmg, [sinmgp
= m b b : b b

x— (07, 9),
(5-13)
0=(InR. —27blnbp, —27alnap, )

_g%ﬂbﬁ[gj pm+a7z|6m+{%] COSW§]COSW+|}J7{(%J qm+aﬁf_lm+{§] sinnﬂéisinm}

<

Y X—(a,¢).
(5-14)

The unknown Fourier series coefficient can be obtained as
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Ina—-In R§

Po| | 27b(Ina—Inb)
) | Inb-IR
2za(Inb—Ina)

bmcosrrﬂélbm(%j —am[SJ ]
3
pm ~ (b2m_a2m)ﬂ,
G e B
b™ cos mo, bm(] —a’“( J
R.
a(me_aZm)ﬂ_
b™* sinmy, bm(R‘fj —am[aJ
b R.

qm ~ (b2m_a2m)7z_
5 B

em ] 5]

a(me _ aZm)ﬂ_

(5-15)

o ‘MJU

Py

By substituting all the boundary densities into the integral representation for the

domain point, we have the series-form Green’s function as shown below:

G(x,¢) =—(bInb p, +aln p ;)

s L[pf2) al s 2V g va(2) g lsinmg |+ Mx=¢l (5-18)
+;2m[(b(bj pm+a(pj pchosrmH[b(bJ qm+a[pj qm]5|nn14+ P
If we also expand the In function and collect the terms, we have

_ IR &1 " a) _
G(x,&) =—(b|nb p,+alnp P, —2—;]+;%[[b£%j pm+a[;j ol

I 5'19
o mCOSI’T\Qf 0 m a m_ P msinm6’§ . < ( )
—E Tcos,m¢§+bE qm+a; qm—E ~ sinmg |, a< p<R
_ VAT oI S N0 )
G(x,&) = (blnbp0+alnpp0 2;;)+Z;2m[[b(bj pm+a(p] B
(5-20)

R. )" cosmy, " " R. )" sinmg. '
_[_j cos Sjcosm¢+(b[ﬁj qm+a[3j ﬁm—[—g] =l ‘;]Si”msb]ﬂ <ps<b
P T b P P T i
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Two limiting cases are our concern. One is the interior case of a to be zero and the
other is the exterior case of b to be infinity. Our results are shown in Table 5-2 to
compare with previous results by Chen and Wu [31] as shown in Table 5-1. By taking
limitof b toinfinity and replacing R. to R, Egs. (5-21) and (5-22) are reduced to
the exterior case [31] as shown in Table 5-1. The detailed proof is shown in Appendix
. Equations (5-21) and (5-22) can not be reduced to the interior case [31] due to the
inconsistency of potential at the center for the limiting case of a to be near zero. For
clarity, we perform two experiments by setting (a=1,b=10",L =20,& =(1.25,0°))
and (a=0.001,b=1,L=20,&=(0.8,0") ). Both figures agree our analytical prediction
after comparing with those of Chen and Wu [31] as shown in Figure 5-2.
Now we move to solve the solution w(x) as shown in Figure 5-1(b) for the

following partial differential equation,

V'w(x)=0, xeQ, (5-21)
subject to the following Dirichlet boundary condition

w(x)=f(d), xeB, (5-22)

w(x)=g(f), xeB,, (5-23)

To extend the Poisson integral formula to an annular case for Eq. (5-21) subject to
BCs of Egs. (5-22) and (5-23), we have
27W(X) = J‘ 9G(s.x)
Bi+B, s
where G(s,x) is the derived Green’s function of Eq. (5-18). Equation (5-24)

w(s)dB(s), (5-24)

indicates the representation for the solution in terms of extended Poisson integral
formula. Although the series-form Green’s function for an annular case is derived
analytically in the section, general Green’s functions can be solved by a
semi-analytically approach as shown in the chapter 2 except the addition of U (x,&)
term, a semi-analytical solution is shown in Figure 5-3 (b). It must be noted that

olong is 0/0R and —0/0R for exterior and interior circles, respectively.

5.4 An illustrative example and discussions

Annular case (analytical solution and semi-analytical solution)

To avoid the degenerate scale [26], we design the radii of inner and outer boundaries
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are 4 and 10. The source of the Green’s function is located on & =(0,7.5). For the
annular Green’s function, both the analytical solution and the semi-analytical results
are shown in Figure 5-3. The analytical solution is obtained by truncating Fourier
series of fifty terms in real implementation. By collocating null-field points along the
inner and outer boundaries with the same number of Fourier coefficients, the
semi-analytical solution of Chapter 2 can be obtained. Good agreement is made to

verify the validity of the program since it matches well with the analytical solution.

5.5 Concluding remarks

For the annular problem, we have proposed an analytical solution to construct the
Green’s function by using degenerate kernels and Fourier series. The series-form
Green’s function for the annular Dirichlet problem was derived which can extend the
Poisson integral formula from a circle to an annular case. It is interesting to find that
the Green’s function of exterior problem bounded by a circle can be treated as a
limiting case of our solution. We also proposed a semi-analytical solution for
comparison purpose. The semi-analytical method can be extended to construct the
Green’s function of eccentric case. Since analytical solutions are not available, our

semi-analytical results may provide a datum for other researchers’ references.
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Chapter 6 Conclusions and further research
6.1 Conclusions

The thesis is concerned with the semi-analytical solution of Laplace and Helmholtz
equations in planar domain that are bounded by a finite number of circular holes
and/or inclusions. The approach is via the null-field integral equations emphasizing on
the two issues of avoiding the need of CPV and HPV and illuminating the
boundary-layer effect. The key idea is to approximate the unknowns via truncated
Fourier series on the circular boundaries and the kernels of the integral operators, that
is, the fundamental solution by truncating the addition theorem to have the degenerate
kernels. Based on the proposed formulation for solving the problems involving
circular boundaries in different branches of engineering applications, some

concluding remarks are itemized as follows:

1. A systematic way to solve the Laplace and Helmholtz problems with circular
boundaries was proposed successfully in this thesis by using the null-field
integral equation in conjunction with degenerate kernels and Fourier series.
Problems involving infinite, semi-infinite and bounded domains with circular

boundaries were examined to check the accuracy of the present formulation

2. Boundary integrals along the circular contour are performed analytically. The
present method is seen as a “semi-analytical” approach since error purely
ascribes to the truncated Fourier series. Convergence study using different

numbers of Fourier series was also done.

