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Abstract

For modern MEMS and electron devices, an accurate electrostatic analysis is essential and indispensable for engineers. The BEM is a
widely used computational technique nowadays for MEMS and EM because of its superiority for unlimited exterior field. But for
electrostatic problems with some specific geometry, the singularity caused by a degenerate scale will be encountered since the influence
matrix is rank deficient, and numerical results become unstable. Therefore, the approach to correctly and efficiently solve the singularity
arising from degenerate scale becomes a very essential and indispensable task for engineers. In this article, some efficient regularization
BEM, RBM, CHIEF and hypersingular formulation, in conjunction with SVD technique, are employed to study and cope with the rank-
deficiency problem numerically. These regularization techniques are successfully applied to overcome the degenerate scale and the error is

suppressed in the numerical experiment.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Electrostatics, as used here, involves charges in motion as
well as at rest. There are five fundamental quantities
(voltage, charge, current, capacitance and resistance) in
electrostatics, which are involved in almost all applications.
For most electrical engineers, voltage, or electromotive
force (EMF) is the most important one. When device
dimensions are much less than the wavelength of electro-
magnetic radiation at a particular frequency, then the
response of the system at that frequency can be considered
quasistatic in that the emission, transmission, or absorption
of electromagnetic radiation can be ignored [1]. Therefore,
electrostatics generally plays a very important role to
improve the performance and reliability of microelectro-
mechanical systems (MEMS) and electron devices in the
design stage, and many numerical methods (e.g., finite
difference method, variational methods, moment methods,
finite element method, boundary element method, transmis-
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sion-line-matrix method, Monte-Carlo method) were reg-
ularly used [2,3]. Among diverse numerical approaches,
finite element method (FEM) [4] and boundary element
method (BEM) [5] become powerful design tools for
engineers because of the increasing developments of digital
computer power. The FEM is one of the most widely used
computational techniques because it can model extremely
complex configurations and easily determine the response at
any desired point of a structure. Comparatively, the BEM
has a few more advantages. For example, it is easy to mesh
and apply adaptive error control techniques to apply it, and
its efficiency is much higher than the FEMs when facing the
unbounded domain [6]. In reality, it is almost impossible to
measure the field distribution inside and outside of many
MEMS and electron devices, and there is no doubt that
BEM has become a very popular approach in numerical
simulation of electromagnetics (EM) and MEMS nowadays
[7]. For most electrostatics except degenerate problems
(e.g., degenerate boundary, degenerate scale), the formula-
tion of a singular boundary integral equation for the
primary field (e.g., potential, voltage) provides sufficient
conditions to ensure a unique solution. While using the
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conventional BEM without laborious artificial boundary
technique for electrostatic problems that have singularity
due to degenerate boundaries, the coincidence of the
boundaries gives rise to an ill-conditioned problem. For
the singularity arising from degenerate boundaries, the dual
BEM (DBEM) uses a dual integral formulation with a
hypersingular integral can solve this singular problem very
well, and the BEM was reformulated in terms of displace-
ment and traction boundary integral equations by Chen
and Hong [8] who thus presented the theoretical basis of
dual BEM.

Besides degenerate boundary, degenerate scale is another
degenerate source for singularity of BEM. For problems
with special scale of geometry shape, many researchers
have found that the influence matrix of the weakly singular
kernel may be singular for the Dirichlet problem [9,10].
This non-unique solution is not physically realizable but
stems from the zero eigenvalue imbedded in the influence
matrix of the discrete system using the BEM formulations,
and the special geometry which results in a non-unique
solution for a potential problem is called degenerate scale
[11]. While facing the special geometry, which results in a
non-unique solution for an electrostatic problem, conven-
tional BEM results become erratic since the influence
matrix is rank deficient. Therefore, how to correctly and
efficiently solve the singularity arising from degenerate
scale becomes essential for engineers.

In this article, several efficient regularization techniques,
rigid body mode (RBM) [12], combined Helmholtz interior
integral equation formulation (CHIEF) [13] or combined
Helmholtz exterior integral equation formulation
(CHEEF) [14], were used to successfully overcome the
non-unique solutions in numerical implementation. Using
RBM, a rigid-body term was superimposed in the
fundamental solution to sort out the problem, but this
approach results in a new degenerate scale instead of the
original one. For CHIEF or CHEEF method, the
independent constraints are added for promoting the rank
of singular matrix, and the technique of singular value
decomposition (SVD) was used to solve the over-deter-
mined set of linear equations [15]. Also, the role of
hypersingular boundary integral equation is examined for
the degenerate scale problems.

