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ABSTRACT

In this study, the vibration problem of a finite bar with an
external spring and a damper on one side subject to the
support motion is analytically solved by using the method
of characteristics in conjunction with the diamond rule.
Special case to only spring end is also compared with the
method of mode superposition. Agreement is made. Two
systems, non-conservative and conservative cases, with
damper and without damper, respectively, are studied. For
the conservative system, both the mode superposition
method and method of characteristics are employed to
solve the problem, while the non-conservative system
with a damper or a damper and a spring is solved by using
the method of diamond rule only to avoid the complex
eigen-system. For the zero-valued and infinite-valued
spring stiffness, two special cases of clamped and free end
are also considered. The effect of damper on the vibration
response is also addressed.

Keywords: damper, support motion, diamond rule, mode
superposition, characteristics

1. INTRODUCTION

Wave propagation is very important in physics and
mechanics, because there are various engineering
problems which can be modeled by using the wave
equation. Many researchers have solved this problem by
using various methods, e.g., the mode superposition
technique [1], the method of separation variables [2, 3, 4],
the method of quasi-static decomposition [3, 5, 6], the
method of the diamond rule [3, 7] or the so called method
of characteristics, the image method [6], the finite element
method (FEM) [8], the boundary element method (BEM)
[9], and the meshless method [10], etc..

The Rayleigh-damped Bernoulli-Euler beam and the
string subjected to multi-support excitation have been
studied by wusing many methods including Stokes
transformation and Cesaro sum [3, 5, 6]. D’Alembert’s

solution can provide an exact solution for an infinite string.

Method of characteristics (Diamond rule) can be found in
the textbook of Farlow [11]. It is widely employed to solve
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various kinds of problems, e.g., water hammer [12]. The
diamond rule which is based on D’Alembert’s solution
was proposed by John [13] in 1975 and was mainly used
to solve the wave problem. The diamond rule has been
employed to solve the one-dimensional vibration problem
of an infinite or a semi-infinite string attached by a mass,
a spring, or a damper [7], a finite string [3] and a finite bar
with an external spring subjected to a support motion [5].
Besides, the animation was also given in [7].

Although the mode superposition method in conjunction
with the quasi-static decomposition is a popular approach
for solving the support-motion problem, it becomes
tedious when the vibration system contains a damper.
Three reasons can be explained. One is that the quasi-static
solution is not straight forward to be obtained. Another is
that the orthogonal relation of complex modes is not easily
found. The other is that a complex eigen-system is
required. The present solution free of mode superposition
is possible since we can employ the method of
characteristics in conjunction with the diamond rule for
the real response in the time domain.

In this paper, we will extend the finite bar with an external
spring [4] to a spring and a damper together. Three special
cases of conservative system, the free end, the clamped
end and the spring only, were verified by using both
methods, the mode superposition method in conjunction
with the quasi-static decomposition and the method of
characteristics using the diamond rule. Consistency check
will be done. For the non-conservative system with a
damper, only the method of the characteristics is used to
avoid the complex eigen-system. Finally, the effect of
damper on the vibration response will be addressed in
more detail.

2. PROBLEM STATEMENTS AND
METHODS OF SOLUTION

Here, we consider a finite bar with different boundary
types as shown in Figure 1. The governing equation for the
vibration problem of finite bar is shown below:

u(xt) du(xt
2 65(2 ): ;2 ),0<x<L,t>0, (1)
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where ¢=\E/p and u(xt) denote the wave speed and
displacement in the x direction, respectively. The symbols
E, pand L denote Young’s modulus, the density and the

length of bar, respectively. The initial displacement and
velocity conditions are

u(x1))_, =#(x) =0 ®)
200 -0 3)

t=0
where ¢(x) and ¢(x) are initial displacement and velocity
functions, respectively.
The boundary condition at the left hand side (x = 0) can be
expressed by the specified support motion as follows:
u(o,t)=a(t). 4)
The boundary condition at the right hand side is given

from the different boundary types in Figure 1 (a)-(e) as
follows:

AEM =-c4 au(x.t) —k u(x,t)‘x:L, damper + spring, (5)
x=L ot x=L
ou(xt ou(xt
AE (xt) =—C4 ﬁ , damper only, (6)
Ox x=L ot x=L
ou(xt
AE M =—ku (x,t)‘x:L , spring only, 7
x=L
u(L,t) =0, clamped end, 8)
gt
AE au(xt) =0, freeend, (9)
x=L

where k denotes the spring constant, c; denotes the
damping coefficient, and A4 is the area of cross section.
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Figure 1 A finite bar with different boundary types
subjected to a support motion (a) spring + damper (b)
damper (c) spring (d) clamped end (e) free end

2.1 Method 1: mode superposition approach in
conjunction with the quasi-static decomposition
method

The solution can be decomposed into two parts:

u(xt)=U (x0)+ % g, (), (x), (10)

where U(xt) denotes the quasi-static solution, and the
natural modes u,(x) weighted by the generalized
coordinate, g (t), is the generalized coordinate of dynamic

contribution due to the inertia effect. The quasi-static part
U(xt)s satisfies the governing equation
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o°U (xt)

ox?
and is subject to time-dependent boundary conditions at
the left hand side:

U (0t)=af(t), (12)
and is subject to different time-dependent boundary
conditions at the right hand side in Figure 1 (c)-(e):

AE =0, 0<x<lL, 11

ouU (xt .
AE (x1) =—kU (x,t)X:L , spring end, (13)
x=L
U(xt),_, =0, clamped end, (14)
AE 2 (xt) =0, free end. (15)
x=L

By solving Eq. (11) subject to boundary conditions, we
have the quasi-static solution,

U(x,t):a(t)(lf AElj-kL XJ , spring end, (16)
U(x,t):a(t)(l—%j , clamped end, (17)
U(xt)=a(t) , free end. (18)
The nth natural mode, u (x), satisfies the governing
equation

ur (x)+ 42U, (x)=0, n=1,2---, (19)

subject to the boundary conditions at the left hand side:
u, (0)=0, at the clamped end of x=0, (20)

and subject to the boundary conditions at the right hand
side:

au, (X) .
AE—" =—ku,(x) _ . d,
x|, n )‘XZL spring en 21)
u, (L) =0, clamped end, (22)
AE M () _ 0, free end. (23)
o x=L

By solving Eq. (19) subject to boundary conditions, we
have the nth natural mode u, (x) of the eigenvalue 4,

sin(/lrfx) , n=1,2..., spring end
u, (x) = sin(iﬁx) , N=1,2--., clamped end (24)
sin(/lnf x) ,n=12..., free end

where the superscripts, s, ¢ and f denote spring end,
clamped end and free end, respectively. The
corresponding eigen-equations are obtained,

s _ —ktan(4,L) .
A =—>a " =1,2---, spring end
¢ Nz
Ay =9, = n=12.., clamped end : (25)
2n-1
ﬂnf :Q ,Nn=12... freeend
2L
and the corresponding natural frequency is
a)n:in\,E/p, n=1,2.--. (26)

The orthogonality of the eigenfunction is
Ll R 5 TARE gy
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fyu, (XU, (X)dx =6, N, , n=12,3--, m=1,2,3-, (27)
where J,, is the Kronecker delta and
L sin(24,L
N, =& - SnEAL) 28)
2 42
Substituting Eq. (10) into Eq. (1), we obtain
2 [ Gn(tpreian(t) Ju, () =-U (xt). (29)

After considering the initial conditions, we have
N, (0)=— s U(x,0)u,(x)dx=F, (0), (nnosum),  (30)
Ny, (0)= = o U(x0)un(x)dX=F, (0), (nnosum). ~ (31)
Regarding the detailed derivation of q,(t) and the series

solution for the displacement, readers can consult with the
paper of Chen et al. [4].