3. In calculating the potential gradient using hypersingular formulation, adaptive
observer system and vector decomposition technique were employed to

efficiently solve the problems.

4.  Atorsion bar with multiple cavities was studied by using the present formulation.

-52.-



Our solutions match well with the exact solution and other solutions by using the
boundary integral equation for the Caulk and Ling’s cases. For the bending
problem, we also consider a cantilever beam with multiple cavities. The
discrepancy between Naghdi’s solution and Bird and Steele’s data was examined.

Our results agree the Naghdi’s data better than Bird and Steele’s results.

In the exterior Helmholtz problem, the stress concentration factor of the cavity
was solved. Not only the infinite plane cases but also half-plane problems subject
an incident SH-wave was considered. Image concept and technique of
decomposition are utilized to transform half-plane problems to full-plane cases
such that our formulation can solve. Numerical results are obtained and

compared well with previous results by others.

We extended the cavity problem to inclusion problem. Basin problem is also our
concern. The effect of softer and harder material of alluvial, on the amplification
of amplitude for alluvial valleys was also studied. The results of the inclusion
case show the superiority of our method over the Manoogian’s data after

comparing with the limiting cases and Tsaur’s results.

When the wave number k approaches zero, the Helmholtz problem can be
reduced to the Laplace problem. Laplace problem can be treated as a special case

of the Helmholtz problem.

Our approach can deal with the cavity problem as a limiting of inclusion problem
with zero shear modulus. On the hand, rigid footing can also be considered using

higher values of shear modulus.

A general-purpose program for solving engineering problems involving the
Laplace and Helmholtz problems with multiple circular cavities or inclusions of
various radii and arbitrary positions was developed. Its possible applications in

engineering are very broad, and are not limited by the tropic in the thesis.
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6.2 Further research

In this thesis, our formulation has been applied to solve the problem with circular
boundaries by using the separate form of fundamental solutions and Fourier series
expansions for boundary densities in the null-field integral equation. However, there

are several researches which can be conducted.

1. In the thesis, the degenerate kernels are expanded in the polar coordinate and
only problems with circular boundaries can be solved. For the general boundary,
e.g. elliptical hole, it is obvious that our method can be directly applied once the

kernel functions can be expanded to separate form in the elliptical coordinate.

2. Following the success of applications in two-dimensional problems, it is
straightforward to extend this concept to 3-D problems with spherical inclusions
and/or cavities using the corresponding 3-D degenerate kernel functions for

fundamental solutions and spherical harmonic expansions for boundary densities.

3. The fundamental solution was expanded to degenerate kernels with respect to the
single center by separable technique. Hence, an adaptive observer system was
required to fully capture the geometry of each circle. The bi-observer expansion
technique for the two point function of source and field systems may be suitable
for the eccentric case in a more straightforward way free of adaptive observer

system.

4. For problems with straight boundaries, our method can also be applied by
changing the dummy variable 6 into R, and Legendre and Chebyshev
polynomials are suited to approximate the boundary densities on the regular and
degenerate straight boundaries, respectively, to employ the orthogonal property
of integration. How toe keep the orthogonal property is the main challenge.

5. The present method has determined the torsional rigidity of a bar with circular

holes. Following the success of this thesis, extending to the problem of torsional
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rigidity of a bar with inclusions can be considered as a forum in the future.

The extension to hill scattering can be studied by using the present approach in
conjunction with the multi-domain technique by decomposing the original
problem into one interior problem of circular domain and a half-plane problem

with a semi-circular canyon.

Although annular Green’s functions were solved analytically and numerically in
this thesis, the semi-analytical solution for the Green’s function of eccentric case,
mixed BC and multi-medium can be easily solved using our approach. Our

semi-analytical results may provide a datum for other researcher’s references.
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Appendix

Analytical evaluation of the integrals for Laplace kernels and their limit

U (s,x) and .[U (s.x)t(s)dB(s)

T(s,x) and .[T(s,x)u(s)dB(s)

5 9 . ® " .
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LI_I’}T;|:7Z'H£ sin(ng) —ﬂ'HRSIn(n¢)l R>p ||rr’l|:ﬁ(§ }-nsm(ngé) R>p
1 Rn+1 7 1
lim| z— cos(ng) |=r—Rcos(ng), R
paR|:ﬂ- n pn ( ¢)_ T n ( ¢) <p Ilml:_ﬂ-[E COS n¢ ] _ﬂ-cos(n¢), R<,0
n+1 T p—R Yo
|Im|:ﬁan sin(ng) :;ziRsin(mﬁ), R<p
p—R n p n R A
- |Im[—ﬂ( J sm(n¢)} -zsin(ng), R<p
p—R ,0

(Continuous for R <p<R")

(Jump for R <p<R")
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L(s,x) and jL(s,x)t(s)dB(s) M (s,x) and J'M (sx)u(s)dB(s)