To our best knowledge, it is very important to utilize
SVD technique first to check the singular status of
influence matrices before the BEM was used. If the
influence matrix [U] of singular boundary integral equation
is non-singular, either BEM or DBEM can be used,
otherwise the aforementioned regularization techniques are
needed. To prove this, an electrostatic problem was
analyzed to check the mathematical model’s validity; the
analysis also showed that the ill-conditioned singular
problem of BEM can be avoided and a more accurate
and reasonable result can be obtained. Hence, it is strongly
recommended to apply these regularization techniques for
industrial applications while facing the singularity arising
from degenerate scale.

2. Integral formulations of BEM and DBEM

The electrostatic problem consists of finding the
unknown potential function @ (or V) in the partial
differential equation. In addition to the fact that & satisfies
V2@ =0 within a prescribed solution region €, the
potential function @ must satisfy certain conditions on B
which is the boundary of €. Usually these boundary
conditions are the Dirichlet (®(x) = f(x)) and Neumann
(00(x)/0n, = g(x)) types. Therefore, the governing equa-
tion of electrostatic problems could be written in the
following form:

ViP(x) =0, (1)

where f(x) and g(x) denote known boundary data, and n,
is the unit outer normal vector at the point x on the
boundary B.

Based on the dual boundary integral equation formula-
tion for electrostatic problem [8], we have

a®d(x) = CPV / T(s, x)®(s) dB(x)
B

_ RPV / U(s, x) [agn(s)} dB(s), )
B s
a[a(p(")} — HPV / M(s, \)®(s) dB(s)
anx B
_ CPV / L(s, x) F;(S)} dB(s), 3)
B s
where the kernel functions, U(s,x)=In(r),T(s,x) =

oU(s, x)/0n,, L(s,x) = 0U(s, x)/Ony, M(s,x) = U, x)/
On,On,, r = |s — x|, s and x being position vectors of the
points s and x, respectively, and n; is the unit outer normal
vector at point s on the boundary (see Fig. 1). Table 1
shows the explicit forms of the four kernel functions

X, ¥ geometrical node

Q physical node

degenerate boundary

nondegenerate boundary

Fig. 1. Boundary element discretization for degenerate boundary and
nondegenerate boundary.
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Table 1
The explicit forms of four kernel functions in dual integral equations

Kernel function U(s, x) T(s, x) L(s, x) M(s, x)

Order of Weak Strong Strong Hypersingular
singularity

Two-dimensional In(r) —ymilr? Vit 1 Zy’.},v/.niﬁj/r" — it [
case

Three-dimensional ~ —1/r —ymir Y /r? 3yt [1° — i 1
case

Remark P = yivi n; = n(s) Ay =ni(x)  yi=Xxi—s;

U(s, x), T(s, x), L(s, x) and M(s, x). In addition, RPV is the
Riemann principal value, CPV is the Cauchy principal value,
HPYV is the Hadamard principal value, and o depends on the
collocation point (¢ = 2z for an interior point, o = « for a
smooth boundary, o« =0 for an exterior point). The
commutativity property of the trace operator and the
normal derivative operator provides us with alternative
ways to calculate the Hadamard principal value analyti-
cally. In the derivation of dual equations, two alternatives
can be applied to determine the Hadamard principal value
as shown in Fig. 2. In Fig. 2, two ways to derive Eq. (3) can
be considered. One is trace operator first and then the
differential operator. The other is differential first and then
trace process. It must be taken care for the boundary term
for the first approach while the second approach needs the
! hospital’s rule.

