
Electrostatic problems are those that deal
with the effects of electric charges at
rest. For modern electron and micro-
electromechanical systems (MEMS), an

accurate electrostatic analysis is both essential and
indispensable. We know that if we use the con-
ventional boundary element method (BEM) for
electrostatic problems that have singularity due
to degenerate boundaries, the coincidence of the
boundaries gives rise to a difficult, or ill-condi-
tioned, problem. The coincidence is when differ-
ent elements use the same nodes, but there is a
free-edge between the elements.

In a degenerate boundary problem, the spatial
coincidence of the two sides of the degenerate
boundary leads to the singular integral equation
on one side being indistinguishable from that on
the other, even though the potentials on the two
sides differ.1

Our dual boundary element method (DBEM)

uses a dual integral formulation with a hypersin-
gular integral to solve boundary value problems
in which singularity arises from degenerate
boundaries. To prove this, we analyzed an elec-
trostatic problem to check the mathematical
model’s validity; the analysis also showed that we
could avoid deploying artificial boundaries and
encountering the ill-conditioned problem of the
conventional BEM and still get a more accurate
and reasonable result. 

In this article, we compare results between fi-
nite-element method (FEM) and DBEM analy-
ses to prove the DBEM’s superiority. Because
model creation requires the most effort in elec-
trical engineering practices, we strongly rec-
ommend the DBEM for industrial applications. 

Diverse Numerical Techniques

Numerical solution of electrostatic and electro-
magnetic (EM) problems2 started in the mid
1960s with the introduction of high-speed digital
computers. Since then, researchers have ex-
pended considerable effort on solving practical,
complex EM-related problems for which closed-
form analytical solutions are either intractable or
not available. Numerical approaches let un-
trained users solve problems without knowledge
of higher mathematics or physics, resulting in an
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economy of labor on the part of the highly trained
personnel. 

Among different numerical approaches, the
FEM and BEM (thanks to increasing develop-
ments in digital computer power) have moved
from being tools for select research groups to
powerful design tools for a broad class of engi-
neers. The FEM is one of the most widely used
numerical techniques because it can model ex-
tremely complex configurations and easily deter-
mine the response at any desired point of a struc-
ture, but the BEM has a few advantages over it.
For example, it’s easy to mesh and apply adaptive
error control techniques to apply to it, and its ef-
ficiency is much higher than the FEM’s when fac-
ing an infinite field.

Degenerate Boundaries and the BEM

Although the BEM has become a widely ac-
cepted tool for solving engineering prob-
lems3—easy data preparation due to one-di-
mension reduction makes it attractive for
practical use—a potential disadvantage of us-
ing it is poor analysis efficiency. BEM formu-
lations generate dense matrices. For matrix
operation and computation, solving sparse
(symmetric) matrices of the FEM is easier and
more accurate than solving the BEM’s dense
(asymmetric) matrices.

Using the subdomain technique in the BEM
with artificial boundaries for the degenerate
boundary ensures a unique solution. (In the
subdomain technique, if we divide the con-
cerned domain into different subdomains using
the conventional BEM, new interfaces from be-
tween the subdomains. This introduces un-
knowns in the artificial boundary, so new con-
straints of the continuity and equilibrium
conditions are necessary.) However, the tech-
nique’s main drawback is that the deployment
of artificial boundaries is arbitrary and thus
cannot be implemented in an automatic proce-
dure very easily. In addition, model creation is
more troublesome than in the single-domain
approach because there is no interface. 

To tackle such degenerate boundary problems,
Jeng-Tzong Chen and Hong-Ki Hong first pro-
posed dual integral formulations in 1988.4 Us-
ing the dual integral formulations, all boundary
value problems can be well posed and solved ef-
ficiently in the original single domain. The Wes-
sex Institute of Technology group first called this
numerical implementation the dual boundary el-
ement method in 1992.5

Comparing the DBEM to the BEM

Even for electrostatic problems without singular-
ity arising from degenerate boundary, the DBEM
has some advantages over conventional BEM.1

One advantage is that an essential ingredient for
all adaptive uses of the BEM is a reliable estimate
of the local error. The hypersingular integral
equation used in the DBEM is a complementary
equation available for error estimation. 

