
F
or the perfor-

mance of electron devices,
an accurate electrostatic
analysis is essential, and the

boundary element method (BEM) has become a better method
than the domain-type finite element method (FEM) because BEM can

provide a complete solution in terms of boundary values only with
substantial savings in modeling effort for the variable design stage. But, for

exterior problems with singularity arising from the degenerate boundary (e.g., the
edge of parallel-plate capacitor), the dual BEM becomes one of the most efficacious

and robust tools for simulating the fringing field near the edge of electron devices
because no laborious artificial boundary technique was needed like conventional BEM.
After the fringing field is known well, the charge and capacitance of electron devices can
be accurately calculated, and we can also understand the minimum allowable data of
dielectric strength for keeping off dielectric breakdown.

Electrostatics, as used here, involves charges in motion as well as at rest. Generally,
there are five fundamental quantities (voltage, charge, current, capacitance, and resis-
tance) in electrostatics that are involved in almost all applications. For most electrical

engineers, voltage, or electromotive force (EMF) is the most important one. Elec-
trostatic problems generally play a very important role in improving the perfor-

mance and reliability of electron devices in the design stage [1]. Although
we all understand that the beginning of electrostatic theory is believed

to have occurred several centuries before, the first meaningful
application, the commercially electrostatic precipitator,

was just installed by Cottrell in 1907 [2]. Be-
sides two major present technolo-

gies from 1907 to
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now, electrostatic precipitation and electrostatic coating, Cas-
tle also suggested that there would be several new industrial
applications to come from developments in the fields of micro-

electromechanical systems (MEMS), biotechnology, ultrafine
particles, nanotechnology, and space for the future applica-
tions of electrostatics [3]. Because electrostatics still affects
the performance of MEMS and electron devices critically
nowadays, how to accurately obtain the electric potential V
and electric field intensity E becomes especially important for
engineers. We all know that scientists and engineers usually
use several techniques in solving continuum or field prob-
lems. Loosely speaking, these techniques can be classified as
experimental, theoretical (or analytical), or numerical.

USING THE EXPERIMENTAL, THEORETICAL, OR
NUMERICAL METHOD TO MEET THE CASE

Among the aforementioned techniques, experimental method
can measure the actual data for the finished products, but it

cannot work really well in the design
stage because no given goods can be
used. In a word, experiments are expen-
sive, time consuming, sometimes haz-
ardous, and usually do not allow much
flexibility in parameter variation. There-
fore, designers and analysts must choose
theoretical or numerical models for
their needs. We all also understand that
theoretical models were the first choice
for researchers and scientists because of
totally correct and unique solutions.
Although the most satisfactory solution
of a field problem is an exact mathemati-
cal one, theoretical models were scarcely
utilized to predict physical response
because of the very complex geometrical
designs and loading transfer paths in
pragmatic design problems. In reality,
an analytical solution to an electrostatic
problem has only been possible for cer-

tain simple configurations and material properties, which are
represented by relatively simple models. 

For example, the development of solid-state microwave
devices and systems has led to the widespread use of a form of
parallel-plate transmission lines called microstrip lines or,
simply, striplines. Because the analytical results were based on
the assumption of two wide conducting plates (with negligible
fringing effect) of equal width, they are not expected to apply
exactly for variable designs. The analytical approximation is
closer only if the width of the metal strip is much greater than
the substrate thickness, because not all the fields will be con-
fined in the dielectric substrate: some will stray from the top
strip into the region outside of the strip, thus causing interfer-
ence in the neighboring circuits. As we see, an exact analytical
solution of the above-mentioned stripline satisfying all the
boundary conditions is difficult or nearly impossible, so effi-
cient numerical methods have to be used for the more com-
plex electron devices. So, our problem concerns what kind of
numerical method is valuable to recommend for researchers
and engineers in the field of electrostatics? 