Generally, Eq. (2) is called singular boundary integral
equation, and Eq. (3) is called hypersingular boundary
integral equation. Since the hypersingular boundary
integral equation plays an important role in the degenerate
problems, many researchers have paid much attention to
this. After discretizing the boundary into 2N boundary
elements, Egs. (2) and (3) are reduced to

[Ubnson{thanx: = [Thyxoniulanxis 4)

[Lhyson{flav<t = [Mhyson{tdonsis W)

where [U], [T], [L] and [M] are the four influence
matrices,{u} and {¢} are the boundary data for the primary
and the secondary boundary variables, respectively. Gen-
erally for electrostatic problems without degenerate scale,
the aforementioned influence matrix [U] is nonsingular,
either Eq. (4) or (5) can be solved by Gaussian elimination
and LU decomposition very well. But for degenerate scale
problem, [U] matrix is singular and the rank is deficient,
then the following SVD technique is needed.

3. Review of the technique of singular value decomposition
(SVD)

3.1. Basis of SVD

There exists a very powerful set of techniques for dealing
with sets of equations or matrices that are either singular or
else numerically very close to singular. In many cases where
Gaussian elimination and LU decomposition fail to give

Boundary
integral operator

Leibnitz
sense

Hadamard
sense

Traction process
(Limiting process)

lim
¥y B

Traction operator

)

(B, or In

T,

OK

Fig. 2. Commutativity of trace and differential operator.

satisfactory results, this set of techniques, known as
singular value decomposition, or SVD, will diagnose
precisely what the problem is [15].

SVD methods are based on the following theorem of
linear algebra: Any M x N matrix 4 whose number of rows
M is greater than or equal to its number of columns &, can
be written as the product of an M x N column-orthogonal
matrix B, an N x N diagonal matrix S with positive or zero
elements (the singular values s), and the transpose of an
N x N orthogonal matrix W:

[Alsren = [Blar v STy v [W k- (6)

3.2. Condition number

The condition number ¢ of a matrix [A4] is defined as the
ratio of the largest singular value (in magnitude) of the s;,ax
to the smallest of the s.,;,. Generally, a matrix is singular if
its condition number is infinite, and it is ill-conditioned if
its condition number is too large, that is, if its reciprocal
¢~ approaches the machine’s floating-point precision.

3.3. The singularity of degenerate scale and the BEM

Harrington et al. [10] had stated that the electrostatic
problem became mathematically indeterminate for a circle
of unit radius. In addition, the non-unique solution of a
unit circle was also noted by other researchers [16].
Basically, the special geometry, which results in rank
deficiency for a potential problem is called ‘degenerate
scale’. The term °‘scale’ stems from the fact that the
numerical instability of a unit circle of radius 1m (1cm)
disappears if the radius of 100cm (0.01 m) is used in the
BEM implementation. In real BEM simulation, the
number one for the circular radius using the normalized
scale should be avoided. Besides unit circle, the degenerate
scale problem under different contours with specific
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geometry may be encountered, and the accurate degenerate
scale is dependent on the discretization boundary density in
BEM [17]. Therefore, it is not trivial to seek a unified
method for dealing with the degenerate scale problem.

3.4. Checking the singular status of influence matrices

Though the singularity arising from degenerate scale is a
serious problem for BEM, it is not necessary to feel
concern about it if the SVD technique was efficiently and
correctly used to check the singular status of influence
matrix matrices [18]. For some electrostatic problems with
special geometry, the [U] matrix of singular boundary
integral equation may be either singular or numerically
very close to singular if the SVD updating technique was
used to diagnose it. If [U] matrix is singular, the following
efficient regularization techniques for rank-deficiency
problem can be used.

4. Efficient regularization techniques for rank-deficiency
problem

In order to deal with the singularity arising from
degenerate scale, several efficient regularization techniques
were used as follows.

4.1. Method of adding a rigid-body mode ( RBM )

The concept of RBM has been used in the BEM for
determining the diagonal elements of the influence matrix
for many years. In 1990, Vable described that the issue of
RBM made the BEM less sensitive to errors or changes in
the input data and arose as a consequence of implementing
an algorithm. The importance of RBM which affects the
BEM analysis was also described [12]. Because the
nontrivial solution for the singular matrix is found to be
a rigid-body term (this is both physically and mathematical
realizable since RBMs are imbedded in the zero-eigenvalue
matrix), the method of adding a RBM can be used to
remove the RBM from the discretized linear system of
degenerate scale problem. Since the [U] matrix of singular
boundary integral equation (Eq. (4)) is singular in case of
the degenerate scale, the modified fundamental solution
can be added by a rigid-body term f,

U*(s,x) = U(s,x) + B. (7

The influence matrix [U] is modified to [U], and the zero
singular value in [U] moves to a nonzero value for [U']. To
demonstrate the effectiveness, the condition number and
minimum singular value of [U'] of the modified funda-
mental solution will be shown in the numerical example by
SVD. Although the degenerate scale problem is circum-
vented for the special geometry, the degenerate scale moves
to another size in reality.