2.2 Method 2: method of characteristics in
conjunction with the diamond rule
By employing the method of characteristic line, we can
assume the general solution of 1D wave equation in Eq.
(1) as

u(x,t) = P(x+ct)+Q(x—ct), (32)
where P (x+ct) and Q(x—ct) are specified functions to
match initial conditions in Egs. (2) and (3). The functions
P(x+ct) and Q(x—ct) represent a left-going-traveling
wave and a right-going-traveling wave, respectively. By
satisfying Eqs. (2) and (3) for Eq. (32), the D’ Alembert’s
solution for a certain region is expressed as

1 1 X+Cl
u(xt) = 5 [gOxret)rg(x—ct) |+ 5 [ o(r)dr, (33)
where ¢(x) and ¢(x) are functions of initial displacement

and velocity, respectively. Two groups of characteristic
lines from Eq. (33) are included in the solution of the wave
equation. Moreover, the two groups of parallel
characteristic lines can form a parallelogram in the space-
time plane as shown in Figure 2. Based on the
D’Alembert’s solution, we have the equation of the
diamond rule [4, 6], as shown below:

Uy +Ug =Uc +Up, (34)
where y Ao Ug s Ug and Up denote the displacement at the

four points 4, B, C and D, respectively. Several parallel
characteristic lines separate the domain into many regions
of the space-time plane as shown in Figure 3. The
diagrams of calculating the displacement by using the
diamond rule in the regions I, II, ITI, IV, V and VI are given
in Figure 4. The displacements in the former six regions
are given below:

u (xt)=0, (xt)el, (35)
Uy (%) = [ t"‘) (xt)ell, (36)
U ( rl(”"t "j xt)elll, (37)
a(CtC X] clv, (38)
a[ctC xj (39)
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uv,(x,t):a(Ct;X]—a(X+C272L]+rz(x+i[7l'j L (xt)ewvl, (40)

where the simple form of Egs. (39)-(40) is due to zero r1(?)
in silent regions of I and III and zero initial displacement
¢(x) and velocity ¢(x) . Following the same procedure,
the marching scheme of the time-space plane region and
solution can be done. Then, () and r»(f) denote the
displacements of u(Lt), 0<t<L/c and
u(L.t), L/c<t<2L/c, respectively, which can be obtained
from the condition of force equilibrium at x = L,

ag X 041) =—cy u (xt) —kuy (Xt _ . (41)
& x=t
x=L x=L
OUy, (Xt Ouy, (Xt
AE % ¢, A (B uy (x| . (42)
x=L x=L

for the case of spring and damper end. Thus, we can
determine r((¢) by using Eq. (37) to satisfy Eq. (41). The
displacement at x = L, uy,(L,0) and u, (L,0), must satisfy
the displacement continuity. Then, we have

rn(t)=0,0<st<L/c. (43)
Similarly, the response of () can be obtained by using
Eq. (40) to satisfy Eq. (42). By solving the corresponding
first-order ODE for 7(f) at the end of spring and damper
as shown below:

ke 2AE ct—L
r(t r(t)= a’ ,L/ic<t<2Ll/c,
(1) AE +c,c :(t) AE +c,c [ c ] (44)
we can obtain
et S 2AE ct-L
t)=g AEC [ehfrac 2T g7 dt,L/c<t<2L/c,
n () .[ AE +c,C c ¢ ¢ (45)

after using the integral factor, where the undetermined
constant can be determined by satisfying the displacement
continuity of solution in the region IV and VI at
(x,t)=(L,L/c) asshown in Figure 4.

TA

B

X

Figure 2 The diamond rule of u, +ug; =u. +ug,

r r 3
v VI
p v
il il c,
? 1 FT|
a(t) L g k
/

Figure 3 Space-time regions separated by using the
characteristic line.
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Figure 4 Space-time regions, I, I, III, IV, V and VI and
the diamond rule.

3. ILLUSTRATIVE EXAMPLES
Case (a) of a finite bar with an external spring and a
damper subjected to a support motion is considered. The
model parameters are given as follows: c=1m/s ,
AE:lN ) L:7m ) k:2N/m and Cd =2N'S/m . By
setting the support motion,

a(t)=sin(t), (46)
the solution of this approach can be obtained as shown in
the following subsection.

(a) Method of characteristics in conjunction with
the diamond rule
By substituting model parameters ¢, A E, L, k, C, and Eq.