1. A parallel-plate capacitor; voltage is the across variable
and current is the through variable.
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REVIEW AND COMPARISON
OF BEM AND FEM

Before recommending a robust method, let’s review diverse
computational techniques in electromagnetics (EM). From
scientific history, we find that most EM problems were solved
using the classical methods of separation of variables and inte-
gral equation solutions until the 1940s. Computational solu-
tion of electrical problems started in the mid-1960s with the
availability of modern high-speed digital computers. Since
then, scientists have expended effort on solving practical, com-
plex EM-related problems for which closed-form analytical
solutions are either intractable or not available. The numerical
approach has the advantage of allowing the actual work to be
carried out by operators without knowledge of higher mathe-
matics or physics, with a resulting economy of labor on the
part of the highly trained personnel. However, every numeri-
cal method [e.g., finite difference method (FDM), moment
methods (MoM), FEM, BEM, transmission-line-matrix method
(TLM), Monte Carlo method (MCM), etc.] used in EM, involves
an analytical simplification to the point where it is easy to
apply the numerical method [4]. Among diverse numerical
approaches, the FEM and BEM have today moved from being
research tools for select groups to become powerful design
tools for engineers, and those two numerical methods have
been regularly used in MEMS and EM.

As we see, the FEM, based on the representation and
approximate solution of boundary value problems of engi-
neering mathematics in terms of partial differential equations
[5], and the BEM, based on the integral equation, have moved
from being research tools for scientists to powerful design
tools for engineers [6]. One of the main advantages of BEM,
when compared to FEM, is that discretizations are restricted
only to the boundaries, making data generation much easier.
The BEM is also ideally suited to the analysis of external prob-
lems where domains extend to infinity, since discretizations
are confined to the internal boundaries with no need to trun-
cate the domain at a finite distance and impose artificial
boundary conditions and to problems involving some form of
discontinuity or singularity due to the use of singular funda-
mental solutions as test functions. It is also interesting to
point out that the unknowns in the BEM are a mixture of the
potential and its normal derivative, rather than the potential
only, as in FEM. This is a consequence of the BEM being a
“mixed” formulation and constitutes an important advantage
over the FEM. Especially for the design of electron devices
(e.g., variable gaps between upper movable and lower fixed
plates of parallel-plate capacitors), many laborious works of
finite element modeling compared with those of boundary
element model are needed because BEM can provide a com-
plete solution in terms of boundary values only, with substan-
tial saving in modeling effort. Therefore, there is no doubt
that BEM has been become a very appealing approach in
numerical simulation of MEMS and EM [7], even if many of
today’s engineers still use commercial packages and waste
much time to set up adverse FEM models in the design stage.
Following the review and comparison of diverse numerical

4. Commutativity of trace and differential operator.
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techniques, we will explain the reason for using the dual BEM
(DBEM) to take the place of the conventional BEM in the fol-
lowing section.

WHY USE DBEM
FOR EXTERIOR ELECTROSTATIC PROBLEMS

WITH SINGULARITY?
We all have known the suitability and superiority of BEM for
infinite field, but a more powerful method—DBEM will be
introduced in this article. Why? Because modern electron
device design usually contains very thin conducting plates for
MEMS and electron devices (e.g., a parallel-plate capacitor
shown in Figure 1), we will face the numerical singularity
arising from the degenerate boundary (The degenerate bound-
ary refers to a boundary, two portions of which approach each
other such that the exterior region between the two portions
becomes infinitely thin.) if using conventional BEM to simu-
late the fringing effect around the edge of electrostatic devices,
and the coincidence of the boundaries gives rise to an ill-con-
ditioned problem. In order to model this singularity and to
ensure a unique solution, we will use the inconvenient sub-
technique for degenerate boundary using the conventional
BEM. If the concerned domain was divided into different sub-
domains with artificial boundaries, new interfaces between
subdomains are formed. (Since the unknown pairs of {u1

f },
{u2

f }, {t1f } and {t2f } are introduced in the artificial boundary as
shown in Figure 2, two constraints of the continuity and equi-
librium conditions: {u1

f } = {u2
f } and {t1f } = −{t2f }, where uf is

the potential and tf is the normal derivative along the inter-
face boundary.) Because some new unknowns are introduced
in the artificial boundaries, new constraints of the continuity
and equilibrium conditions are necessary. But the main draw-

back of the technique is that the
deployment of artificial boundaries is
arbitrary and, thus, cannot be imple-
mented easily into an automatic proce-
dure. In addition, model creation is
more troublesome than in the single-
domain approach. Therefore, we
urgently need to search for another
efficient method to overcome this diffi-
culty for exterior electrostatic problem
with singularity.

