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 ABSTRACT 

In this study, the vibration problem of a finite bar with an 

external spring and a damper on one side subject to the 

support motion is analytically solved by using the method 

of characteristics in conjunction with the diamond rule. 

Special case to only spring end is also compared with the 

method of mode superposition. Agreement is made. Two 

systems, non-conservative and conservative cases, with 

damper and without damper, respectively, are studied. For 

the conservative system, both the mode superposition 

method and method of characteristics are employed to 

solve the problem, while the non-conservative system 

with a damper or a damper and a spring is solved by using 

the method of diamond rule only to avoid the complex 

eigen-system. For the zero-valued and infinite-valued 

spring stiffness, two special cases of clamped and free end 

are also considered. The effect of damper on the vibration 

response is also addressed. 

 

Keywords: damper, support motion, diamond rule, mode 

superposition, characteristics 

 1. INTRODUCTION 

Wave propagation is very important in physics and 

mechanics, because there are various engineering 

problems which can be modeled by using the wave 

equation. Many researchers have solved this problem by 

using various methods, e.g., the mode superposition 

technique [1], the method of separation variables [2, 3, 4], 

the method of quasi-static decomposition [3, 5, 6], the 

method of the diamond rule [3, 7] or the so called method 

of characteristics, the image method [6], the finite element 

method (FEM) [8], the boundary element method (BEM) 

[9], and the meshless method [10], etc..  

The Rayleigh-damped Bernoulli-Euler beam and the 

string subjected to multi-support excitation have been 

studied by using many methods including Stokes 

transformation and Cesaro sum [3, 5, 6]. D’Alembert’s 

solution can provide an exact solution for an infinite string. 

Method of characteristics (Diamond rule) can be found in 

the textbook of Farlow [11]. It is widely employed to solve 

various kinds of problems, e.g., water hammer [12]. The 

diamond rule which is based on D’Alembert’s solution 

was proposed by John [13] in 1975 and was mainly used 

to solve the wave problem. The diamond rule has been 

employed to solve the one-dimensional vibration problem 

of an infinite or a semi-infinite string attached by a mass, 

a spring, or a damper [7], a finite string [3] and a finite bar 

with an external spring subjected to a support motion [5]. 

Besides, the animation was also given in [7].  

Although the mode superposition method in conjunction 

with the quasi-static decomposition is a popular approach 

for solving the support-motion problem, it becomes 

tedious when the vibration system contains a damper. 

Three reasons can be explained. One is that the quasi-static 

solution is not straight forward to be obtained. Another is 

that the orthogonal relation of complex modes is not easily 

found. The other is that a complex eigen-system is 

required. The present solution free of mode superposition 

is possible since we can employ the method of 

characteristics in conjunction with the diamond rule for 

the real response in the time domain. 

In this paper, we will extend the finite bar with an external 

spring [4] to a spring and a damper together.  Three special 

cases of conservative system, the free end, the clamped 

end and the spring only, were verified by using both 

methods, the mode superposition method in conjunction 

with the quasi-static decomposition and the method of 

characteristics using the diamond rule. Consistency check 

will be done. For the non-conservative system with a 

damper, only the method of the characteristics is used to 

avoid the complex eigen-system. Finally, the effect of 

damper on the vibration response will be addressed in 

more detail. 

 

 2. PROBLEM STATEMENTS AND 

METHODS OF SOLUTION 

Here, we consider a finite bar with different boundary 

types as shown in Figure 1. The governing equation for the 

vibration problem of finite bar is shown below: 

   2 2

2

2 2

, ,
,  0 ,  0,

u x t u x t
c x L t

x t

 
   

 

 
(1) 
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where /c E    and  ,u x t   denote the wave speed and 

displacement in the x direction, respectively. The symbols
,   and E L  denote Young’s modulus, the density and the 

length of bar, respectively. The initial displacement and 

velocity conditions are 

   
0

, 0,
t

u x t x


    (2) 

 
 

0

,
0,

t

u x t
x

t





 



 
(3) 

where  x  and  x  are initial displacement and velocity 

functions, respectively. 