Another advantage is that we can use this hy-
persingular integral equation to calculate the
tangent electric field directly instead of using
the obtained potential field’s numerical deriv-
ative. Researchers have formulated the tangent
derivative along the boundary in terms of both
the boundary potential and the boundary nor-
mal flux. Therefore, we could eliminate the nu-
merical error from the BEM-facing side fring-
ing—meaning, near the electron device’s side
boundary, the electric field will be distorted.

Finally, in the FEM and BEM, the stiffness
matrix’s symmetry requirement is especially
useful. Because some researchers use the FEM
and BEM to solve problems simultaneously,
some coupled interfaces such as artificial
boundaries form. The four kernel functions
U(s,x), T(s,x), L(s,x), and M(s,x) in the dual in-
tegral equations display the elegant structure
of potential theory. We have found the sym-
metry and transpose symmetry properties for
the DBEM’s four kernel functions. Generally,
the matrices of kernel functions used in the
conventional BEM are asymmetric, and the
matrices of kernel functions U(s,x), T(s,x),
L(s,x), and M(s,x) used in the DBEM are sym-
metric.

The DBEM’s Integral Formulation

The electrostatic problem essentially consists of
finding the unknown potential function Φ (or V )
of a partial differential equation. In addition to
the fact that Φ satisfies Laplace’s equation within
a prescribed solution region D, Φ must satisfy
certain conditions on B, which is the boundary
of D. Usually these boundary conditions are the
Dirichlet (Φ (x) = f (x)) and Neumann (∂Φ(x)/∂nx
= g(x)) types. Therefore, we can write the gov-
erning equation (Equation 1) and boundary con-
ditions (Equations 2 and 3) of electrostatic prob-
lems as follows:

∇2 Φ(x) = 0, x in D (1)

Φ(x) = f (x), x on B (2)
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∂Φ(x)/∂nx = g(x), x on B , (3)

where f(x) and g(x) denote known boundary data,
and nx is the unit outer normal vector at the
point x on the boundary. 

Using Green’s identity, we can write the first
equation of the dual boundary integral formula-
tion for the domain point x as

2πΦ(x) = ∫ BT(s,x) Φ(s) dB(s) 
–∫B U(s,x) [∂Φ(s)/∂ns] dB(s) (4)

for the two-dimensional case; for the three-di-
mensional case, 4π must replace 2π. 

We devote the following derivations to the
two-dimensional case for simplicity. After tak-
ing the normal derivative of Equation 4 with re-
spect to the nx direction, we can derive the sec-
ond equation (hypersingular integral equation)
of the dual boundary integral equations for the
domain point x:

2π[∂Φ(x)/∂nx] = ∫B M(s, x) Φ(s) dB(s)
– ∫B L(s, x) [∂Φ(s)/∂ns] dB(s). (5)

In Equations 4 and 5,

U(s,x) = ln(r), (6)

T(s,x) = ∂U(s,x)/∂ns, (7)

L(s,x) = ∂U(s,x)/∂nx, (8)

and

M(s,x) = ∂2U(s,x)/∂nx∂ns, (9)

where r = s – x, s and x being position vectors
of the points s and x, respectively, and ns is the
unit outer normal vector at point s on the
boundary. In addition, U(s,x) is a fundamental
solution, T(s,x) is the directional derivative in
the ns direction of U(s,x), L(s,x) is the directional
derivative in the nx direction of U(s,x), and
M(s,x) is the directional derivative in the nx di-
rection of T(s,x). 

Equations 4 and 5 together are termed the
dual boundary integral formulation for the do-
main point. Table 1 shows the explicit forms of
the four kernel functions U(s,x), T(s,x), L(s,x),
and M(s,x). By tracing the domain point x to the
boundary, we can derive the dual boundary in-
tegral equations for the boundary point x:

αΦ(x) = CPV∫B T(s,x) Φ(s) dB(s) 
– RPV∫B U(s,x) [∂Φ(s)/∂ns] dB(s) (10)

α[∂Φ(x)/∂nx] = HPV∫B M(s,x) Φ(s) dB(s)
– CPV∫B L(s,x) [∂Φ(s)/∂ns]dB(s),

(11)

Table 1. The explicit forms of four kernel functions in dual integral equations.

