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ABSTRACT

In this paper, the available formulae for the curvature of plane curve are reviewed not only for the time-like but also for the space-like parameter
curve.Twoways todescribe the curve are proposed.One is the straightway toobtain theFrenet formula according to the given curve of parameter
form.The other is that we can construct the curve by solving the state equation of Frenet formula subject to the initial position, the initial tangent,
normal and binormal vectors, and the given radius of curvature and torsion constant. The remainder theorem of the matrix and the Cayley–
Hamilton theorem are both employed to solve the Frenet equation. We review the available formulae of the radius of curvature and examine
their equivalence. Through the Frenet formula, the relation among different expressions for the radius of curvature formulae can be linked.
Therefore, we can integrate the formulae in the engineering mathematics, calculus, mechanics of materials and dynamics. Besides, biproduct of
two new and simpler formulae and the available four formulae in the textbook of the radius of curvature yield the same radius of curvature for
the plane curve. Linkage of centrifugal force and radius of curvature is also addressed. A demonstrative example of the cycloid is given. Finally,
we use the two new formulae to obtain the radius of curvature for four curves, namely a circle. The equivalence is also proved. Animation for 2D
and 3D curves is also provided by using theMathematica software to demonstrate the validity of the present approach.
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1. INTRODUCTION
Curve theory in the differential geometry is a study of 3D curves
with an orthogonal frame. The Frenet formula is the governing
equation of the curve if the curvature and torsion constant are
given subject to the initial tangent, normal and binormal vectors.
Anote onnatural coordinates andFrenet frameswas studied [1].
Curvature along a curve, road and rail plays an important role in
mathematics, civil engineering and mechanical engineering. In
the textbook, one formula can be found in the engineeringmath-
ematics with the explicit formula of the curve Y = Y(X). Two
formulae for the curves in terms of time and space parameters
can alsobe found.Although all the formulae in termsof the space
parameter (arc length) look different, their equivalence must be
true. In proving the equivalence of the formulae, we fortunately
find two additional simpler formulae to determine the radius of
curvature. For the direct problem, we can construct the Frenet
formula according to the space-like parameter curve. For the in-
verse problem, we can construct the space-like parameter curve
according to the Frenet formula subject to the initial position,
the initial tangent, normal and binormal vectors, and the given
radius of curvature and torsional constant [2–4]. The solution
of state equation can be expressed in terms of the exponential of

a matrix [3, 5–8]. By employing the remainder theorem of the
matrix and the Cayley–Hamilton theorem, the space-like curve
canbeobtained after solving the state equationofFrenet formula
[2–4].Notonly the linkagebetween these formulae is addressed,
but also two new formulae are obtained. An illustrative example
of cycloid is given to show that the seven formulae yield the same
radius of curvature. Besides, animation is also provided by using
the Mathematica software. Centrifugal force plays an important
role in rigid-body dynamics of particles. How to determine the
centrifugal force by using the tangent velocity and the radius of
curvature is also addressed in this paper [9].
In this paper, two new formulae are proposed, according to

the Frenet formula, to determine the radius of curvature. The
Frenet formula is also applied to relate several different formu-
lae of radius of curvature for the plane curve in the textbook.
At last, the Mathematica software is employed to animate 2D
and 3D curves. The organization of this paper is as follows:
Section 2 reviews the available radius of curvature formulae for
the plane curve. Section 3 provides the equivalence of different
forms of the radius of curvature. A link of vector calculus and
dynamics is addressed. Section 4 shows an example of cycloid.
Section 4.1 constructs the space-like curve by solving the state
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Figure 1 Schematic diagram of a curve.

equation of Frenet formula for the inverse problem [10]. Sec-
tion 4.2 provides a spiral example (3D case). Section 5 provides
awebsite that readers can link to see the animation for a cycloid, a
circle and a spiral developed by theNTOU/MSV group. Finally,
conclusions are provided in Section 6.

2. REVIEW OF THE RADIUS OF CURVATURE
FOR A PLANE CURVE

2.1 Radius of curvature for the arc-length parameter curve
First, a space-like parameter curve is known as shown in Fig. 1.
The radius of curvature can be derived from the calculus as
follows:

ρ = ds
dθ

, (1)

where ρ is the radius of curvature, dθ is the infinitesimal radian
and ds is an infinitesimal arc length as shown in Fig. 1, which can
be written by the arc-length relationship of

(ds)2 = (dX )2 + (dY )2 + (dZ)2. (2)

Equation (2) is for the 3D case, while the arc length for the 2D
case is reduced to

(ds)2 = (dX )2 + (dY )2, (3)

where X and Y are the two components of the Cartesian coordi-
nates and Y = Y(X). The slope of the curve Y = Y(X) at (X,Y)
is

Y ′ = dY
dX

= tan θ. (4)

By differentiating the two sides of Eq. (4), we have

d
dθ

(
dY
dX

)
= dX

dθ
d
dX

(
dY
dX

)
= Y ′′ dX

dθ
(5)

and
d tan θ

dθ
= sec2 θ = 1 + tan2 θ = 1 + (Y ′)2. (6)

Thus, we have

Y ′′ dX
dθ

= 1 + (Y ′)2. (7)

Substitution of Eq. (3) into Eq. (1) yields

ρ =
√
1 + (Y ′)2

dX
dθ

. (8)

By substituting Eq. (7) into Eq. (8), we have

ρ =
√
1 + (Y ′)2

1 + (Y ′)2

Y ′′ = (1 + (Y ′)2)
3/2

Y ′′ . (9)

For the positive radius of curvature, we have

ρ =
(
1 + (Y ′)2

)3/2
|Y ′′| . (10)

This is the explicit formula of the radius of curvature derived
from the calculus.