The boundary condition at the left hand side (x = 0) can be 

expressed by the specified support motion as follows: 

   0, .u t a t  (4) 

The boundary condition at the right hand side is given 

from the different boundary types in Figure 1 (a)-(e) as 

follows: 

   
  ,  damper spring,

, ,
,d x L

x L x L

u x t u x t
AE c k u x t

x t 
 


 

  
 

 
(5) 

   
,  damper only,

, ,
d

x L x L

u x t u x t
AE c

x t 

 
 

 

 
(6) 

 
  ,  spring only,

,
,

x L
x L

u x t
AE k u x t

x 



 



 
(7) 

     0,  clamped end,,u L t   (8) 

 ,
0,  free end,

u x t
AE

x x L




 

 
(9) 

where k denotes the spring constant, cd denotes the 

damping coefficient, and A is the area of cross section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) spring + damper 

 

(b) damper 

 

(c) spring 

 

(d) clamped end 

 

(e) free end 

Figure 1 A finite bar with different boundary types 

subjected to a support motion (a) spring + damper (b) 

damper (c) spring (d) clamped end (e) free end 

 

2.1 Method 1: mode superposition approach in 

conjunction with the quasi-static decomposition 

method 
The solution can be decomposed into two parts: 

       
1

, , ,n n
n

u x t U x t q t u x




  
  

(10) 

where  ,U x t   denotes the quasi-static solution, and the 

natural modes  nu x   weighted by the generalized 

coordinate,  nq t , is the generalized coordinate of dynamic 

contribution due to the inertia effect. The quasi-static part 

 ,U x t , satisfies the governing equation 
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 2

2

,
=0 ,  0 ,

U x t
AE x L

x


 



  
(11) 

and is subject to time-dependent boundary conditions at 

the left hand side: 

   0, = ,U t a t   (12) 
and is subject to different time-dependent boundary 

conditions at the right hand side in Figure 1 (c)-(e): 

 
 

,
, , spring end,

x L
x L

U x t
AE kU x t

x 



 



 
(13) 

         , 0, clamped end,
x L

U x t


  (14) 

 ,
0, free end.

x L

AE
U x t

x 






 
(15) 

By solving Eq. (11) subject to boundary conditions, we 

have the quasi-static solution, 

   , 1  , spring end,
k

U x t a t x
AE kL

 
  

 

  
(16) 

   , 1  , clamped end,
x

U x t a t
L

 
  

 

 
(17) 

   ,  , free end.U x t a t  (18) 

The nth natural mode,  
nu x  , satisfies the governing 

equation 

   2
0 ,  1, 2 ,n n nu x u x n      (19) 

subject to the boundary conditions at the left hand side: 

 0 =0 ,nu  at the clamped end of x=0, (20) 
and subject to the boundary conditions at the right hand 

side: 

 
  , spring end,n

n x L
x L

AE k
x

u x
u x





 



 
(21) 

              0, clamped end,nu L   (22) 

 
, free end.0n

x L

AE
x

u x








 
(23) 

By solving Eq. (19) subject to boundary conditions, we 

have the nth natural mode  nu x  of the eigenvalue 
n , 

 

 

 

 

sin  , 1,2 , spring end

sin  , 1,2 , clamped end ,

sin  , 1,2 , free end

s
n

c
nn

f
n

x n

x n

x n

u x







 



 

 


 

(24) 

where the superscripts, s, c and f denote spring end, 

clamped end and free end, respectively. The 

corresponding eigen-equations are obtained,  
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(25) 

and the corresponding natural frequency is 

/  ,  1, 2 .n n E n      (26) 
The orthogonality of the eigenfunction is 

   0  ,  1, 2, 3 ,  1, 2, 3 ,
L

n m nm nu x u x dx N n m     (27) 
where nm  is the Kronecker delta and 

 sin 2
.

2 4

n

n

n

L L
N




 

  
(28) 

Substituting Eq. (10) into Eq. (1), we obtain 

       2

1

, .n n n n
n

q t q t u x U x t




 
   

  
(29) 

After considering the initial conditions, we have 

         00 = ,0 = n no su0 , m ,
L

nn n nN q U x u x dx F   (30) 

         0 ., n no0 = ,0 =  su0 m 
L

nn n nN q U x u x dx F   (31) 

Regarding the detailed derivation of  nq t   and the series 

solution for the displacement, readers can consult with the 

paper of Chen et al. [4]. 