In 1999, Chen et. al. proposed the
dual integral formulations to success-
fully tackle such degenerate boundary
problems [8]. Using the dual integral
formulations, all the above-mentioned
boundary value problems can be
solved efficiently in the original single
domain, and the fringing effect can be
modeled very well. That is why we rec-
ommend DBEM to analyze the exteri-
or electrostatic problems with
singularity caused by a degenerate
boundary. We have understood the
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7. The related DBEM mesh discretization
of the parallel-plate capacitor.

y
xO

8. The related FEM mesh discretization of the parallel-plate capacitor.

Table 1. The results of electric potential
of the parallel-plate capacitor

under diverse numerical methods.

V(x, y) from conventional
Locations BEM without artificial V(x, y) from V(x,y) from 
(x, y) boundary DBEM FEM Difference

(30.00, 20.00) N/A 0.11737V0 0.120966V0 –2.973%

(25.00, 15.00) N/A 0.13914V0 0.1444641V0 –3.685%

(20.00, 10.00) N/A 0.17050V0 0.1787659V0 –4.624%

(15.00,  4.50) N/A 0.20792V0 0.2255798V0 –4.268%

(10.00, 4.00) N/A 0.52458V0 0.5171448V0 –1.438%

(6.667, 7.00) N/A 0.58679V0 0.6054016V0 –3.074%

(3.333, 4.00) N/A 0.81123V0 0.8197266V0 –4.122%

(0.00, 7.00) N/A 0.67831V0 0.6879212V0 –1.037%

(0.00, 4.00) N/A 0.82767V0 0.8330323V0 –1.679%

(0.00, 10.00) N/A 0.56037V0 0.5717102V0 –0.644%

(30.00, 5.00) N/A 0.044234V0 0.046167V0 –4.187%

(25.00, 5.00) N/A 0.066191V0 0.06957398V0 –4.862%
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suitability of DBEM over conventional BEM while facing sin-
gularity. A brief introduction of DBEM will be introduced in
the following section.

BACKGROUND OF DBEM
FOR EXTERIOR ELECTROSTATIC PROBLEMS

For a homogeneous medium, we know that the governing
equation of electrostatics can be written in
the following form:

∇2 V = −ρ/ε, (1)

where ∇2 is the Laplacian operator. Pois-
son’s equation (1) states that the diver-
gence of the gradient of electric potential
V equals −ρ/ε for a simple medium,
where ε is the permittivity of the medium
and ρ is the volume density of free
charges. At points in a simple medium
where there is no free charge, (1) is
reduced to

∇2 V = 0, (2)

also known as Laplace’s equation, which
plays a very important role in MEMS and
EM. It is the governing equation for elec-
trostatic problems involving a set of con-
ductors, such as capacitors, maintained at
different potentials. Once V is found from
(2), E can be determined from −∇V, and
the charge distribution on the conductor
surfaces can be determined from surface-
charge density ρs = εEn, because the nor-
mal component of the electric field at a
conductor boundary is equal to the surface
charge density on the conductor divided
by the permittivity [1].

The electrostatic problem
consists of finding the
unknown potential function
� (or V) in the partial differ-
ential equation. In addition to
the fact that � satisfies (2)
within a prescribed solution
region �, the potential func-
tion � must satisfy certain
conditions on B, which is the
boundary of �. Usually, these
boundary conditions are the
Dirichlet and Neumann types.
Therefore, the governing
equation and boundary con-
ditions of electrostatic prob-
lems could be written in the
following form.

✦ Governing equation:

∇2�(x) = 0, x in � (3)

✦ Dirichlet boundary condition:

�(x) = f(x), x on B (4)

9. The results of electric potential field (equipotential lines) of the 
parallel- plate capacitor using DBEM (red: +V0; blue: −V0).

10. The results of electric potential field (equipotential lines)
of the parallel-plate capacitor using FEM (red: +V0; blue: −V0).

11. The distribution of normal electric field intensity (En) on the top side of
upper movable plate under diverse gaps design. (unit: V0/µm).
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✦ Neumann boundary condition:

∂�(x)/∂nx = g(x), x on B (5)

where f(x) and g(x) denote the known boundary
data, and nx is the unit outer normal vector at the
point x on the boundary. 