§ g . 0 m-1
=R L (RO:p.g) =2, pm (m(e-¢)), R>p (m(6-9)), R2p
- % L(s,x)= M(s,x)z
z L°(R.6; p,9) =—+Z cos( (0-94)), R<p M®(R 6;p,¢4) = Zm cos( (0-¢)). R<p
Q 2t & o™t 2| & m-1 n-1
g .[o {_; pR cos(m(6 - ¢))}cos(n€)Rd9—— (%) cos(ng), R>p L”{;mgm cos(m(9—¢))}cos(n0)Rd9:n;r pRn cos(ng),
%—’ J‘OZ” _; ,DRnFl cos(m(6 - ¢))}sm(n9)Rd9——;r[§j sin(ng), R>p J‘OZ”{;m }sm (n6)RdO = nr £ P sin(n¢),
é 27[_1 © Rm R 27| & Rn
IO ;+me cos(m(@ 9) }cos nd)Rdo = [;j cos(ng), R<p IO {Z;m cos }cos )R = n;z —cos(ng), R<p
IZ” £+i le cos(m(ﬁ ¢ }sm ng)RdY = E(Bj sin(ng), R<p J‘;”{ims 005 }sm (no) RdG = WT R —sin(ng), R<p
1l mpP P m=1
Limit et n-1
p—>R Iin;{—;r[%) cos(n¢)}:—zzcos(n¢), R>p Lﬁn{nﬂp COS(“¢)}=M—COS(”¢) R>p
n-1 . B pn—l
Iﬂ[ (gj sin(n¢)}=—nsin(n¢), R>p LI_f)]; n sm(nqﬁ)] nrosin(ng),  R=p
{ lim n;rRTilcos(n¢)}:n7z—cos ng), R<p
Lm ﬂ'( j cos(ng) |=zcos(ng), R<p PR p
lim n;rRT:sin(nm}—nzzécos(nyﬁ), R<p
Im[ ( J sin(ng }ﬂsm ng), R<p e

(jump for R <p<R")

(Continuous for R < p<R")
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Appendix Analytical evaluation of the integrals for Helmholtz kernels and their limit

U (s,x) and '[U (s.x)t(s)dB(s)

Degenerate kernel

"(RO;p,¢)= I (ko) Y (KR) =13, (KR) Jcos (m(6 - 4)).R> p

U(sx) =

R a; p, ¢ kp) (kp)}cos(m(@—gb)), R<p

X
T

Orthogonal process for n=0

IOZ”LEEE 3, (kp)[¥, (KR)~13,, (KR)]cos(m )}cos(o 6)RdO = Rr?J, (kp)[ Y, (KR) - iJ, (KR)], Rz p

If”Li_O%em n (k) Yo ( kR) |cos(m( }sm(o )Rd6 =0, R> p

IoMLio%ngm(kR)[ kp)]cos(m( )}cos(o O)Rd6 = (KR)[Y, (ko) -3, (kp)], R<p

Lz”LiO%ngm(kR)[ kp) Jeos(m( }sm(o O)RA0 =0, R<p
for n=0

ool
j [2553 kp)[ Yo (KR) —id,, (kR) |cos( cos(nd)Rdd = Rz*J, (kp)[ Y, (kR)-iJ, (kR) |cos(ng),

cos(ng)RdO = Rz*J,, (kR)[ Y, (kp) - iJ, (kp)]cos(ng),

COS

Veos(m(0- )
{ o (kp)[ Y,y (KR) =13, (KR) cos(m(6 - ) }sm(n@)Rd& R7*J, (kp)[ Y, (kR) - iJ, (kR)]sin(ng),
T oLt

ko) Jeos(m(o- )

sin(n@)Rdé@ = Rz?J, kR [Y kp |J k,o ]sm n¢5
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R>p
R<p

23, (kR)[Y, (R) i3, (kR .
23, (kR)[Y, (R) i3, (kR) .

[R;;ZJO (ko) Y, (kR) - i3, (kR)]]
[R;:ZJO (KR)[Y, (ko) -iJ, (kp)]]

for n=0
lim
poR
lim
p—R
for n#0

Limit » >R

L 1 L1 L1
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T(s,x) and '[T(s,x)u(s)dB(s)

Degenerate kernel

T(s,X) =

"(RO;p,4)= ZK Endm

(kp [Y (kR)—iJ/, kR]cos( m(6 - ¢))R>p

T¢(RO;p.¢)= Zk emdin (KR)[ Yy (kp) —idm(kp) Jcos(m(0 - ¢)). R< p

Orthogonal process for n=0

for n=0

Jj{;k%gm‘]m(kp)[ﬂ](kR)—iJ’ (kR) ]cos(m(6 - ¢ )}cos(Oﬂ)Rde =kRz*J, (kp)[ Yy (kR)-iJ; (kR)], R>p

Lz{ik%stm(kp)[ 7 (KR)—iJ;, (kR) Jcos(m( }SIH(O-H)RdQ:O R>
Ioz{ik%st;n(kR)[ o (kp)—idm(kp)]cos(m(6 - 4)) |cos(0- O)RdE = kRz* J; (KR)[ Y, (kp) —id, (kp) ], R<p
Jj{ik%gm%(m)[ Y., (kp)—idm(kp) Jcos(m(6 - ¢) }SIH(O'H)RdQ:O, R<p

wJo (ko) Yo (KR) =137, (KR) ] cos (m(0 - ¢))}cos(n -O)RAO = kRz*J, (kp)| Yy (kR) —iJ; (kR) |cos(ng),

o (ko) Yo (KR) =i/, (KR) ] cos(m (0—¢))}sin(n~9)Rd€:kRﬂan(kp)[Yn’(kR)—iJn’(kR)]sin(n¢),

230 (KR)[ Y, (kp) ~idm(kp) |cos(m(o - ¢))} cos(n- O)RdO = kRz*J; (kR)[ Y, (kp) —id, (kp) |cos(ng),

4 (KR)[Y,, (kp)—idm(kp) |cos(m (9—¢))}sin(n~0)Rdc9:kR;z2J,;(kR)[Yn(kp)—iJn(kp)]sin(n¢),

R>p

R>p
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Limit » >R

for n=0

lim| kR J, (k) [Y; (kR) =135 (KR)] | = kKRe" 3, (k) [Y; (kR) i35 (KR)].  R> p

lim| kR 33 (KR)[ Y, (kp) =13, (kp) ]| = kKR35 (KR)[ Y, (kp) i3, (kp) |, R<p
for n=0