 

2.2 Method 2: method of characteristics in 

conjunction with the diamond rule 
By employing the method of characteristic line, we can 

assume the general solution of 1D wave equation in Eq. 

(1) as 

     , ,u x t P x ct Q x ct      (32) 
where  P x ct   and  Q x ct   are specified functions to 

match initial conditions in Eqs. (2) and (3). The functions 
 P x ct   and  Q x ct   represent a left-going-traveling 

wave and a right-going-traveling wave, respectively. By 

satisfying Eqs. (2) and (3) for Eq. (32), the D’Alembert’s 

solution for a certain region is expressed as 

       
1 1

, ,
2 2

x ct

x ctu x t x ct x ct d
c

    



 
         (33) 

where  x   and  x  are functions of initial displacement 

and velocity, respectively. Two groups of characteristic 

lines from Eq. (33) are included in the solution of the wave 

equation. Moreover, the two groups of parallel 

characteristic lines can form a parallelogram in the space-

time plane as shown in Figure 2. Based on the 

D’Alembert’s solution, we have the equation of the 

diamond rule [4, 6], as shown below: 

,A B C Du u u u     (34) 
where 

Au , 
Bu , 

Cu  and 
Du  denote the displacement at the 

four points A, B, C and D, respectively. Several parallel 

characteristic lines separate the domain into many regions 

of the space-time plane as shown in Figure 3. The 

diagrams of calculating the displacement by using the 

diamond rule in the regions I, II, III, IV, V and VI are given 

in Figure 4. The displacements in the former six regions 

are given below: 

   I , I0  u x,t x,t  ,  (35) 

   II  I, I
ct x

u x,t a x,t
c

 
  

 
,
 

(36) 

   III 1 I , II
x ct L

u x,t r x,t
c

  
  

 
,
 

(37) 

   IV  I, V
ct x

u x,t a x,t
c

 
  

 
,
 

(38) 

   V  , V
ct x

u x,t a x,t
c

 
  

 
,
 

(39) 
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   VI 2  , VI,
ct x x ct 2L x ct L

u x,t a a r x,t
c c c

         
        

     

 (40) 

where the simple form of Eqs. (39)-(40) is due to zero r1(t) 

in silent regions of I and III and zero initial displacement

 x  and velocity  x  . Following the same procedure, 

the marching scheme of the time-space plane region and 

solution can be done.  Then, r1(t) and r2(t) denote the 

displacements of  , ,  0 /u L t t L c    and 

 , ,  / 2 /u L t L c t L c  , respectively, which can be obtained 

from the condition of force equilibrium at x = L, 

   
 III

I
III

II

, ,
= , ,d x L

x L x L

u x t u x t
AE c k u x t

x t 
 

 
 

 

  
(41) 

   
 VI

VI
VI

,
, ,

= ,d x L
x L x L

u x t u x t
AE c k u x t

x t 
 

 
 

 

 
(42) 

for the case of spring and damper end. Thus, we can 

determine r1(t) by using Eq. (37) to satisfy Eq. (41). The 

displacement at x = L,  III , 0u L   and  I , 0u L  , must satisfy 

the displacement continuity. Then, we have 

 
1 =0 , 0  / .r t t L c 　 　   (43) 

Similarly, the response of r2(t) can be obtained by using 

Eq. (40) to satisfy Eq. (42). By solving the corresponding 

first-order ODE for r2(t) at the end of spring and damper 

as shown below: 

   2 2 , / 2 / ,
2

 
d d

r t r t L c t L c
kc AE ct L

a
AE c c AE c c c

   
 

 
   

  (44) 

we can obtain 

 2 , / 2 / ,
2

 d d

kc kc
t t

AE c c AE c c

d

r t L c t L c
AE ct L

e e a dt
AE c c c


 

  
 

  
  


  (45) 

after using the integral factor, where the undetermined 

constant can be determined by satisfying the displacement 

continuity of solution in the region IV and VI at 

   , , /x t L L c   as shown in Figure 4. 

 

Figure 2 The diamond rule of  
A B C Du u u u    

 

Figure 3 Space-time regions separated by using the 

characteristic line. 

 

Figure 4 Space-time regions, I, II, III, IV, V and VI and 

the diamond rule. 