Based on the dual boundary integral equation formulation
[8], we have

α�(x) = CPV
∫

B T(s, x)�(s) dB(s)

− RPV
∫

B U(s, x)[∂�(s)/∂ns] dB(s) (6)

α[∂�(x)/∂nx] = HPV
∫

B M(s, x)�(s)dB(s)

− CPV
∫

B L(s, x)[∂�(s)/∂ns]dB(s),

(7)

where the kernel functions, U(s, x) = ln (r), T(s, x) = ∂U(s, x)/
∂ ns, L(s, x) = ∂U(s, x)/∂nx, M(s, x) = ∂2 U(s, x)/∂ nx∂ ns, r =
|s − x |, s and x being position vectors of the points s and x,
respectively, and ns is the unit outer normal vector at point
s on the boundary (see Figure 3). In addition, RPV is the
Riemann principal value, CPV is the Cauchy principal value,
HPV is the Hadamard principal value, and α depends on the
collocation point (α = 2π for an interior point, α = π for a
smooth boundary, and α = 0 for an exterior point). The
commutativity property of the trace operator and the normal
derivative operator provides us with alternative ways to calcu-
late the HPV analytically [8]. First, L’Hospital’s rule is
employed in the limiting process. Second, the normal deriva-
tive of the CPV should be taken carefully by using Leibnitz’
rule, and then the finite part can be obtained. The finite part
has been termed the HPV or Mangler’s principal value. In the
derivation of dual equations, two alternatives can be applied to
determine the HPV as shown in Figure 4. Generally, (6) is
called the singular boundary integral equation, and (7) is
called the hypersingular boundary integral equation.

The linear algebraic equations for an electrostatic problem
discretized from the dual boundary integral equations can be
written as

[
Ti

pq

]
{�q} = [Upq]{∂�/∂n}q (8)

[
Mi

pq

]
{�q} = [Lpq]{∂�/∂n}q (9)

where {�q} and {∂�/∂n}q are the boundary potential and flux,
and the subscripts p and q correspond to the labels of the col-
location point and integration element, respectively. The
influence coefficients of the four square matrices [U], [T], [L]
and [M] for interior exterior problem can be represented as

Ui
pq = RPV

∫
Bq U(sq, xp) dB(sq) (10)

T i
pq = −πδpq + CPV

∫
Bq T(sq, xp) dB(sq) (11)

Li
pq = πδpq + CPV

∫
Bq L(sq, xp) dB(sq) (12)

Mi
pq = HPV

∫
Bq M(sq, xp) dB(sq), (13)

where Bq denotes the qth element and δpq = 1 if p = q, other-
wise it is zero. Based on the matrix relations between the inte-
rior and exterior electrostatic problems, the technique for the
interior problem can be easily reintegrated. According to the
dependence of the out-normal vectors in these four kernel
functions for the interior and exterior electrostatic problems,
their relationship can be easily found: 

Ui
pq = Ue

pq (14)

Mi
pq = Me

pq (15)

Ti
pq = −Te

pq if p �= q ; Ti
pq = Te

pq if p = q (16)

Li
pq = −Le

pq if p �= q ; Li
pq = Le

pq if p = q. (17)

CASE STUDY: HOW DBEM WORKS
FOR PARALLEL-PLATE CAPACITORS?

In order to demonstrate the suitability and efficiency of
DBEM for solving the singularity arising from degenerate
boundaries, let’s use a typical parallel-plate capacitor. Basical-
ly, for the nondegenerate boundary problems, either conven-
tional BEM [just using the first kind kernels of U(s, x) and
T(s, x) or the second kind kernels of L(s, x) , M(s, x)] or
DBEM [using the first kind kernels of U(s, x), T(s, x) and the
second kind kernels of L(s, x), M(s, x) in the meantime] can
be used. But for the exterior electrostatic problems with
degenerate boundaries, as in the following case, DBEM plays
an important role, but conventional BEM without artificial
boundaries cannot be used.

Case Study
A parallel-plate capacitor consists of two parallel conducting
plates of length l separated by a uniform distance (or gap) d,
and two parallel plates maintained at potentials V0 and −V0 for
upper movable and lower fixed plates that form a parallel-plate
capacitor, as shown in Figure 5. Determine the electrostatic
field near the edge (see Figure 6). Because the gap d between
movable and fixed plates can play a very important role for the
capacitance C and charge Q of parallel-plate capacitors, also
investigate the effect of variable d. 

FEM Analysis
From Figures 5 and 6, as we see that there is an obvious fring-
ing effect near the edge of the capacitor, and the physical behav-
ior (e.g., electric potential and electric field intensity) of this
area is very complex. Therefore, the approximate results [1] in
which based on the assumption of two wide conducting plates
(with negligible fringing effect) could not be used to simulate
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the local response near the edge
of the capacitor. Because it is not
easy to obtain the accurate solu-
tions just using analytical meth-
ods, the FEM simulation [9] was
used to compare with the follow-
ing DBEM data. Due to exterior
fields, a huge finite-element
model must be set up to satisfy
the infinite prescribed boundary
condition and to obtain a reason-
able result.