Lm[kanJn(kp)[Yn'(kR) i3, (kR)]cos n¢)]=kR;r 3, (KR)[ Y, (KR) —iJ; (KR) |cos (ng),
Lm[kRﬂzan(kp)[Yn'(kR) 137 (kR) ]sin (ng) | =kRz*3, (KR)[ Yy (kR) —13; (KR) Jsin (ng),
Lm[kRﬂZJ,;(kR)[Y (kp) =i, (kp) Jcos(ng) | = kRz3; ( R)[ (KR)-iJ, (KR) Jcos(ng),
LLn;[kR;zan'(kR)[Yn(kp)—iJn(kp)]sm(nqﬁ] =kR7"J; (KR)[ Y, (KR) -iJ, (KR) Jsin (ng),

(umpfor R <p<R")

Py

> p

R>p

R<p
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L(s,x) and jL(s,x)t(s)dB(s)

D te kernel
egenerate kerne L (R0, ) = Zk Emdin (k) Yin (KR) = i3y, (kR) ]cos(m(6 - ¢)),R> p

L(s,x) =
*(R&;p @)= Zk Emdm (KR)[ Y (ko) — i35, (kp) Jcos(m(0 - ¢)), R< p

Orthogonal process for n=0
jz”[ikﬁgmagn kp)[ Y, (kR) —iJm(kR)Jcos(m(B—¢))}cos(0~¢) Rdo = kRz*J; (kp)[ Y, (KR)-iJ, (kR)],  R>p
j {Zk £ndi (Kp)[ Y (KR) =i, (KR) Jsin (m(& - ¢))}sin(0~¢)Rd0:0, R>p

j {Zk &ndn (KR)[ Y (ko) —1d5, (kp) |cos(m(0 - ¢))}cos(o $)RdO = kRz*J, (KR)[ Y, (kp)-i3; (kp)],  R<p

jo Lz_okzgmam (KR)[ Y (kp —IJm(kp)}sm(m(a—¢))}sin(o.¢)Rdg:0’ R<p
for n=0

j {Zk £ndi (kp)[ Y, (KR) —i1J,, (KR) |cos(m(0 - ¢)

~—

}cos(mﬁ) Rd6 = kRz*J; (kp)[ Y, (kR)-iJ, (kR) |cos(ng), R>p

k > &9 (kp) )[ Yo (KR) =13, (KR) Jsin (m(6 - ¢)) [sin (ng) Rd6 = kRz*J; (kp)[ Y, (kR) -iJ, (kR) Jsin(ng),  R>p

R |

{Zk £ndn (KR)[ Yy (kp) =135, (kp) |cos(m(0 - ¢)
1| S e (R (ke) 12, ) Jsin(m(0-9)

}cos(n;ﬁ) Rd6 = kRz*J, (KR)[ Y, (kp)-iJ; (kp)|cos(ng), R<p

sin(ng)Rd6 = kRz*J, (KR)[ Y (kp)—id; (kp) Jsin(ng),  R<p

| I
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Limit » >R

for n=0
lim| kR 3; (kp) [, (kR) =i, (kR)] | = kRr* g (KR)[ Y, (KR) i3, (KR)],  R>p

lim| kR 3, (KR)[Y; (kp) =135 (kp) ]| =kRe" 3, (KR)[ Yy (KR) ~id; (kR) ], R<p

for n=0
lim [KR73; (kp)[ Y, (KR) -3, (KR) Jcos (ng) | = KRz 3; (KR)[ Y, (KR) —iJ, (KR) Jcos (ng)
m[km?a;(kp)[vn(kre)_un(kR)]sin(rw)]:kRﬂzJ;(kR)[vn(kR)_u (kR) |sin(ng)
lim [KRz*3, (KR)[ Yy (kp) ~i3; (kp) |cos (ng) | = KRz, (KR)[ Yy (KR) ~13; (KR) Jcos (ng)
lim [KRz3, (KR)[ Yy (kp) ~i3; (kp) Jsin (ng) | = kRzJ, (KR)[ Yy (kR) ~i3; (KR) ]sin (ng)

(umpfor R <p<R")

R> p

R> p

R<p
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M (s,x) and .[M (sx)u(s)dB(s)

Degenerate kernel

M (s,X) =
*(RO;p,4)= Zkz endl

M'(R6;p,8) = ikz ﬁng;n(kp)[Yr;(kR)—iJr;(kR)]cos(m(e—gb)), R>p

o (KR)[ Y (kp) = i35, (kp) Jcos(m(0 - ¢)),R< p

Orthogonal process for n=0

I, [ZKZ—EJ kp)[Yy (KR)=iJ;,
LZ”LiOkM L (ko) Yo (KR) —id;,
I{Zk adh (R)[Y; (ko) i3,
I{Zk £din (R (kp) i3,

NN oY Nl

for n=0

[ {ZKZEM kp)[ Yy, (KR)-iJ;,
[ zkz_gm L (ko) [V (KR) — i3,
2K S et (R (ko) 13,

Lf”_Zkz 7w (R (k)

N

..M..

kR cos
(kR ]cos
cos

COS

kR cos
(kR ]cos
cos

COS

cos(0-$)Rd6 = k*Re*J; (kp)| Yy (kR) —iJ; (kR) |, R=p

}sm (0-¢)RdO =0, R>p

)}cos 0-$)RdO = KRz J; (kR)[ Yy (kp) —ids (ko) |, R<p

o

ol
o
ol
}

5|nO¢Rd9 0, R<p

cos (ng)Rd6 = k*Rz*J; (kp)[ Yy (KR) —iJ; (kR) cos (ng),
sin(ng)Rdo = k*Rz*J; (kp)| Y, (kR) -i3; (KR) ]sin (ng),
cos (ng)Rd = k*Re*J; (KR)[ Y, (kp) -13; (kp) |cos(ng),

sin (ng)RdO = k*Rz* 3/ (kp)[ Yy (kR) —iJ; (KR) ]sin (ng),

R>p

R>p

R<p

R<p
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Limit » >R

for n=0

lim| K*Rer* 35 (ko) [Y; (KR) =135 (KR)] | = k*Re? 3] (KR) Y, (KR) —i3; (kR) .