4.2. CHIEF or CHEEF method

Generally, the nonuniqueness problem is numerically
manifested in a rank deficiency of the BEM coefficient
matrix. In order to obtain the unique solution that is known
to exist analytically, several modified integral equation
formulations that provide additional constraints to the
original system of equations have been proposed. Schenck
used the CHIEF method for exterior problem, which
employs the boundary integral equations by collocating
the interior point as an additional equation to make up
deficient constraint condition in 1968 [13]. If the chosen
point is the node of the associated interior problem, then
this CHIEF method may fail. Though many researchers
have enhanced and modified the CHIEF method for interior
problem, the main disadvantage of the CHIEF method lies
in how the number of interior points is selected and where
the position should be considered. To overcome this
problem, Chen et al. [14] proposed the CHEEF method in
2001. Based on the CHEEF method, the spurious solutions
can be filtered out if additional constraints from the exterior
points are chosen.

Although the CHIEF and CHEEF methods were first
used to overcome fictitious frequency and spurious
eigenvalues for radiation problem and eigenequation,
respectively, these methods are extended to solve the
singularity arising from degenerate scale problem in this
article because the source of these two problems are both
rank-deficiency. Since the rank of [U] matrix for degenerate
scale problem is deficient, the independent constraint is
required in order to promote the rank. To resort to the null
field equation by collocating the point inside (CHIEF for
exterior problem) or outside (CHEEF for interior problem)
the domain, we have

T anithnx = D7 o {ubanxd (®)
where {wY} and {w”} are the influence row vectors by
collocating the CHIEF or CHEEF point in the null-field
equation. Combining Egs. (4) and (8) yields

[[U Lxan

WY an

[Thyxon

{WT}1><2N {u}onx1- )

{thwx1 =

Because conventional techniques of Gaussian elimina-
tion and LU decomposition cannot successfully solve the
aforementioned over-determined set of linear equations
such as Eq. (9), the reasonable solution by using SVD
technique can be obtained. In addition, the condition
number and minimum singular value of [U] by using
CHIEF or CHEEF method will also be shown in
the numerical example by SVD for demonstrating its
effectiveness.

4.3. Hypersingular formulation

By way of SVD, the condition number and minimum
singular value of [L] matrix can be calculated, and [L]
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matrix may be nonsingular for degenerate problems if the
hypersingular boundary integral equation was chosen.
Instead of using the singular boundary integral equation
(Eq. (4)) in the conventional BEM, the hypersingular
boundary integral equation (Eq. (5)) can be used efficiently.

5. Solving electrostatic problems with degenerate scale by
the regularization techniques

For the nondegenerate scale problems, either the
conventional BEM or DBEM can be chosen. But for
electrostatic problems with singularity arising from degen-
erate scale, the aforementioned regularization techniques
play important and efficient roles because the conventional
BEM yields unstable solutions.

Case study: To check the model’s validity, a simplified
case study was implemented. Consider an infinitely long,
thin, conducting circular tube of radius b which is split in
two halves as shown in Fig. 3. The upper half is kept at a
potential V' = V; and the lower half at V' = —V, respec-
tively. To determine the electric potential distribution
outside the tube, conventional BEM and the aforemen-
tioned regularization techniques were all tested.

(1) Analytical solution: Using the method of separation of
variables with the Bessel functions [1], the desired
electric potential distribution V(r) in the space r=b is

vo = (20 () (2) oo (10)

where ¢ = tan~'(y/x), r = (x*+»*)* and n is odd.

Fig. 3. Cross-section of split circular cylinder and equipotential lines.

(2) Conventional BEM without regularization techniques: In
order to obtain the singularity from degenerate scale,
the value of b is assumed to be 1, and four points will be
analyzed using of BEM model (48 elements and 48
nodes), and compared with analytical data computed
from Eq. (10).