Kernel function U(s,x) T(s,x) L(s,x) M(s,x)
Order of singularity Weak Strong Strong Hypersingular
Two-dimensional case ln(r) –yini/r

2 yin
–

i / r2 2yiyjnin
–

j / r4 – nin
–

i / r2

Three-dimensional case –1/r –yini/r
3 yin

–
i / r3 3yiyjnin

–
j / r5 – nin

–
i / r3

Remark r2 = yiyi ni = ni(s) n–i = ni(x) yi = xi – si
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Figure 1. Two types of microstrip lines: (a) stripline and (b) triplate line.



MAY/JUNE 2003 55

where RPV is the conventional Riemann or
Lebesque integral, CPV is the Cauchy principal
value, HPV is the Hadamard or Mangler prin-
cipal value,2 and α depends on the collocation
point (α = 2π for an interior point, α = π for a
smooth boundary, and α = 0 for an exterior
point). Equations 10 and 11 are called the dual
boundary integral formulation for the boundary
point—applying the normal derivative’s opera-
tor to Equation 10 derives Equation 11. 

Solving Electrostatic 
Problems with Degenerate : 
Boundaries How the DBEM Works

The development of solid-state microwaves and
systems has led to the widespread use of a form
of parallel-plate transmission lines called mi-
crostrip lines, or simply striplines. A stripline
usually consists of a dielectric substrate sitting
on a grounded conducting plane, with a thin
narrow metal strip on top of the substrate (see
Figure 1a).6

When the substrate has a high dielectric con-
stant, a transverse electromagnetic (TEM) ap-
proximation is reasonably satisfactory. Electric
field and magnetic field are perpendicular to each
other, and both are transverse to the direction of
propagation. It is a particular case of a TEM
wave. Not all the fields will be confined in the di-
electric substrate—some will stray from the top
strip into the region outside the strip, causing in-
terference in the neighboring circuits. 

One method to reduce the stray field of
striplines shown in Figure 1a is to have a
grounded conducting plane on both sides of the
dielectric substrate and to put the thin metal
strip in the middle (see Figure 1b).6 This
arrangement is known as a triplate line. Because
finding an exact analytical solution of the triplate
line in Figure 1b that satisfies all boundary con-
ditions is difficult, we can’t accurately simulate
the side-fringing effect. The thin metal strip ap-
pears as in Figure 1b, so a degenerate boundary
is formed in the BEM simulation.

For nondegenerate boundary problems, we
can use either the conventional BEM (the U(s,x)
and T(s,x) kernels of Equations 6 and 7 or the
L(s,x) and M(s,x) kernels of Equations 8 and 9)
or the DBEM (using all four kernels). But for
electrostatic problems with singularity from a
degenerate boundary (like in Figure 1b), the
DBEM plays an important and efficient role be-
cause we can’t use the conventional BEM with-
out artificial boundaries. 

To check the model’s validity, let’s look at a
simplified case study. Consider a strip conduc-
tor enclosed in a shielded box containing ho-
mogeneous medium (see Figure 2). If we as-
sume the TEM propagation mode, our
problem is reduced to finding V to satisfy
Laplace’s equation ∇2V = 0. Let’s determine the
electric potential distribution inside the
shielded box with the FEM and DBEM. Be-
cause obtaining analytical solutions via analyt-
ical methods is not easy, we used an FEM sim-
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Figure 2. Cross-section of strip transmission line. For efficient point-to-point transmission of power and
information, the source energy must be directed or guided. Parallel-plate transmission line is one of
the most common types of guiding structures that support TEM waves. This type of transmission line
consists of two parallel conducting plates separated by a dielectric slab of a uniform thickness.
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ulation to compare with the DBEM. 
To tackle such degenerate boundary prob-

lems, we used the dual integral formulations al-
ready presented in this article to solve the prob-
lem. For convenience, we assume the w, a, and
b values to be 5, 20, and 10, respectively. We
analyze the four points using rough mesh dis-
cretization (52 elements and 46 nodes; see Fig-
ure 3a) of the DBEM, and then we compare the
results with reference data computed from the

FEM (96 elements and 321 nodes; see Figure
3b). Table 2 lists the results of electric poten-
tial under diverse numerical methods; Figure 4
illustrates them. Comparing the results of the
electric potential field (equipotential lines) us-
ing the DBEM (Figure 4a) and the FEM (Fig-
ure 4b), we see that the difference of electric
potential distribution is small. Therefore, the
DBEM used here is efficient. 