R>p

lim| k*Re* 35 (KR)[ g (k) =135 (kp) ] | = K*Re” 35 (KR)[ Yy (KR) ~id; (kR) ], R<p

for n#0

(
hm[kZR;r J (kR)[Y
(

(
tim[[°Re*3; (KR)[Y; (ke) -i3; kp)]sin(n¢):|:

(Continuous for R <p<R")

k*Rz*J; (kR)[Yn'(kR) —iJ

K’Rr n(kR)[ n(kR)

r;(kR)J cos(n¢),

. (kR)]sm(nqﬁ),

Py
v
bS]

R<p

-74 -



Appendix Image concept and the decomposition of superposition of a circular cavity
SH-Wave
7,

M
T 1 — X \NIMO
§ \
| Dl )

/
\ - / vaatM

SH-Wave B)\('
SH-Wave | |

SH-Wave

wM M
E;V<\ W+ w

........

ti +t" :.:' '._‘: ﬁ O

—_—

WAHW .,

t o+t

<

SH-Wave
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Appendix Image concept and the decomposition of superposition of a alluvial valley

/—Alluvial SH-Wave
7,

SH-Wave Matrix

< *
SH-Wave | |

w :V\4M—<V\/ +V\/) M
ﬂ:h ff‘ .%KMf+mf

Hot

Matrix .
W Matrix

SH-Wave
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Limiting process of the annular Green’s function to an exterior case by setting b — .

Appendix
G(x.¢) for a<p<R
= R m " " " " sinmg
=] - 5 MRy 1P al s _|p| o8 L alg _|e| 3N
% S—, G(x,&) =—(bInb p, +aln p B, - HZ{Zm[(b[bj pm+a[pj Pr (Rj )cosm¢+(b[bj +a[pj O (R] . )sin mg]
S5 =
g‘) brml[bm bm[bm i _am[ R-f ]m]
@ Ina—InR. Inb—InR. InR. R. b P "
=} =—(blnb +alnp s)Z ( j Zm e TA— | £ )cosm(¢—6§)
7 2zb(Ina—Inb) 27za(lnb Ina) 2r 42 (b )7[ a(b™-a""r 7R,
E R m m m R m
= na-InR, Inb-In&  InR mbM[bm(tj] _am[;lj : "‘bmbm[;] —am[éj "
= . . na—In nb-In n 3 P a (o ~
g imG(xg)=-(nb-~ Bana_inn) " oo 2z Zam [(b[b] O — ™)z +ﬂ[p] AW @™ x [;;Ré] Jeosm(¢—6, )]
R
o RY" a " a " a2l
(@] mip/m bm s _ Mm% mbm bm e _ oM ¢ m
g — nb Ina—InR. Inb—In B InR. = & 1 P8l [b) A [Rg,]] abl (RJ ﬂ[bj] p )
=~(n 27(nz—Inb) ¥ 2z(nb-In ) 27 H;%[( B0 - 2°™) i P (07" — &™)z |\ 7R Jeosm(¢—0, ]
R a)
)] rla]
~ Ina-InR. Ing IR, & B R. p
=-(n¥ 27 g valnp o aing 227 z2m e B {;z_RJ yeosm(g 0, )]

j
_(_ |na—|nR§ Inp IR )+ L [(ﬂ+[RéT[ﬁ] )cosm(¢ -6, )]

2r 272' 2r

Ina Inp) [(0 [

g ]
J

_tna 1o
_27r{|np Z{m[[Rj [

( j ycosm(¢—0. )]

—(-2

]cosm é— 0
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G(x,¢) for R <p<b
%h g m m m m m
2 2 G(x&=—(binbp, +aln pp, - >+z [(b[ﬁ] pm+a(3] ﬁm—[i] cos o )cosn¢+(b[£j +a[i] qm_[&] SN 1 sinmg]
S5 m2m= b p p b P P 7
% bnkl[bm(erJ _am i ] mbm[bm i _am[Rr,‘J ] .
D Ina-InR, Inb-InR. CInp p m b R. a R. b R
=] =—(bInb LV z (b[—j L +al = A - =1 )cosm($-6,)]
7 2zb(Ina— Inb) 2za(lnb—-Ina) 27" =2 b b -a"™x P a(b™-a"rx o ’
5 [b[RJ —am(a] ] mbm[bm[a] —am[RﬁJ 1
= imG(x.&) = (§Inb Ina-InR. Inb—InR. Inp) z_[(( ) b R. T a R b (R )cosm(¢—0)]
é' bow 2z)(Ina- Inb) Zﬂﬂ(lnb lna) 2z’ %432m (b*™ —-a’™)z P AL -a")z 70
g mk{m[bm (Rﬁjm_ﬂm i m] ambm[bm i m_ﬂm [Réjm]
3 — nb Ina-InR. Inb—In B _Inp b R. R. b R " p
7 =~(n 27(nz—Inb) X 27(nb—In a) ot mzlzm B (b - 7*™) " P (b2 — &*™) A Jcosm(g 0 ]
R )" a)
o] rHla] o
o Ina- InR ng Inp ) R) (R
=-(ng —271In }(f Zﬂlnkf 271) ;2m b?"7z " P (ﬂp] )Cosm(¢ % )]

=—(-

2

Ina-InR. In;) Inp) z_[(

ITIR m
“2m- bz

a2
Ina-InR. . & 1 (R] R
THZ—[‘O*W‘(;] )

m2m

m

foiv s

cosm(¢ -0 )]

_—{In—_;m[ j [paRfJ]cosm(gzﬁ—H;)}

«5

SCANES
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Table 1-1 Comparisons of the present method and conventional BEM.