First, the SVD technique was used to check the
singular status of [U] matrix. From Figs. 4 and 5, there
is an abrupt drop of the reciprocal of condition number
(c™") and the first minimum singular value (s;) of [U]
matrix can be found if the radius of circle is close to 1.
Since ¢! and s; of [U] matrix are close to zero if the
radius b is 1, this influence matrix [U] is almost rank
deficient and numerical results may be unstable. The
results of electric potential were listed in Table 2. One
can see from this table that the errors between
analytical method and conventional BEM are very
large because of singular matrix [U]. This is the reason
why the regularization techniques presented in this
article were needed to cope with degenerate problems.
In addition, to investigate how seriously the rank-
deficiency behaves, the second minimum singular value

0.075

emmmm (Condition Number of
[U] Matrix

0.06 i
@ Condition Number of
M 0] M
. e
0.03

M

0.015

The Reciprocal of Condition
Numbers of [U] and [U*] Matrices

0 1 1 1
0.5 1 1.5 2 2.5 3

Radius of Circle

Fig. 4. The reciprocal of condition numbers vs. radius of circle using the
BEM +SVD.

0.5

0.4

0.3

0.2

The Minimum Singular [

Value of [U] Matrix

The Minimum Singular Values of [U]
and [U*] Matrices

0.1 The Minimum Singular [
Value of [U*] Matrix
0 L ! !
0.5 1 1.5 2 2.5 3

Radius of Circle

Fig. 5. The minimum singular values vs. radius of circle using the
BEM +SVD.
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Table 2
The results of electric potential under conventional BEM and analytical
methods

Locations (x,y), Results from Results from Error

r=(x2+)%)°03 conventional BEM  analytical method (%)

(17.5, 15.0) 0.10946V, 0.03604V, 203.68
(15.0, 20.0) 0.11615V, 0.04083 7 184.49
(12.5, 30.0) 0.11769V, 0.03622V, 22491
(18.2, 43.9) 0.06563V, —0.02479V, —364.71

(s») vs. radius b of the circle was shown in Fig. 6. From
this figure, s, of [U] matrix was nonzero even the radius
of circle is close to 1. Hence the rank is deficient by one
only, and this supports that only one CHIEF point is
sufficient for this case.

(3) BEM+RBM: In this case, a rigid body term f ( = 1.0)
was added first of all. The SVD technique was also used
to check the singular status of [U'] matrix. Unlike [U]
matrix, there is no abrupt drop of ¢! and s, of [U']
matrix can be found even the radius of circle is close to
1 (see Figs. 4 and 5). Since ¢! and s, of [U'] matrix are
nonzero whatever the radius b is, this new influence
matrix [U'] is nonsingular. The results of electric
potential using [U'] were listed in Table 3. The errors
between analytical method and BEM + RBM shown in
this table are less than 0.2%. Therefore, BEM + RBM
used in this article is a very efficient and easy numerical
method for the electrostatic problems with singularity
from a degenerate scale.

(4) BEM+CHIEF method.: In this case, the CHIEF method
was chosen because of exterior problem and an
independent constraint was added to promote the rank
of [U]. The SVD technique was used to decompose the
[U] matrix. From Fig. 7, there is no abrupt drop of s;
for any radius b if using CHIEF method. Since s; of [U]
matrix is nonzero, this new influence matrix [U] is
nonsingular. The results of electric potential were listed
in Table 4. From this table, it is noted that the errors
between analytical method and BEM + CHIEF method
are less than 4.7%. This concludes that BEM + CHIEF
used in this article can also work well.

(5) Hypersingular formulation: Though [U] matrix of the
singular boundary integral equation is singular, the
SVD technique was also used to check the singular
status of [L] matrix of the hypersingular boundary
integral equation. If matrix [L] is also singular, the
regularization technique cannot be used in this case.
From Fig. 8, no abrupt drop of ¢! matrix is found if
using hypersingular formulation even the radius of
circle is close to 1. By way of SVD, ¢~ ' of [L] matrix is
nonzero, and this influence matrix [L] is nonsingular.
The results of electric potential using [L] were listed in
Table 5. On comparison of the results for hypersingular
formulation and analytical method (Eq. (10)), it can be
seen that the errors between analytical method
and hypersingular formulation are less than 1.6%.