Because the boundary condition in this case is

Figure 3. The (a) dual boundary element method (DBEM) mesh discretization of 52 elements and 46 nodes and the (b)
finite-element method (FEM) mesh discretization of 96 elements and 321 nodes.

Figure 4. The results of the electric potential field (equipotential lines) using (a) the DBEM and (b) the FEM. The voltage
value at the central area (red) is V0; near outside boundary (blue), it is zero.

Table 2. The results of electric potential under diverse numerical methods.

Locations Results from the Results from the Results from the Results from the Difference
(x,y) conventional direct BEM L,M DBEM U,T,L,M FEM between the 

BEM U,T kernels kernels kernels DBEM and the 
FEM (%)

(10.000, 3.75) N/A N/A 0.70048 V0 0.7104 V0 –1.396
(11.558, 3.75) N/A N/A 0.66288 V0 0.6742 V0 –1.679
(12.338, 1.25) N/A N/A 0.17862 V0 0.1863 V0 –4.122
(–3.25, –5.62) N/A N/A 0.39078 V0 0.4082 V0 –4.268

(a) (b)

(a) (b)
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symmetric, the flux distribution on both sides of
the strip conductor is continuous. Therefore, we
can obtain similar results to those listed in Table
2 from the conventional BEM, but the process
of simulation is much different. 

Consider a boundary B containing two parts:
the nondegenerate boundary S and the degen-
erate boundary C+ and C– as in Figure 5. For the
DBEM, we can calculate a closed contour
formed by two lines C+ and C– (see Figure 5) for
the degenerate boundary and the electric poten-
tial in just one run. For the conventional BEM,
we can only model the nondegenerate bound-

ary, and we have to calculate the electric poten-
tial in two runs to avoid the degenerate bound-
ary’s effect. For some electrostatic problems
without symmetric boundary condition, we
could use just the DBEM, but we would need a
subdomain technique with artificial boundaries
in the conventional BEM.

From the results of the electric potential
shown in Figure 4 and Table 2, we find that 

• the conventional BEM without artificial
boundaries cannot solve the electrostatic prob-
lem with degenerate boundary;
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Figure 5. Boundary element discretization for the degenerate and nondegenerate boundaries.
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Figure 6. (a) A classical problem of seepage flow with sheet piles under a dam; (b) the pressure on the
center plane under the dam.
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• the DBEM can analyze the electrostatic prob-
lem with degenerate boundaries efficiently;

• for the DBEM, the first set of kernels U(s,x)
and T(s,x) must be used simultaneously with
the second set, L(s,x) and M(s,x); and

• the differences between the FEM and DBEM
are smaller than 4.3 percent.

Besides electrostatic problems, the
DBEM is easily applicable to other ar-
eas with similar singular problems.
Jeng-Tzong Chen, Hong-Ki Hong,

and Shiang-Woei Chyuan, for example, have
used dual integral formulation to deal with
seepage problems.7 In civil engineering, sheet
piles or cut-off walls often occur because of
flow problems through porous media (see Fig-
ure 6). The singular behavior in such an exam-
ple is often ignored in numerical methods, with
the expectation that the error will be limited to
the singularity’s vicinity. However, the formu-
lation used must be capable of describing the
singular behavior when the singularity arises
from a degenerate boundary—for example, in
seepage problems in which the singularity
dominates the force exerted on the sheet piles.
Using the DBEM, Chen, Hong, and Chyuan
simulated four design cases of flow under a dam
(see Figure 6a).7 The results of pressure on the
center plane under the dam between the
DBEM and the FEM8 were almost the same
(see Figure 6b).

In addition to civil engineering, Chen and
Hong also successfully applied the DBEM in the
field of mechanical engineering.9 For the ther-
mal problem of heat conduction with singularity
from degenerate boundary, the DBEM is partic-
ularly suitable for the singular problem of ex-
tremely localized and concentrated heat flux.9

To develop kernel functions of the DBEM in
the future, researchers can extend the applica-
tion from the Laplace equation of electrostatic
problems to the Helmholtz equation of the elec-
tromagnetic wave.
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