o . - : Observer . :
Boundary density discretization Auxiliary system Formulation system Singularity
Fourier series
e
@)
2 Adaptive
= Degenerate Null-field observer No principal
= kernel integral equation value
3 system
a
Constant element

= :
NN
= Principal val
- : rincipal value
5 Fundamental _ Boundary_ Fixed observer (CPV. RPV and
= solution integral equation system
3] HPV)
=
o
O

where CPV, RPV and HPV are the Cauchy principal value, Riemann principal value and Hadamard principal value, respectively.
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Table 3-1 Comparison of formulation between the present approach and conventional BEM

Conventional BEM
fundamental solution-closed form

27u(x) = fBT(s,x)u(s)dB(s)— fBU(s,x)t(s)dB(s), X €

g.
g Tu(x) = C.PV. f T(s,X)u(s)dB(s) —RPV. f U(stE)dB(s), xeB
= 0= f T(5,)u(s)dB(s) - f U (s,0t(s)dB(s), x €
o o a;rfx) = [ M(s.0u@E)dB(s) - [ L ))tE)dB(s), X9
= u(x) _ B
g L H.PV. f M (s, )u(s)dB(s) —C.PV. f L(s,t(s)dB(s) , x € B
& 0= f M (s, )u(s)dB(s) - f L )tE)dB(s), x e
Present formulation
(degenerate kernel-series form)
Interior problem Exterior problem
o 2mu(X)= f T (5,)u(5)dB(s) - f U (s0t(s)dB(s), x€QUB 2mu(x) = f TE(s0u(s)dB(S) - f US(s)t(s)dB(s), xeQUB
3
3 NA, xeB NA, x€B
2 0= f TE(s0u(s)dB(S) - f US(sH(s)dB(s), xeQ°UB 0= f T (5,)u(s)dB(s) - f U/ (5,0t(s)dB(s), xeQ°UB
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g 27r8“(x) [ M (s9u()dB(s)— [ L(sXt(s)dB(s), x€QUB  2x 8”(") = [ M=(s,0u()dB(E) - [ (s, )t(s)dB(s), x€NUB
g‘) NA, xcB NA, xeB
g 0= fBMe(s,x)u(s)dB(s)— fBLe(s,x)t(s)dB(s), X€Q°UB 0= fBM‘(s,x)u(s)dB(s)— fBI_‘(s,x)t(s)dB(s), X €O UB

where C.PV, RPV and H.PV denote the Cauchy principal value, Riemann principal value and Hadamard principal value, respectively.

Table 3-2 Torsional rigidity of a circular cylinder with a single eccentric hole a/ R= 1/3

o (9) (99 (9 (9 (9 (9 (9 (9 (9

REa 0.20 0.40 0.60 0.80 0.90 0.92 0.94 0.96 0.98

Exact solution [68] 0.97872 0.95137 0.90312 0.82473 0.76168 0.74454 0.72446 0.69968 0.66555

Present L=20 0.97872 0.95137 0.90312 0.82473 0.76168 0.74455 0.72451 0.69991 0.66705

2G method L=10 0.97872 0.95137 0.90312 0.82476 0.76244 0.74603 0.72748 0.70616 0.68111

(MR4) Caulk’s divills?ons 0.97872 0.95137 0.90316 0.82497 0.76252 0.74569 0.72605 0.70178 0.66732
method

(BIE) [14] . 20 0.97873 0.95140 0.90328 0.82574 0.76583 0.75057 0.73367 0.71473 0.69321

divisions
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Table 3-3 Torsional rigidity of a circular cylinder with aring of N holes a/R=1/4, b/R=1/2

Number of holes QQO

2 3 4

Caulk (First-order

: 0.8661 0.8224 0.7934
Approximate) [14]

2G Caulk (BIE

( ”R4) ) 0.8657 0.8214 0.7893

H formulation) [14]
Present method
0.8657 0.8214 0.7893

(L=10)

Table 3-4 Torsional rigidity in Ling’s [57] examples

Case

alR=2/7b/R=3/7 C/R=15a/R=1/5 " c¢c/R=1/5a/R=1/5,

b/R=3/5 b/R=3/5

Caulk (First-order
. 0.8739 0.8741 0.7261

approximate) [14]

2G Caulk (BIE

R“) _ 0.8713 0.8732 0.7261

(/‘” formulation) [14]
Ling’s results 0.8809 0.8093 0.7305

Present method

0.8712 0.8732 0.7244

(L=10)
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Table 5-1 Green’s functions of interior and exterior problems.

Close form [31]:

G(x;&, &) =In|x = &= In|x - &’

+Ina-InR

Series form [31]:

In(gj_ii (%)m—[p—?jn cos(m(6-¢)), 0<p<R

m=1 M a
G(x;&,&") = e TR o
In(%}—éa [;J —('Z—zj cos(m(0-¢)), R<p<a
Close form [31]:
+Ilna-InR

~g-0 G0c&,£)=Inx—£| -~
@ ¢ Series form [31]:
RX—>

Gxé,.¢8)=
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Table 5-2 Green’s function of annular case

Series form

G(x,¢) =—(bInb p, +aln p 1) + i%!{*{%}m P + a[%) Em]cosmqﬁ{b(%j O + a(%) qusin m¢] +_In|>2<”_ 4

Series form

InR
2

5
" " " cosmd m m
b ﬁj p, +a a P -| £ < |cos mg + b(ﬁj g, +a a q. -
b P R. Vs b P
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Degenerate boundary
(Chebyshev polynomials)

Elliptic boundary / >/

HHH = Circular boundary

Q \\4 : : (F(A)}rier series)

Straight boundary
(Legendre polynomials)

‘\
Degenerate boundary

Circular boundary

Figure 1-1 The boundary value problems with arbitrary boundaries.
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U (5,X)

U'(sx) ™. ~TUBGX)

1 1. 1
:E(S_X)’ s>x [, :E(X_S)’ S<X

.
L
C

Left S  Right
Figure 2-2 (a) The 1-D degenerate kernel for U (s,x).