0.5
E x
HERY
E =
E —
2 2 03
s B
2 3 @ The First Minimum
2 =z Singular Value of
< = 02 ingular Value of ||
S > [U] Matrix
% 8
= 5 The Second
L:") 20 0.1 o~ Minimum Singular ||
ﬁ 2 Value of [U] Matrix
0 1 1 1
0.5 1 1.5 2 2.5 3

Radius of Circle

Fig. 6. The first and second minimum singular values vs. radius of circle
using the BEM + SVD.

Table 3
The results of electric potential under BEM+RBM and analytical
methods

Locations (x, »), Results from Results from Error

—#— The Minimum
Singular Value of [U]
Matrix --- CHIEF

0 1 1 1 1
0.5 1 1.5 2 2.5 3

Radius of Circle

0.1

r=(x*+y%°03 BEM + RBM analytical method (%)
(17.5, 15.0) 0.035997, 0.036047, —0.16
(15.0, 20.0) 0.04077V, 0.04083V —0.14
(12.5, 30.0) 0.03617V, 0.03622V —0.15
(18.2, 43.9) —0.02479V —0.02479V, —0.02
0.5
S
5
E 0.4
S
E .
ENNS
% 5 0.3
B =
E B
= 02
£
£
=
2
=

Fig. 7. The minimum singular values vs. radius of circle using the
BEM + CHIEF.

Table 4
The results of electric potential under BEM + CHIEF and analytical
methods

Locations (x, ), Results from Results from Error

r= (24?03 BEM + CHIEF analytical method (%)

(17.5, 15.0) 0.03692V, 0.03604V, 2.43
(15.0, 20.0) 0.04173V, 0.04083 7 2.21
(12.5, 30.0) 0.03721V, 0.03622V, 272
(18.2, 43.9) —0.023647V, —0.024797, —4.64
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Fig. 8. The reciprocal of condition numbers vs. radius of circle using
hypersingular formulation.

Table 5
The results of electric potential under hypersingular formulation and
analytical methods

Locations (x,y), Results from Results from Error

r=(x*+1%%  BEM + hypersingular analytical (%)
formulation [L], [M] method

(17.5, 15.0) 0.035507, 0.03604V, —1.50

(15.0, 20.0) 0.04023 7V, 0.04083 7V, —1.46

(12.5, 30.0) 0.03568 7V, 0.03622V, —1.49

(18.2, 43.9) —0.02450V, —0.02479V, —1.20

Therefore, hypersingular formulation used in this
article also work very efficiently.

6. Results and discussions

(1) From the results of the electric potential shown in
Tables 2-5 and Figs. 4-8, one can find that the
conventional BEM without regularization techniques
cannot solve the electrostatic problems with singularity
arising from degenerate scale because the [U] matrix of
the singular boundary integral equation is singular. The
regularization techniques presented in this article can
analyze the electrostatic problems with degenerate
scale, and the errors between the regularization
techniques and analytical method are very small.

(2) For some special geometry, [U] matrix of conventional
BEM may be cither singular or else numerically very
close to singular. In this case, SVD plays a very
important role. Not only it can diagnose the degenerate
problem, it can also solve it and provides scientists and
engineers a useful numerical answer.

(3) Basically only one CHIEF point is required to deal with
the degenerate scale problem efficiently since the rank
of [U] matrix is deficient by only one if using the
singular boundary integral equation. Nevertheless, the
[L] matrix of the hypersingular boundary integral
equation is never singular whatever the radius is, and
the hypersingular formulation (LM equation) can shift
the zero singular value in the singular formulation
(UT equation).

(4) To our best knowledge, it is very important to utilize
SVD technique first to check the singular status of
influence matrices before the BEM was used. If [U]
matrix is nonsingular, either convention BEM or
DBEM can be used, otherwise the regularization
techniques need to be used.

7. Conclusions

The regularization techniques, RBM, CHIEF and
hypersingular formulation, of electrostatic problems with
singularity arising from degenerate scale have been
presented in this article. Comparisons of results between
conventional BEM, regularization techniques and analy-
tical analyses were discussed in order to demonstrate the
superiority of regularization BEM in conjunction with
SVD technique. It is concluded that the regularization
techniques are particularly suitable for the electrostatic
problem with singularity arising from a degenerate scale.
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