 

 3. ILLUSTRATIVE EXAMPLES 

Case (a) of a finite bar with an external spring and a 

damper subjected to a support motion is considered. The 

model parameters are given as follows:  1 /c m s  , 
1 AE N  , 7 L m  , 2 /k N m  and 2 /dc N s m   . By 

setting the support motion, 

   sin ,a t t   (46) 
the solution of this approach can be obtained as shown in 

the following subsection. 

 

(a) Method of characteristics in conjunction with 

the diamond rule 

By substituting model parameters ,  ,  ,  ,  ,  dc A E L k c  and Eq. 

(46) into Eqs. (35)-(40), we have 

   I , I0  u x,t x,t  ,  (47) 
     II sin  , IIu x,t t x x,t   , (48) 

   III  III0 , u x,t x,t  , (49) 

     IV sin  , IVu x,t t x x,t   , (50) 

     V sin  V, u x,t t x x,t   , (51) 

         VI 2sin sin 14 7  , VI,u x,t t x x t r x t x,t          (52) 

where 

 
     7

2

cos 7 sin 7
 , 7 14.

2 2

tt t e
r t t

  
   

  (53) 

 
The displacement profiles with the silent area for t = 2 and 

4 sec. by using the diamond rule are shown in Figure 5 (a)-

(b), respectively. It matches the silent response begins at x 

= 2 and 4 m to the end of bar (x = 7 m), for the time when 

t = 2 and 4 sec.. In Figure 6, shadow regions, I and III, 

denote the dead zone. It is found that the slopes are 

discontinuous at x = 2 and 4 m when t = 2 and 4 sec., 

respectively. Two discontinuities occur at the location of 

(2,2) and (4,4) in the x-t plane as shown in Figure 6. As 

theoretically predicted, the two discontinuities of the slope 

really occur at the positions of (2,2) and (4,4), on the 

characteristic line. The displacement profiles for t = 8 and 

10 sec. by using the diamond rule are shown in Figure 7 

(a)-(b), respectively. It is found that the slopes are 

discontinuous at x = 6 and 4 m when t = 8 and 10 sec., 

respectively. Two slope discontinuities occur at the 
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locations of (6,8) and (4,10) in the x-t plane as shown in 

Figure 8.  This finding matches well from the 

mathematical requirement that the discontinuity must 

occur at the position on the characteristic line [14]. The 

displacement response history at x = 5 m by using the 

diamond rule is also shown in Figure 9. 

The displacement profiles for the case of only damper at   

t = 8 and 10 sec. by using the diamond rule are shown in 

Figure 10 (a)-(b), respectively. 

 

(b) Mode superposition approach and the 

diamond rule 

Now, we consider the special case (c) of zero damping 

(only spring end) and we can compare the solution with 

that of using the mode superposition method [4]. The 

result is shown in Table 1. Convergence test for the 

displacement profile and time history are both verified. To 

reach the accuracy for comparing with the exact solution 

obtained by using the diamond rule, a number of terms for 

the series are required for the displacement profile and the 

time history as shown in Table 2 where the time history 

response and the displacement profile are obtained by 

using 2, 4, 6, 8, 10 and 15 modes. The error of 0.1 % is 

reached by using 15 modes. 

Besides, more special cases of infinite-valued (case d) and 

zero-valued (case e) spring stiffness are employed to 

model the clamped and free end, respectively. This results 

are shown in Table 3 and Table 4 for clamped and free 

ends, respectively. To check the ability of capturing the 

silent area (dead zone) for the mode superposition method, 

the response is shown in Figure 11, where it indicates that 

silent area is well captured if a sufficient number of modes 

is considered. In this case, 15 modes are required. 