(46) into Egs. (35)-(40), we have

u (xt)=0, (xt)el, (47)

u, (x.t)=sin(t—x), (x,t)ell, (48)
uy (xt)=0, (x,t)ell, (49)

uy (x,t)=sin(t-x) , (x,t)elV, (50)
u, (x,t)=sin(t-x), (x,t)eV, (51)

Uy, (x,t)=sin(t—x)—sin(x+t-14)+r,(x+t=7) , (x,t)e Vi, (52)
where
e(74)

rz(t):W— 5 TSt<1d (53)

The displacement profiles with the silent area for =2 and
4 sec. by using the diamond rule are shown in Figure 5 (a)-
(b), respectively. It matches the silent response begins at x
=2 and 4 m to the end of bar (x = 7 m), for the time when
t =2 and 4 sec.. In Figure 6, shadow regions, I and III,
denote the dead zone. It is found that the slopes are
discontinuous at x = 2 and 4 m when ¢ = 2 and 4 sec.,
respectively. Two discontinuities occur at the location of
(2,2) and (4,4) in the x-f plane as shown in Figure 6. As
theoretically predicted, the two discontinuities of the slope
really occur at the positions of (2,2) and (4,4), on the
characteristic line. The displacement profiles for =8 and
10 sec. by using the diamond rule are shown in Figure 7
(a)-(b), respectively. It is found that the slopes are
discontinuous at x = 6 and 4 m when ¢ = 8 and 10 sec.,
respectively. Two slope discontinuities occur at the
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locations of (6,8) and (4,10) in the x-¢ plane as shown in
Figure 8.  This finding matches well from the
mathematical requirement that the discontinuity must
occur at the position on the characteristic line [14]. The
displacement response history at x = 5 m by using the
diamond rule is also shown in Figure 9.

The displacement profiles for the case of only damper at
t =8 and 10 sec. by using the diamond rule are shown in
Figure 10 (a)-(b), respectively.

(b) Mode superposition approach and the
diamond rule

Now, we consider the special case (c) of zero damping
(only spring end) and we can compare the solution with
that of using the mode superposition method [4]. The
result is shown in Table 1. Convergence test for the
displacement profile and time history are both verified. To
reach the accuracy for comparing with the exact solution
obtained by using the diamond rule, a number of terms for
the series are required for the displacement profile and the
time history as shown in Table 2 where the time history
response and the displacement profile are obtained by
using 2, 4, 6, 8, 10 and 15 modes. The error of 0.1 % is
reached by using 15 modes.

Besides, more special cases of infinite-valued (case d) and
zero-valued (case e) spring stiffness are employed to
model the clamped and free end, respectively. This results
are shown in Table 3 and Table 4 for clamped and free
ends, respectively. To check the ability of capturing the
silent area (dead zone) for the mode superposition method,
the response is shown in Figure 11, where it indicates that
silent area is well captured if a sufficient number of modes
is considered. In this case, 15 modes are required.

Jk=2¢,=5 Diamond rule Hk=2,¢,=5 Diamond rule
N % —
[: H =+ 4 v
Z F = N
= \ 2 5
5 = =
= | - 9 ==
g T g T
i . 74 ~
= | = |
-1 . 2 - i
A Z
a 1 =) I
[} 1
0 1 2 3 4 5 L 7 0 1 2 3 : 5 é
X X
(a) t=2sec (b) t=4sec

Figure 5 Displacement profiles by using the diamond rule
(spring + damper)
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X

Figure 6 The locations of slope discontinuities at (2,2)
and (4,4), where the shadow region denotes the dead
zone

Diamond rule; g k=2,¢,=5 Diamond rule
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Displacement u (\ 8)
Displacement #(x,10)
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1

1

1

0 1 3 ) 6
X

) ’ X
(a) t=8 sec (b) =10 sec

Figure 7 Displacement profiles by using the diamond rule
(spring + damper)

Figure 8 The locations of slope discontinuities (6,8) and

(4,10)
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Figure 9 Displacement history at x =5 m
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2 ZK =0,¢,=5, Diamond rule f k=0,¢,=5 Diamond rule
/- [ = :
7 g,
= /@\ =
z 1 =
3 g
£ : £
E bl :
5 L] !
=] 1 A 1
I 1
° 1 2 3 4 B 3 o i 3 % ¢
X X
(a) t=8 sec (b) t=10 sec

Figure 10 Displacement profiles by using the diamond

rule (damper only)

Table 1 The vibration response at /=10 sec (spring only)