Interior # Exterior

Figure 2-2 (b) The 2-D degenerate kernel for U (s,x).

7 Interior
d
I'4

Figure 2-2 (c)The 3-D degenerate kernel for U (s,x).
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Figure 2-3 (a) Sketch of the null-field integral equation in conjunction with the
adaptive observer system.

Figure 2-3 (b) Sketch of the boundary integral equation for the domain point in
conjunction with the adaptive observer system.
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1: True normal direction

2: True tangential direction
3: Normal direction

4: Tangential direction

Figure 2-4 Vector decomposition for the potential gradient in the hypersingular
equation.
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Bending problem with circular
boundaries

Null-field integral equations
Egs. (2-9) and (2-10)

Expansion

Degenerate kernel for
Fundamental solutions

Fourier series for boundary
densities

Adaptive observer system in boundary integration of
B, circle with O, as the origin of observer system

1

Collocating to the null-field point
and matching the BCs

T

Linear algebraic system Egs. (2-28) and (2-35)

Obtain the unknown Fourier
coefficient

Obtain the potential
by using Eq. (2-3)

Employ the vector
decomposition in Eq. (2-4)

Stress component

Figure 2-5 The flowchart of the present method.

-90 -




Figure 3-1 Cross section of a bar weakened by N (N =3) equal circular holes.
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Figure 3-2 Torsion rigidity versus the number of Fourier terms.
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Figure 3-3 Cross-section of a cantilever beam of symmetrical holes.
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(c) ()
Figure 3-4 Stress concentration for R=1.0, b=0.5, d =z/4 and a=0.1.
(@) Sc along AB ( Present method)
(b) Sc along CD ( Present method)
(c) S along OT ( Present method)
(d) Sc along AB ( Naghdi’s result) [68]
(e) Sc along CD ( Naghdi’s result) [68]
() S along OT ( Naghdi’s result) [68]
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90

Max Sc=2.6398

point B
Sc=2.6378

point B
Sc=2.6014

Max Sc=2.6037

270

Max at point B
Sc =3.4592

(c) =675

Figure 3-5 Stress concentrations around the third circle.
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Figure 3-6 Stress concentration versus b for a=0.12 and R=1.0.
(@) 8 =x/8 (Present method)
(b) 6 =37/8 (Present method)
(c) @ =x/8 (Bird’s result [6])
(d) @ =37/8 (Bird’s result [6])
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Figure 3-7 Stress concentration versus b for a=0.12, R=1.0 and three different
valuesof @ =7/8, @ =x/4 and 6 =37/8.
(@) Sc at the point B (Present method)
(b)Sc at the point B (Naghdi’s result [68])
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Figure 3-8 Stress concentration along AB and extremely close to the point B for
b=5, a=1, R=10 and 0 =7x/4.
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Fourier terms(L)

Figure 3-9 Stress concentration on point B for R=1.0, b=05, 6 =z/4 and
a=0.1.
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()6 =318
Figure 3-10 Contour plot for R=1.0, b=0.4, a=0.12 for three various values of
(@ @=x18,(b) 0=rn/4 and(c) & =3x/8.
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Point P
[ :

|
[

D

Figure 3-11 Cantilever beam under bending weakened by two holes the on x—axis

Two holes 5
Two Holes

One hole

Asymptote

(a) Present method (b) Bird’s result [6]
Figure 3-12 Stress concentration versus D/2a for the point P.
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(b) Present method (local) (d) Bird’s result (local) [6]
Figure 3-13 Contour of stress concentration of D/2a=0.0625
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—_——

h : distance between ground surface
and the center of cavity

a : radius of cavity

y : angle of incidence

Figure 4-1 A half-plane problem with a circular cavity subject to incident SH-wave.
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SH-wave

(a) Two cavities with centers on the
y—axis

@y Do hody of e @,

S E—
4 3 & In

B {in refians )

(c) Shear stress around the smaller cavity
(Honein’s result [44])

[ \
angle=90

[ (k=0.001)

77777777 D=0.01

°r D=0.1

- — — — D=2

8
I I

(e) Shear stress around the smaller cavity
(Present method)

SH-wave

(b) Two cavities with centers on the

45’ —axis
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(d) Shear stress around the smaller cavity
(Honein’s result [44])

I R
angle=45
(k=0.001)

8
I I

(f) Shear stress around the smaller cavity
(Present method)

Figure 4-2 A full-plane problem with two cavities subject to the incident SH-wave.
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<

SH-wave

(a) A full-plane problem with a cavity subject to SH-wave.

270

(b) Pao and Mow’s result [70] (only (c) Present method ( » =90°).
half).

Figure 4-3 Shear stress (o,,) around the cavity of a full-plane problem subject to the
horizontally incident SH wave.
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Present wmethod

@ y=0,h/a=15ka=0.1

(b) 7=0",h/a=12,ka=0.1

(c) y=45,h/a=15ka=0.1

(d) y=45 h/a=12,ka=0.1

Lin and Liu’s results [89]
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(1) Limiting case of y =90" and h/a=100.
Figure 4-4 Shear stress (o,,) around the cavity under the ground surface subject to

the SH-wave.



