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Abstract
The scattering of water waves by bottom-mounted vertical circular cylinders is solved by using the dual boundary 
element method. Both the nonuniqueness problems due to near-trapped mode and fictitious frequency are 
examined. The critical wave number for the near-trapped mode is numerically detected. It is found that 
near-trapped mode is a physical phenomenon and fictitious frequency stems from the numerical instability. The 
numerical oscillation near the fictitious frequency is observed by using BEM. The Burton and Miller approach is 
employed to deal with the problem of irregular frequencies. A numerical example of water wave-structure 
interaction by vertical circular cylinders was demonstrated to see the validity of the present formulation. 
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1. INTRODUCTION

For designing the offshore platforms mounted on the sea bed, such as oil platforms which consist of a number of 
legs, it is important to understand the interaction between the vertical cylinders and plane wave. For the problem 
of plane waves impinging on vertical cylinders, a closed-form solution of force on a single vertical cylinder was 
derived by MacCamy and Fuchs [1]. The similar analysis extended to two cylinders was investigated by Spring 
and Monkmeyer [2]. They used the addition theorem to analytically derive the scattered-wave solution. Not only 
equal size but also unequal size of the cylinders subject to the incident wave of arbitrary angle was analyzed. They 
claimed that their method is a direct approach, since they formulated the problem by using a linear algebraic 
system and the solution is obtained easily from a single matrix inversion. A different method presented by Twersky 
[3] is called the multiple-scattering approach. In his approach, he took one cylinder at a time and scattering 
coefficient was solved sequentially. Besides, the boundary conditions which they solved are also different. Simon 
[4] as well as McIver and Evans [5] proposed an approximate solution based on the assumption that the cylinders 
are widely spaced. Later, Linton and Evans [6] also used the same approximate method which proposed earlier by 
Spring and Monkmeyer [2]. The main contribution was to provide a simple formula for the potential on the 
surfaces of the cylinders which makes the computation of forces much more straightforward. However, their 
results of four cylinders [6] were incorrect and corrigendum was given in Linton and Evans [7], Chen, Lee and Lin 
[8]. 
Trapped modes and near-trapped modes appear in different fields, such as string vibration, hydraulic engineering, 
earthquake engineering, ocean engineering and physics as described below. 1 String vibratio A string 
vibration can be modeled by a wave equation. When this system is subject to an incident wave, the spring may 
have a near-trapped mode under a certain spring layout and incident wave number. 2 Hydraulic engineerin
In hydraulic engineering, certain harmonic waves may exist at a depth discontinuity, but are unable to propagate 
from shallow to deep water [9, 10]. This phenomenon also belongs to one kind of near-trapped modes. 3
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Earthquake engineerin In earthquake engineering, surface wave may seriously result in damage for structures. 
For a thin-layer inclusion in a half-space medium, trapped wave may be present, e.g., Love wave [11] or Stonely 
wave. 4 Ocean engineerin In ocean engineering, the construction of offshore platform is subjected to wave 
loads all the year. Duclos and Clèment [12] and Williams and Li [13] proposed a simplified model of linear theory 
to simulate the interaction between cylinders subject to the incident wave. In this analysis, a specific distance 
between cylinders in companion with a certain wave number may cause a near-trapped mode. Discussions on this 
topic will be addressed in this paper. 5 Quantum physic The trapped mode, previously mentioned, occurs in 
physics as well as engineering. The bound state in a square-well potential in quantum mechanics is another case of 
trapped modes. 
We will study the near-trapped mode by using dual boundary element approach. The near-trapped modes in 
physics were observed in a consistent way of other works [14]. The dual boundary integral equation approach was 
successfully employed to solve the scattering problems of plane wave[15], membrane with degenerate boundary 
[16] and vibration of plate [17 ]and membrane with multiple connected domain problems[18].  
By using the dual boundary element method to solve the water wave problem, two kinds of peaks for the resultant 
force on the cylinder versus the wave number are observed. One is the near-trapped modes, another is the irregular 
frequency. The existence of the irregular frequencies represents the drawback of the boundary integral equation 
method, Ohmatsu [19] presented a combined integral equation method (CIEM) which was similar to the 
CHIEF-block method for acoustics proposed by Wu and Seybert [20]. Many researchers on exterior acoustics also 
encountered the problem of the fictitious frequency. To the authors’ best knowledge, no paper simultaneously 
discussed the near-trapped mode in physics and fictitious frequency in mathematics. When near-trapped modes 
and fictitious frequencies both appear, how to recognize the source of nonuniqueness becomes an interesting and 
important issue. 
Regarding the fictitious frequency, two ideas of Burton and Miller (B&M) method [21] and CHIEF [22] approach, 
have been proposed to deal with this problem. The former one needs hypersingular formulation while the latter 
one may take risk once the CHIEF point falls in the node of corresponding interior modes. Based on the circulant 
properties and degenerate kernels, by using the CHIEF method [23], an analytical and numerical experiment in 
discrete system of a cylinder is achieved. Dokumaci [24] and Juhl [25] both pointed out that numerical oscillation 
becomes serious as the number of boundary elements increases. 
In this paper, we focus on the dual boundary element method to solve the scattering of water waves. Both the 
near-trapped mode (nonuniqueness in physics) and the fictitious frequency (nonuniqueness in mathematics) are 
addressed and extracted out in this paper by using the Burton and Miller method. In Section 2, we introduce the 
formulation of dual boundary integral equation for the Helmholtz problem. The formulation of Burton and Miller 
method is formulated in Section 3. An example is demonstrated in Section 4 for the near-trapped mode by using 
Burton and Miller method. 