Present method

Chen et al. [4]

Diamond rule

Mode superposition
method

Diamond rule

Quasi-static decomposition

Displacement #(x,10)

Displacement #(x,10)

Table 2 Convergence of the

displacement profile and

time history and the relative error plot

== = M=2 Quasi-satic decowposition Diamond e o M=2 Qusi-stalic decomposition Diamond ruld]
M4 Quasi-static decompusiion af2® i
o s M=6 Qu mposition _ i dmm A M-8 On
[ 4mm M8 Qu decomposition | == M=10 O
e e A M- 10 i decamposition A m b ML
104 e o A M=15 Quasi-siatic decomposition ,.ma».~ —
~ s A =
EN AR 2
R £
E E
o o 3
2 s 3 o
= a
0 1 2 3 4 5 6 0 2 4 6 g 10

Convergence of the
displacement profile

Convergence of the time
history

Displacement u{6.7)

o

050

Relative Error

8

M

Relative error
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Table 3 The vibration response profile at =10 sec
(clamped end, k =0 )
Present method Chen et al. [4]
Mode superposition
method

Diamond rule

S k=, c,=0 Diamond rule fhk=x Quasi-static decomposition
Y Y. -f'
— / —~ |7 v
= < L
5 5
3
1 3
z ! Z !
A . A .
1 1
1 1
0 1 3 4 s g J

A = =% M=2 Quasi-static decomposition

Diamond rule
N M=4 Quasi-static decomposition
2 ) o .,
| A = =/ M=6 Quasi-static decomposition % 4
FA— ==/ M=8 Quasi-static decomposition j

2 e M=10 Quasi-static p
A = /e M=15 Quasi-static decomposition

—_
ol
=
—
-
5 o ]
E I
b4 r silent area
= |
& 1
.2
8- !
i |
1
|
-2F |
i |
PR | i il - PR | i
0 1 2 3 Ll 5 6 7

X
Figure 11 Convergence of the silent area at # =2 sec

Table 4 The vibration response profile at z =10 sec (free

end, k=0)

Present method Chen et al. [4]
Mode superposition
method

Quasi-static decomposition

Diamond rule

) k=0,¢c,=0

Diamond rule =0

v =

Displacement #( x,10)
Displacement #(x,10)

4. CONCLUSION

In this paper, we have analytically solved the direct
problem of the longitudinal vibration analysis of a finite
bar with an external spring and a damper on one side and
the support motion on the other clamped side by using the
diamond rule. The slope discontinuity occurs at the
position on the characteristic line as mathematically
predicted. The effect of damper on the vibration response
is also addressed. To avoid the complex eigenvalues in the
frequency domain for traditionally solving the problem
with the damped boundary, the method of characteristics
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in conjunction with the diamond rule was successfully
employed to solve the problem containing the damped
boundary in the time domain. Table 5 summaries the

Table 6 Comparison of five systems, including
conservative and non-conservative cases, using two
approaches

comparison of advantages and disadvantages of the two Di d Mode
approaches. Finally, the five systems by using either the 1an;0n Conservative cases superposition
mode superposition method or approach of the diamond e method
rule, is summarized in Table 6.
Table 5 Comparison of the two approaches for the \Y X
vibration problem of a finite rod
Mode superpgsﬁmn Method of
ethod method in .
L . characteristics in 4
conjunction with . . . T
. . conjunction with
the quasi-static . \Y ! X
) " the diamond rule ! v
Item analysis decomposition L ien)  ouen)
N N n w(0.¢)=a(t u(x. _ u(x,
. Series solution Exact solution (607l B i
Solution form . . .
(continuous) (continuous) Non-conservative cases
1. Without the
truncation error of
finite term of series v Vv
sum
2. It can
Without dividing analytically capture
) the dead zone
the space-time
region to represent 3. General approach
Advantage & pres for either Vv v
the corresponding .
. conservative or
displacement .
non-conservative u(0.7)=a(r) u(L,t)=0
response
system
4. Suitable for
support excitation
of short duration, \ i v
e.g., earthquake L au(x.t
input u(0,2)=a(r) AE (& )FL:O
3. Error due to X : not available in this paper since complex eigen-system is
truncation series in required
the real
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