SH-Wave

p, - density of alluvial

oy - density of matrix

4, - shear modulus of alluvial

4, - shear modulus of matrix

v the angle of incident wave and y-axis

Figure 4-5 A half-plane problem with a semi-circular alluvial valley subject to the
SH-wave.
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(a) ~ (d) Present method
u ™ =116,p"1p" =2/3

(e) ~ (h) Manoogian’s results [61]
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Figure 4-6 Surface amplitudes of the alluvial valley problem for 7 =0.5.
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(e) ~ (h) Manoogian’s results [60]
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Figure 4-7 Surface amplitudes of the alluvial valley problem for r=1.0.
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Figure 4-8 Surface amplitudes of the alluvial valley problem for rn=1.5.
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(e) ~ (h) Manoogian’s results [60]
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Figure 4-9 Surface amplitudes of the alluvial valley problem for 7 =2.0.
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Figure 4-10 Limiting case of a canyon (' / ™ =10° and 7=0.5)
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Amplitude

(a) ~ (d) Present method p'/p" =2/3 (e) ~ (h) Manoogian’s results [60]
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Figure 4-11 Limiting case of a canyon (' / ™ =10° and 7n=1).
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(h) »=90°
Figure 4-12 Limiting case of a canyon (' / ™ =10 and 7 =1.5).
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Figure 4-13 Limiting case of a canyon (' / ™ =10 and 7 =2).
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Figure 4-14 Limiting case of a rigid alluvial valley (z' =/ " =10*,p' I p™ =2/3
and 7=2).
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Figure 4-15 Surface displacements as a function of x/a and 7 for the vertical

incidence (¥ =0°).
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Figure 4-16 Surface displacements as a function of x/a and 7 for the vertical

incidence (y =0°).

- 117 -



R
SEN
]

R
77
R

R
RN

xR
SN

R

7 Z
LR
LA R 25

AT 2

1R Z

LI

W
s N
i \

i N

7
7

N\
N \\\\\\\\\“\\\\‘
AN

Yo

A 1

3 £ 7 )

2 i
7 s

() e T <

e G

he] L e

S 2 S i

. ity

= ] 52

= L

= A

S 5

Trifunac’s result [79]
Figure 4-17 Spectral displacement with harder material of alluvial valley versus the
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AMPLIFICATION

u ™ =116,p' I pM =2/3 (Present method)
g TR -

Trifunac’s result [79]
Figure 4-18 Spectral amplification at x/a=0.8 versus the dimensionless frequency
n (Present method and Trifunac’s result).
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Trifunac’s result [79]
Figure 4-19 Spectral amplification at x/a=-0.8 versus the dimensionless
frequency 7 (Present method and Trifunac’s result).
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SH-Wave

p, - density of alluvial

oy - density of matrix

4, - shear modulus of alluvial

4, - shear modulus of matrix

7 . the angle of incident wave and y-axis

Figure 4-20 A half-plane problem with two alluvial valleys subject to the incident
SH-wave.
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Figure 4-21 Surface displacements of two alluvial valleys (' / ™ =1/6 and
p' 1 p" =2/3).
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Figure 4-22 Surface displacements of two alluvial valleys (' / ™ =1/6 and
p'1p" =2/3).
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Amplitude

Amplitude

Amplitude

Amplitude

(a) ~ (d) Present method

(d) »=90°
Figure 4-23 Limiting case of two canyons (' /™ =10 and 7 =1).
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(e) ~ (h) Tsaur et al.’s results [103]

(h) »=90



Amplitude

Amplitude

Amplitude

Amplitude

(a) ~ (d) Present method (e) ~ (h) Tsaur et al.’s results [103]

(d) »=90° (h) y=90°
Figure 4-24 Limiting case of two canyons (z' /x™ =10 and 7 =2).
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4" shear modulus of inclusion

1"+ shear modulus of matrix

y . angle of incident wave and y-axis

Figure 4-25 A half-plane problem with a circular inclusion subject to the incident
SH-wave.
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(@) ~ (d) Present method

3

(e) ~ (h) Tsaur et al.’s results[102] (i) ~ (I) Manoogian and Lee’s results [62]
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Figure 4-26 Surface displacements of a inclusion problem under the ground surface with =2 and h/a=15(u' /4" =1/6,p' I p™ =21/3).
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Figure 4-27 Surface amplitudes of the inclusion problem for various values of » and h/a=1.5(x' /4"
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(a) ~ (d) Present method (e) ~ (h) Lee and Manoogian’s [53] for
(n=2,hla=15p"/p" =2/3) the cavity case.
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Figure 4-28 Limiting case of a cavity problem (z' / " =107).
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(a) ~ (d) Present method
(n=2,hla=5,p"1p" =2/3)

(e) ~ (h) Lee and Manoogian’s [53]
results for the cavity case
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Figure 4-29 Limiting case of a cavity problem (' / " =107®).
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h/a=15p"/1p" =2/3 and 7=2
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Figure 4-30 Limiting case of a rigid inclusion problem (z' / ™ =10%).
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—pX

\
Inclusion

SH-Wave

p' : density of inclusion

o™ density of matrix

' shear modulus of inclusion
1™ = shear modulus of matrix
7, angle of incident and x-axis

Figure 4-31 A half-plane problem with two circular inclusions subject to the
SH-wave.
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7 h/a=15, D/a=2.5
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Figure 4-32 Surface amplitudes of two-inclusions problem
(p' 1™ =116, p'1p™ =2/3, h/la=15, D/a=25, L=10).
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Amplitude

(a) ~ (d) Present method

(e) ~ (h) Jiang et al.

result [95]
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Figure 4-33 Limiting case of two-cavities problem
(p' 1™ =10"%, p'1p" =2/3, h/a=15, D/a=25 and L=10).

-134-



VG(x,£) = 5(x &)

(a) Green’s function of an annular case

(b) An annular Dirichlet problem

Figure 5-1 A two-dimensional annular problem
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(a) Limiting case of the annular Green’s (c) Series-form Green’s function of
function (a=1,b=10",L = 20,£(1.25,0°)) exterior case [31]

L — L

(b) Limiting case of the annular Green’s (d) Series-form Green’s function of
function (a=0.001,b=1,L =20,£(0.8,0")) interior case [31]

Figure 5-2 Two limiting cases (a — 0,b — o) of the annular Green’s function
(@ a=1b=10",L=20,&(1.250")
(b) a=0.001,b=1L=20,£(0.8,0")
(c) Exterior case [31]
(d) Interior case [31]
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(b) Semi-analytical solution (L =50)

Figure 5-3 Contour plots for the annular Green’s function
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