J.
T. Chen and C. S. Wu, 2006, Alternative derivations for the Poisson
integral formula, International Journal of Mathematical Education in
Science and Technology, Vol.37, No.2, pp.165-185.(檔案請洽原作者)
|
J.
T. Chen and J. N. Ke, 2008, Derivation of anti-plane dynamic Green’s
function for several circular inclusions with imperfect interfaces,
Computer Modeling in Engineering Science, Vol.29,
No.3, pp.111-135.(檔案請洽原作者) |
J.
T. Chen, H. Z. Liao and W. M. Lee, 2009, An analytical approach for
the Green’s functions of biharmonic problems with circular and
annular domains, Journal of Mechanics, Vol.25,
No.1, pp.59-74.(檔案請洽原作者) |
J.
T. Chen, Y. T. Lee, S. R. Yu and S. C. Shieh, 2009, Equivalence
between Trefftz method and method of fundamental solution for the
annular Green’s function using the addition theorem and image
concept, Engineering Analysis with Boundary Elements, Vol.33,
pp.678-688.(檔案請洽原作者) |
J.
T. Chen, K. H. Chou and S. K. Kao, 2009, Derivation of Green’s function
using addition theorem, Mechanics Research Communications, Vol.36,
No.3, pp.351-363.(檔案請洽原作者) |
J.
T. Chen, J. N. Ke and H. Z. Liao, 2009, Construction of Green's
function using null field integral approach for Laplace problems
with circular boundaries, Computers, Materials and Continua, Vol.9,
No.2, pp.93-109.(檔案請洽原作者) |
J.
T. Chen, H. C. Shieh, J. J. Tsai and J. W. Lee, 2010, A study on the
method of fundamental solutions using an image concept, Applied
Mathematical Modelling, Vol.34, pp.4253-4266.(檔案請洽原作者) |
J.
T. Chen, H. C. Shieh, Y. T. Lee and J. W. Lee, 2011, Bipolar
coordinates, image method and the method of fundamental solutions
for Green’s fuctions of Laplace problems with circular boundaries,
Engineering Analysis with Boundary Elements, Vol.35, pp.236-143.(檔案請洽原作者) |
J.
T. Chen, J. W. Lee and H. C. Shieh, 2013, A Green’s function for the
domain bounded by non-concentric spheres, ASME Journal of Applied
Mechanics, Vol.80, No.1, pp.1-6.(檔案請洽原作者)
|
W
M Lee, J T Chen and W M Young, 2018, Dynamic Green’s function for
multiple circular inclusions with imperfect interfaces using the
collocation multipole method, Engineering Analysis with Boundary
Elements, Vol.94, pp.113-121. |