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Engineering problem 
with arbitrary geometries

Degenerate boundaryDegenerate boundary

Circular boundaryCircular boundary

Straight boundaryStraight boundary

Elliptic boundaryElliptic boundary
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(Fourier series)(Fourier series)

((LegendreLegendre polynomial)polynomial) ((ChebyshevChebyshev polynomial)polynomial)

(Mathieu function)(Mathieu function)
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Null-field integral approach to 
construct the Green’s function
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Boundary integral equation 
and null-field integral equation
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Expansions of fundamental solution (2D)
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Boundary density discretization

Fourier seriesFourier series Ex . constant elementEx . constant element
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Adaptive observer system

Source pointSource point

Collocation pointCollocation point
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Vector decomposition technique 
for potential gradient
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Linear algebraic equation
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Take free body
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Image technique for solving half-
plane problems

DirichletDirichlet boundary conditionboundary conditionNeumann boundary conditionNeumann boundary condition Mirror
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Flowchart of present method
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An infinite matrix containing two circular inclusions with An infinite matrix containing two circular inclusions with 
a concentrated force in the matrixa concentrated force in the matrix
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Present study for Laplace equation
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Eccentric ring
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Eccentric ring
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method (M=50) 
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A half plane with an aperture subjected to 
Dirichlet boundary condition
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Result of a half-plane problem with an aperture 
subjected to  Dirichlet boundary condition
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method (M=50) 
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A half plane with an aperture subjected to 
Robin boundary condition
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Result of a half-plane problem with an aperture 
subjected to Robin boundary condition

Potential contour using the present 
method (M=50) 
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Numerical examples
LaplaceLaplace problemsproblems
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(2) Robin boundary condition(2) Robin boundary condition
A halfA half--plane problem with a circular hole and a halfplane problem with a circular hole and a half--
circular inclusioncircular inclusion

Helmholtz problems
An infinite matrix containing a circular inclusion with a An infinite matrix containing a circular inclusion with a 
concentrated force in the matrixconcentrated force in the matrix or inclusion
Special cases and parameter studySpecial cases and parameter study
An infinite matrix containing two circular inclusions with An infinite matrix containing two circular inclusions with 
a concentrated force in the matrixa concentrated force in the matrix



31

National Taiwan Ocean University
Department of Harbor and River Engineering

A half-plane problem with a circular hole 
and a half-circular inclusion

2 0.1λ =

1 1λ =

1 1r =

1D2D

2 0.4r =
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( , ;0.5, / 3)rξ φ π
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Half Half --planeplane

InclusionInclusion

MatrixMatrix

A circular holeA circular hole

Source of GreenSource of Green’’s functions function

Material conductivityMaterial conductivity

Material conductivityMaterial conductivity
2 ( , ) ( )ξ δ ξ∇ = −G x x
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Result of a half-plane problem with a 
circular hole and a half-circular inclusion
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Contour plot by using the null-field
integral equation approach

Contour plot by using the
Melikov's approach (2006)
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Special cases and parameter study
An infinite matrix containing two circular inclusions with 
a concentrated force in the matrix
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Present study for Helmholtz equation

2 2( ) ( ) 0k w x∇ + =

SH-wave problem (Chen P. Y.)
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Numerical examples
Laplace problems

Eccentric ring
A half-plane with an aperture 
(1) (1) DirichletDirichlet boundary condition boundary condition 
(2) Robin boundary condition(2) Robin boundary condition
A half-plane problem with a circular hole and a half-
circular inclusion
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concentrated force in the matrix or inclusionconcentrated force in the matrix or inclusion
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An infinite matrix containing two circular inclusions with An infinite matrix containing two circular inclusions with 
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An infinite matrix containing a circular inclusion with 
a concentrated force at    in the matrixξ

μ
4 2I M I Mc cμ μ= =

c
is the shear modulus 
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t t
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Interface conditionInterface condition

β is the imperfect
interface parameter
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Take free body
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Distribution of       for the quasi-static
solution along the circular boundary
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Wang and Sudak’s solution The present solution
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Parameter study of                 for the 
stress response