2. Problem statement and integral formulation 

2.1 Problem statement 
Now we assume N vertical cylinders mounted at hz �� upward to the free surface as shown in Figure 1. The 
governing equation of the water wave problem is the Laplace equation 

Dzyxtzyx ���� ),,(,0);,,(2 , (1)

where 2�  and D are the Laplacian operator and the domain of interest, respectively, and ),,,( tzyx�  is the 
velocity potential which satisfies the boundary conditions of seabed, kinematic boundary condition at free surface 
and dynamic boundary condition at free surface as shown below: 
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in which g is the gravity acceleration, ),,( tyxH  is the free-surface elevation and )(tB  is the Bernoulli 
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constant. Based on the linear water wave theory and using the technique of separation variable for space and time, 
we have 

})(),(Re{),,,( tiezfyxtzyx 	
 ��� (5)
where
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in which 	  is the angular frequency, k represents the wave number and equals to 	  over wave speed, 
),,( tyxH  can be defined by 

}),(Re{),,( tieyxtyxH 	� �� (7)
where

),(),( yxAyx 
� � (8)
and A represents the amplitude of incident wave of angle �  as shown below: 
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Substituting Eq.(5) into Eq.(1), we have 
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Rigid cylinders yield the Neumann boundary conditions as shown below: 
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The dispersion relationship is 
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The dynamic pressure can be obtained by 
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The two components of the first-order force jX  on the jth cylinder are given by integrating the pressure over the 
circular boundary as shown below: 
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where aj denotes the radius of the jth cylinder. 

2.2 Dual boundary integral equations  
The integral equation for the domain point can be derived from the third Green’s identity, we have 

)()(),()()(),()(2 sdBstxsUsdBsuxsTxu
BB �� ��� , Dx� , (15)

)()(),()()(),()(2 sdBstxsLsdBsuxsMxt
BB �� ��� , Dx� , (16)

where s and x are the source and field points, respectively, D is the domain of interest, 
sn
sust

�
�

�
)()( , sn  and 

xn  denote the outward normal vectors at the source point s and field point x, respectively. The kernel function, 
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�� , is the fundamental solution which satisfies 

)(2),(2 sxxsU ��� �� , (17)

where )( sx ��  denotes the Dirac-delta function, )()()()1( kriYkrJkrH nnn ��  is the n-th order Hankel 

function of the first kind, nJ  is the n-th order Bessel function of the first kind, nY  is the n-th order Bessel 

function of the second kind, sxr �� , 12 ��i . The other kernel functions, T(s,x), L(s,x), and M(s,x), are 

defined by 
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By moving the field point to the boundary, Eqs.(15) and (16) reduce to 

)()(),(...)()(),(...)( sdBstxsUVPRsdBsuxsTVPCxu
BB �� ��� , Bx� , (21)