DBEM Analysis
For convenience, the length l and
distance d of our parallel-plate
capacitor are assumed to be 20
and 2 µm separately, and 12
points will be analyzed using
rough mesh discretization (44 ele-
ments and 24 nodes, see Figure 7)
of DBEM and compared with ref-
erence data computed from a
huge FEM model (3,976 elements
and 12,120 nodes, see Figure 8).
Because many FEM models need
to be established for diverse gap
variation, FEM is not a good
choice for variable gaps between
these two metal plates, so we use
DBEM to perform the following
tasks since the discretizations of
DBEM are restricted only to the
boundaries, making data genera-
tion much easier than FEM. The
results of electric potential by way
of conventional BEM without arti-
ficial boundaries, DBEM, and
FEM were listed in Table 1 and
shown in Figures 9 and 10. Com-
paring the results of electric
potential field (equipotential
lines) using DBEM (see Figure 9)
and FEM (see Figure 10), we can
see that the difference of electric
potential distribution is very little.
Because fringing field action also
affects device parameters (e.g., the
threshold voltage, an important
design parameter, depends upon
the channel width and thick field
oxide extent [10]), The DBEM
used in this article is a very effi-
ciently numerical method for the
exterior electrostatic problems
with singularity.
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12. The distribution of normal electric field intensity (En) on the 
bottom side of upper movable plate under diverse gaps design. (unit: V0/µm).
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13. The distribution of normal electric field intensity (En) on the bottom side
of lower fixed plate under diverse gaps design. (unit: V0/µm).
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14. The distribution of normal electric field intensity (En) on the top side
of lower fixed plate under diverse gaps design. (unit: V0/µm).
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By way of DBEM, the distri-
bution of normal electric field
intensity En on the bottom and
top sides of the upper movable
plate under diverse values of d
were shown in Figures 11 and
12, respectively. From Figures
11 and 12, we can see that the
values of En on the bottom side
of the upper movable plate are
obviously dependent on the val-
ues of d and the location to the
left corner of metal plate locx,
but the En on the top side are
only obviously dependent on
locx not d. Similarly, the distri-
bution of En on the bottom and
top sides of the lower fixed plate
under diverse values of d were
shown in Figures 13 and 14,
respectively. From Figures 13
and 14, we also can see that the
values of En on the top side of
the lower fixed plate are still
obviously dependent on the val-
ues of d and locx, but the En on
the bottom side are only obvi-
ously dependent on locx, not d.
From Figures 11–14, we make
that the following interesing
observations:

✦ The values of En on the
edge of parallel-plate capac-
itor are much higher than
those on the middle part
because of fringing effect.

✦ The smaller the d is, the
larger the En is.

THE EFFECT OF GAP
VARIATION FOR CHARGE

AND CAPACITANCE
DISTRIBUTION

As we know, the value of d can
play a very important role; let’s
investigate the effect of gap
variation between upper mov-
able and lower fixed plates for
charge and capacitance distribu-
tion. Because the charge distri-
bution on the conductor
surfaces can be determined
from ρs = εEn (The normal
component of the electric field
En at a conductor boundary is
equal to the surface charge
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15. The distribution of surface charge density (ρs) of upper movable plate
under diverse gaps design. (unit: εV0/µm2).
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16. The distribution of surface charge density (ρs) of lower fixed plate
under diverse gaps design. (unit: εV0/µm2).
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17. The distribution of charge (Q) on both upper movable and lower fixed plates
under diverse gaps design. (unit: εwV0).
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density ρs on the conductor
divided by the permittivity ε
[1]) if ε is a constant. From
Figures 15 and 16, we can
see that the values of surface
charge density ρs on both the
upper movable and lower
fixed plates are obviously
dependent on the values of d
and locx. We know that the
fringing effect around the edge of parallel-plate capacitors is
as clear as day, like En. From these results, we can see the ρs

at the edges becomes much larger than that at the center for
parallel-plate capacitors because of fringing effect. If the
width of parallel-plate capacitors is w, the distribution of
charge Q on both upper movable and lower fixed plates
under diverse gaps design can be shown in Figure 17, where
we can see that the smaller the value of d is, the larger the Q
of the parallel-plate capacitor is.