/ Maλ β μ=

Wang and Sudak’s solution The present solution
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The distribution of displacement      along
the circular boundary for the case

/ 1λ β μ= =Ma
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Test of convergence for the Fourier series with 
a concentrated force in the inclusion
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An infinite matrix containing a circular inclusion with 
a concentrated force at    in the inclusionξ
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Distribution of      for the quasi-static
solution along the circular boundary
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Parameter study of                for the stress 
response
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The distribution of displacement    along the 

circular boundary for the case of
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Numerical examples
Laplace problems

Eccentric ring
A half-plane with an aperture 
(1) (1) DirichletDirichlet boundary condition boundary condition 
(2) Robin boundary condition(2) Robin boundary condition
A half-plane problem with a circular hole and a half-
ircular inclusion

HelmholtzHelmholtz problemsproblems
An infinite matrix containing a circular inclusion with a 
concentrated force in the matrix or inclusion
Special cases and parameter studySpecial cases and parameter study
An infinite matrix containing two circular inclusions with 
a concentrated force in the matrix
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Special case of an ideally bonded
case
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Special case of cavity
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The absolute amplitude of 
displacement by the present method
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Parameter study          for ideal 
bonding
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Stress contours of      and     for the static
solutions (a concentrated force in the matrix)

cos sinθσ σ φ σ φ= −zx zr z
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Stress contours of      and     for the dynamic
solutions (a concentrated force in the matrix)
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Stress contours of      and     for the static
solutions (a concentrated force in the inclusion)
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Stress contours of      and     for the dynamic 
solutions (a concentrated force in the inclusion)
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Series-form & closed-form solutions for 
the static case (ideally bonded interface)

Seires-form
solution

(Wang and Sudak, 2007)

Closed-form
solution

Stress distribution
along the interface

Concentrated force in the inclusionConcentrated force in the matrix
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Numerical examples
Laplace problems

Eccentric ring
A half-plane with an aperture 
(1) (1) DirichletDirichlet boundary condition boundary condition 
(2) Robin boundary condition(2) Robin boundary condition
A half-plane problem with a circular hole and a half-
ircular inclusion

HelmholtzHelmholtz problemsproblems
An infinite matrix containing a circular inclusion with a 
concentrated force in the matrix or inclusion
Special cases and parameter studySpecial cases and parameter study
An infinite matrix containing two circular inclusions with An infinite matrix containing two circular inclusions with 
a concentrated force in the matrixa concentrated force in the matrix
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ξ
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ξ

The contour of the displacement for an infinite 
matrix containing two inclusions with a concentrated 
force at     in the matrix for ideal bonding
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Outlines

Motivation and literature review
Derivation of the Green’s function

Expansions of fundamental solution and boundary density
Adaptive observer system
Vector decomposition technique 
Linear algebraic equation
Take free body
Image technique for solving half-plane problems 

Numerical examples
Green’s function for Laplace problems
Green’s function for Helmholtz problems

ConclusionsConclusions
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ConclusionsConclusions
After introducing the degenerate kernel, the BIE is 
nothing more than the linear algebra. 

We derived the analytic Green’s function for one 
inclusion problem by using the null-field integral 
equation. Also, the present approach can be utilized to 
construct semi-analytic Green’s functions for several 
circular inclusions. 
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ConclusionsConclusions
Several examples, Laplace and Helmholtz
problems were demonstrated to check the 
validity of the present formulation and the 
results match well with available solutions in the 
literature.
A general-purpose program for deriving the 
Green’s function of Laplace or Helmholtz
problems with arbitrary number of circular 
apertures and/or inclusions of arbitrary radii 
and various positions involving Dirichlet or 
Neumann or mixed boundary condition was 
developed. 
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Further studiesFurther studies
The imperfect circular interface is 
homogeneous nonhomogeneous.

According to our successful experiences for 
half-plane problems, it is straightforward to 
quarter-plane problems.

( )β β θ→
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The end
Thanks for your attentions.

You can get more information on our website.
http://msvlab.hre.ntou.edu.tw