)()(),(...)()(),(...)( sdBstxsLVPCsdBsuxsMVPHxt
BB �� ��� , Bx� , (22)

where R.P.V., C.P.V. and H.P.V. denote the Riemann principal value (Riemann sum), Cauchy principal value and 
Hadamard principal value (or Hadamard finite part), respectively. Once the field point x locates outside the domain 

( cDx� ), we obtain the dual null-field integral equations as shown below 

)()(),()()(),(0 sdBstxsUsdBsuxsT
BB �� �� , cDx� , (23)

)()(),()()(),(0 sdBstxsLsdBsuxsM
BB �� �� , cDx� , (24)

where cD  is the complementary domain. Equations (15), (16), (23) and (24) are conventional formulations 
where the point can not be located on the real boundary. Singularity occurs and concept of principal values is 
required once Eqs.(21) and (22) are considered. The flux t(s) is the directional derivative of u(s) along the outer 
normal direction at s. For the interior point, t(x) is artificially defined. For example, 1)()( xsuxt ��� , if 

)0,1(�n  and 2)()( xxuxt ��� , if )1,0(�n  where ),( 21 xx  is the coordinate of the field point x.

3. BURTON AND MILLER METHOD 

Burton and Miller method combined the singular integral equation and its normal derivative (hypersingular 
integral equation) with an imaginary constant. This method was valid for all wave numbers. 
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4. ILLUSTRATIVE EXAMPLES 

We consider the water wave problem by an array of four bottom-mounted vertical rigid circular cylinders 
with the same radius a located at the vertices of a square (0, 0), (b, b), (2b, 0), (b, -b), as shown in Figure 
2. By considering the incident wave in the direction of 45 degrees Figure 3 show the free-surface elevation 
at point p versus the wave number by using the boundary element method and the Burton and Miller 
method, respectively. It’s interesting to find that two kinds of peak occur in the Figure 3. One kind of 
peak appears at the corresponding wave number which happens to be the zeros of Bessel function ( )nJ kr ,
e.g., 3.8317 ( 1,1J ), 5.1356 ( 2,1J ), 5.5201 ( 0,2J ) and 6.3802 ( 3,1J ), etc…. The other peak occurs at the 
wavenumber of k=4.082 which is physically-realizable as a near-trapped mode. Figure 3 also shows that 
the peak due to fictitious (irregular) frequency is suppressed to be smooth after using the Burton and 
Miller method, while the peak value still exists there. It’s explained that fictitious frequencies occur 
when we employ BEM to solve exterior Helmholtz problems. It belongs to numerical resonance instead 
of physical phenomenon. The maximum free-surface elevation amplitude is plotted in Figure 4. It agrees well 
with that of the plane wave BEM by Perrey-Debain et al. [26]. Figure 5 shows the forces in the direction of wave 
advance versus the wavenumber (ka). It can be found that the peak force on cylinders 1 and 3 is about 14 times 
force of an isolated cylinder at the wavenumber ka=4.082. This phenomenon is the physical ringing. The peak 
value due to the near-trapped mode is compared well with those of Evans and Porter [14]. Peak value 
due to the near-trapped mode (physics) and fictitious frequency (mathematics) are both observed in the 
present paper since BEM was utilized. Fictitious frequency is not present in the work of Evans and Porter 
[14] since they employed the Twersky’s method. 

Fig. 1 Problem statements of water waves with 
an array of vertical cylinders

Fig. 2 Interaction of an incident water wave with four 
cylinders

Fig. 3 Free-surface elevation versus wavenumbe by 
using the UT formulation and B & M

Fig. 4 Contour of the maximum free-surface elevation 
amplitude
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Fig.5 The force ratio in the direction of wave advance versus wavenumber

CONCLUSIONS 

In this paper, we applied a dual BEM for water wave scattering problems with four circular cylinders. Discussions 
on the physical phenomena of near-trapped mode as well as the numerical oscillation due to fictitious frequency in 
BEM were both addressed. The fictitious frequency is present and can be suppressed by using the Burton and 
Miller method. In the meanwhile, the peak due to the near-trapped mode also occurs and its value keeps a 
constant.
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