Furthermore, we hope understand the relationship
between capacitance C of the parallel-plate capacitor and the
values of d. Let’s start this with a typical two-conductor capac-
itor first, which consists of two conductors separated by free
space or a dielectric medium. The conductors may be of arbi-
trary shapes, as shown in Figure 18. When a dc voltage source
is connected between the conductors, a charge transfer
occurs, resulting in a charge +Q one conductor and −Q on
the other. The value of C (C = Q/V12, where V12 is the differ-
ence of voltage between these two conductors) of a capacitor is
a physical property of the two-conductor system and depends
on the geometry of the conductors and on the permittivity of
the medium between them [1], [11]. If the fringing effect
around the edge of parallel-plate capacitor (see Figure 5) is
ignored for simplification, the analytical value of C for our
parallel-plate capacitor is 20 εw/d (=ε lw/d). By way of
DBEM, we can accurate the above-mentioned fringing effect to
obtain the distribution of ρs and Q for the parallel-plate capac-
itor under diverse d. Therefore, the numerical value of C for
our parallel-plate capacitor considering the fringing effect can
be shown in Figure 19, and the smaller the value of d is, the
larger the C of parallel-plate
capacitors is. By the way, the
increase of charge at the edges is
due to fringing action and gives
rise to fringing capacitances,
because the effect of fringing at
the edges of conductors can be
seen directly from the distribution
of charge on surfaces of conduc-
tors having edges. Furthermore,
we also can find the comparison of
capacitance between DBEM con-
sidering the fringing effect and
analytical method neglecting the
fringing effect under diverse gap
from Figure 20, where the larger

the value of d is, the larger
the difference between these
methods is. Therefore, the
influence of fringing effect
around the edge of parallel-
plate capacitor becomes more
significant as the value d of
becomes larger.

Finally, we can summarize
that

✦ Conventional BEM without artificial boundaries cannot
solve the exterior electrostatic problem with degenerate
boundaries like the edge of parallel-plate capacitors.
DBEM can analyze the exterior electrostatic problem
with degenerate boundary very efficiency, but the first
kind kernels of U(s, x), T(s, x) and the second kind ker-
nels of L(s, x), M(s, x) need to be used simultaneously.

✦ In estimating C of parallel-plate capacitors considering
the fringing field around the edge of conductors,
DBEM is very useful primarily because, in the
approach, one solves directly for the surface charges in
the conductors.

18. A typical two-conductor capacitor.

+Q
−Q

+

+

+

+
+ +

+

+
+

+

+ −

−
−−

−

−

−−
−
−

−

V12

19. The distribution of capacitance (C) of the parallel-plate capacitor under diverse gaps design (unit: εw).
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✦ The values of En on both the movable and lower fixed
plates are all obviously dependent on the values of d and
locx. We know that the fringing effect around the edge
of parallel-plate capacitors is apparent. 

✦ The values of ρs on both the upper movable and lower
fixed plates are also obviously dependent on the values of d
and locx. We also can see the ρs at the edges becomes
much larger than that at the center for parallel-plate
capacitors because of fringing effect. The smaller the value
of d is, the larger the Q of parallel-plate capacitors is.

✦ The smaller the value of d is, the larger the C of paral-
lel-plate capacitors is. The increase of charge at the
edges of the parallel-plate capacitor is due to fringing
action and gives rise to fringing capacitances. 

✦ The larger the value of d is, the larger the difference
between these methods is, and the influence of fringing
effect around the edge of parallel-plate capacitor becomes
more significant as the value d of becomes larger.

CONCLUSION AND RECOMMENDATION
As we know from the theory of electrostatics [1], the electric
field will cause small displacements of the bound charges in a
dielectric material, resulting in polarization. If the electric field
is very strong, it will pull electrons completely out of the
molecules. The electrons will accelerate under the influence of
the electric field, collide violently with the molecular lattice
structure, and cause permanent dislocations and damage in the
material. Then, the avalanche effect of ionization due to colli-
sions may occur, and the material will become conducting, and
large currents may result. This phenomenon is called a dielec-
tric breakdown, and the maximum electric field intensity that a
dielectric material can withstand without breakdown is the
dielectric strength of the material. So the accurate and efficient
modeling for fringing effect around the edge of electron devices
is very important for performance because we need to know the
minimum allowable data of dielectric strength for keeping off
dielectric breakdown. Therefore, the DBEM presented in this
article is an efficient tool for exterior electrostatic problems
with singularity arising from degenerate boundary.