 

  

(a) t = 2 sec (b) t = 4 sec 

Figure 5 Displacement profiles by using the diamond rule 

(spring + damper) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 The locations of slope discontinuities at (2,2) 

and (4,4), where the shadow region denotes the dead 

zone 

 

  

(a) t = 8 sec (b) t = 10 sec 

Figure 7 Displacement profiles by using the diamond rule 

(spring + damper) 

 

 

Figure 8 The locations of slope discontinuities (6,8) and 

(4,10) 

 

 

Figure 9 Displacement history at x = 5 m 
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(a) t = 8 sec (b) t = 10 sec 

Figure 10 Displacement profiles by using the diamond 

rule (damper only) 

 

Table 1 The vibration response at t=10 sec (spring only) 

Present method Chen et al. [4] 

Diamond rule 
Mode superposition 

method 

  

 

Table 2 Convergence of the displacement profile and 

time history and the relative error plot 

 

Convergence of the 

displacement profile 

 

Convergence of the time 

history 

 

Relative error 

 

 

 

 

 

 

 

 

 

Table 3 The vibration response profile at t =10 sec 

(clamped end, k   ) 

Present method Chen et al. [4] 

Diamond rule 
Mode superposition 

method 

  

 

 

Figure 11 Convergence of the silent area at t =2 sec 

 

Table 4 The vibration response profile at t =10 sec (free 

end, 0k  ) 
Present method Chen et al. [4] 

Diamond rule 
Mode superposition 

method 
  

 

 4. CONCLUSION 
In this paper, we have analytically solved the direct 

problem of the longitudinal vibration analysis of a finite 

bar with an external spring and a damper on one side and 

the support motion on the other clamped side by using the 

diamond rule. The slope discontinuity occurs at the 

position on the characteristic line as mathematically 

predicted. The effect of damper on the vibration response 

is also addressed. To avoid the complex eigenvalues in the 

frequency domain for traditionally solving the problem 

with the damped boundary, the method of characteristics 
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in conjunction with the diamond rule was successfully 

employed to solve the problem containing the damped 

boundary in the time domain. Table 5 summaries the 

comparison of advantages and disadvantages of the two 

approaches. Finally, the five systems by using either the 

mode superposition method or approach of the diamond 

rule, is summarized in Table 6.  

 

Table 5 Comparison of the two approaches for the 

vibration problem of a finite rod 

 

Method 

 

 

Item analysis 

Mode superposition 

method in 

conjunction with 

the quasi-static 

decomposition 

Method of 

characteristics in 

conjunction with 

the diamond rule 

Solution form 
Series solution 

(continuous) 

Exact solution 

(continuous) 

Advantage 

Without dividing 

the space-time 

region to represent 

the corresponding 

displacement 

response 

1. Without the 

truncation error of 

finite term of series 

sum 

2. It can 

analytically capture 

the dead zone 

3. General approach 

for either 

conservative or 

non-conservative 

system 

4. Suitable for 

support excitation 

of short duration, 

e.g., earthquake 

input 

Disadvantage 

3. Error due to 

truncation series in 

the real 

computation  

2. Convergence test 

is required 

3. Complex 

eigenvalue and 

eigenequation are 

required for a 

damped system  

Previous stage error 

propagates to the 

later response 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 Comparison of five systems, including 

conservative and non-conservative cases, using two 

approaches 

Diamond 

rule 
Conservative cases 

Mode 

superposition 

method 

V 

 

X 

V 

 

X 

 Non-conservative cases  

V 

 

V 

V 

 

V 

V 

 

V 

X : not available in this paper since complex eigen-system is  

required 
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含邊彈簧及阻尼器之有限桿支承運動 

高浩真 1, 李家瑋 2, 李應德 1, 陳正宗 1, 3, 4, 5, 6 

1國立台灣海洋大學 河海工程系 
2淡江大學 土木工程系 
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4國立台灣海洋大學 海洋工程科技學士學位學程 

5國立成功大學 土木工程系 

國立台灣海洋大學 海洋工程中心 

 
 摘要 

本研究使用鑽石法則解決了含邊彈簧及邊阻

尼器之有限桿受支承運動的振動問題。在僅

有邊界彈簧的特例中同時與模態疊加法進行

比。分別探討非保守系統(含邊阻尼)與保守

系統(不含邊阻尼)。對於保守系統而言，使

用模態疊加法和特徵線法兩種方法均可進行

求解比對。然而對於非保守系統(含邊阻

尼、含邊阻尼與邊彈簧)，本文避開複數特

徵系統而僅使用鑽石法則進行求解。針對彈

簧剛度為無限大(固定端)以及零(自由端)的

例子也進行探討。阻尼器對振動反應的影響

也一併討論。 

關鍵詞：阻尼，支承運動，鑽石法則，模態

疊加，特徵線 

 