In basic electrostatics, the formula for the capacitance of
parallel-plate capacitors is derived for the case that the spacing

between the electrodes is very small compared to the length or
width of the plates. However, when the separation is wide, the
formula for very small separation does not provide accurate
results because no fringing effect is considered (e.g., unequal
plates design [12]). Although many researchers have success-
fully used BEM for diverse applications in the field of EM and
MEMS [13]–[15], they still need use the indirect skill of artifi-
cial boundaries while facing the singularity. For electrical
engineering practices, since the major effort is model creation,
the DBEM—a more direct and easier method, free from the
development of an artificial boundary, has great potential for
industrial applications. Therefore, we strongly recommend our
DBEM for future variable design of electron devices since they
can save a lot of cost and time. 

Yunn-Shiuan Liao and Shiang-Woei Chyuan are with Nation-
al Taiwan University, Taipei, Taiwan, ROC. Jeng-Tzong Chen is
with National Taiwan Ocean University, Keelung, Taiwan,
ROC. E-mail: yeaing@iris.seed.net.tw.

REFERENCES
[1] D.K. Cheng, Field and Wave Elctromagnetics. Reading, MA: Addison-

Wesley, 1989.

[2] H.J. White, “Centenary of Frederick Gardner Cottrell,” J. Electrostat.,
vol. 4, pp. 1–34, Dec. 1997.

[3] G.S.P. Castle, “Industrial applications of electrostatics: The past, pre-
sent and future,” J. Electrostat., vol. 51–52, pp. 1–7, May 2001.

[4] M.N.O. Sadiku, Numerical Techniques in Electromagnetics. Boca
Raton, FL: CRC, 1992.

[5] J. Jin, The Finite Element Method in Electromagnetics. New York:
Wiley, 2002.

[6] M.H. Aliabadi, The Boundary Element Method. New York: Wiley, 2002.

[7] Y.S. Liao, S.W. Chyuan, and J.T. Chen, “An alternatively efficient
method (DBEM) for simulating the electrostatic field and levitating force
of a MEMS combdrive,” J. Micromech. Microeng., vol. 14, 
pp. 1258–1269, Aug. 2004.

[8] J.T. Chen and H.K. Hong, “Review of dual boundary element methods
with emphasis on hypersingular integrals and divergent series,” Trans.
ASME, J. Appl. Mech., vol. 52, no. 1, pp. 17–33, 1999.

[9] I-DEAS User’s Guide, Finite Element Modelin., SDRC, 1990.

[10] D.N. Pattanayak, J.G. Poksheva, R.W. Downing, and L.A. Akers, “Fring-
ing field effect in MOS devices,” IEEE Trans. Comp. Hybrids. Manufact.
Technol., vol. 5, pp. 127–131, Mar. 1982.

[11] H. Nishiyama and M. Nakamura, “Form and capacitance of parallel-
plate capacitors,” IEEE Trans. Comp. Packag. Manufact. Technol. A,
vol. 17, pp. 477–484, Sept. 1994.

[12] W. Lin, “Computation of the parallel-plate capacitor with symmetri-
cally placed unequal plates,” IEEE Trans. Microwave Theory Tech., vol.
33, pp. 800–807, Sept. 1985.

[13] J. Wiersig, “Boundary element method for resonances in dielectric
microcavities,” J. Opt. A: Pure Appl. Opt., vol. 5, pp. 53–60, Jan. 2003.

[14] W. Ye, S. Mukherjee, and N.C. MacDonald, “Optimal shape design of
an electrostatic comb drive in microelectromechanical systems,” IEEE J.
Microelectromech. Syst., vol. 7, pp. 16–26, Feb. 1998.

[15] S. Chakravorti and H. Steinbigler, “Boundary element studies on
insulator shape and electric field around HV insulators with or with-
out pollution,” IEEE Trans. Dielect. Elect. Insulation, vol. 7, pp.
167–176, Apr. 2000.

■ 34 IEEE CIRCUITS & DEVICES MAGAZINE  ■ SEPTEMBER/OCTOBER 2004

20. The difference of capacitance C of parallel-plate capacitor between
DBEM and analytical data.
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