2.2 Radius of curvature for time-like and space-like
parameter curves

We consider the parameter curve (X(t), Y(t)) as a function of
time, which is expressed as

X = X(t ) , Y = Y (t ) , Ẋ = dX
dt

, Ẏ = dY
dt

. (11)

By substituting Eq. (11) into Eq. (10), we have

ρ =
(
1 + Y ′2)3/2

|Y ′′| =
(
1 + (

Ẏ /Ẋ
)2)3/2

∣∣d (Ẏ/Ẋ
)
/dX

∣∣
=

(
1 + (

Ẏ /Ẋ
)2)3/2

|(dt/dX )[d(Ẏ /Ẋ )/dt]| =
(
Ẋ2 + Ẏ 2

)3/2∣∣ẊŸ − ẌẎ
∣∣ . (12)

This is the formula of radius of curvature in terms of the time-
like parameter, which is also the formula in the mechanics of
materials:

ρ =
(
Ẋ2 + Ẏ 2

)3/2∣∣ẊŸ − ẌẎ
∣∣ . (13)

If the arc-length parameter s is a function of the time-like param-
eter t, it can be expressed as

s = s (t ) , X(t ) = x (s) , Y (t ) = y (s) , (14)

where x and y are position functions in terms of the arc-length
parameter. By substituting the time parameter of Eq. (13) with
the arc-length parameter of Eq. (14), we have

ρ =
(
Ẋ2 + Ẏ 2

)3/2∣∣ẊŸ − ẌẎ
∣∣ =

[
ṡ2
(
x′2 + y′2

)]3/2
|ṡ3| ∣∣x′y′′ − x′′y′

∣∣
=
∣∣ṡ3∣∣ (x′2 + y′2

)3/2
|ṡ3| ∣∣x′y′′ − x′′y′

∣∣ =
(
x′2 + y′2

)3/2∣∣x′y′′ − x′′y′
∣∣ , (15)

where ṡ = ds/dt and

(x′2 + y′2)3/2 =
((

dx
ds

)2

+
(
dy
ds

)2
)3/2

=
((

ds
ds

)2
)3/2

= 1. (16)
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By substituting Eq. (16) into Eq. (15), an alternative and simple
formula is obtained:

ρ = 1∣∣x′y′′ − x′′y′
∣∣ . (17)

2.3 Derivation of the radius of curvature
using the Frenet formula

If the time-like parameter representation is changed to the space-
like parameter representation, we have

∼r = (X(t ) ,Y (t ) ,Z(t )) = (x (s) , y (s) , z (s)), (18)

where ∼r is the position vector. The tangent vector t is defined as

∼t = d∼r
ds

. (19)

The unit normal vector ∼ν should be orthogonal to ∼t , such that

∼ν = ∼t
′

|∼t ′|
, (20)

where ∼τ (s) is the unit tangent vector. According to Eq. (19), the
unit tangent vector can be expressed as

∼τ (s) = ∼r
′(s)

|∼r′(s)|
. (21)

By using the inner product of ∼τ (s) and ∼τ (s + ds), we have

∼τ (s) · ∼τ (s + ds) = |∼τ (s)||∼τ (s + ds)| cos(dθ ) = cos(dθ ).
(22)

Equation (22) can be written as

∼τ(s) · ∼τ(s + ds) = cos (dθ ) . (23)

By employing Taylor’s expansion of ∼τ (s + ds) at s, we have

∼τ(s) · ∼τ(s + ds) = ∼τ(s) ·
∞∑
n=0

∼τ
(n) (s)
n!

(ds)n (24)

and

cos (dθ ) = 1 − 1
2!
(dθ )2 + 1

4!
(dθ )4 − 1

6!
(dθ )6 + · · · .

(25)
According to the orthogonal property of ∼τ and ∼τ

′, we have

∼τ · ∼τ
′ = 0. (26)

According to Eq. (26) and submitting Eqs (24) and (25) into
Eq. (23), we could obtain

1 + 1
2∼τ(s) · ∼τ

′′(s) (ds)2 = 1 − 1
2
(dθ )2. (27)

Equation (27) is reduced to

∼τ(s) · ∼τ
′′(s) (ds)2 = −(dθ )2. (28)

By differentiating Eq. (26), we have

∼τ · ∼τ
′′ = −∼τ

′ · ∼τ
′. (29)

By substituting Eq. (29) into Eq. (27), we have

−∼τ
′ · ∼τ

′(ds)2 = −(dθ )2. (30)

Substitution of Eq. (1) into Eq. (30) yields(
ds
dθ

)2

= 1
|∼τ ′|2 . (31)

According to ρ dθ = ds, Eq. (31) yields

ρ = 1∣∣
∼τ

′∣∣ . (32)

From Eq. (32), the radius of curvature is obtained as shown
below:

ρ = 1∣∣
∼τ

′∣∣= 1√
(x′′)2 + (y′′)2 + (z′′)2

. (33)

Then, the radius of curvature for the 3D case [Eq. (33)] is re-
duced to the 2D result:

ρ = 1√
(x′′)2 + (y′′)2

. (34)

In the literature [9, 10], the Frenet formula for the 3D curve is
given below:⎛

⎝∼τ
′

∼ν
′

∼β
′

⎞
⎠ =

⎛
⎝ 0 1

ρ
0

− 1
ρ

0 1
σ

0 − 1
σ

0

⎞
⎠
⎛
⎝∼τ

∼ν

∼β

⎞
⎠ , (35)

where ∼β is the binormal vector and is defined as ∼β = ∼τ ×
∼ν, and σ is the torsion constant and can be determined by
σ = 1/|∼β ′|.

3. EQUIVALENCE OF THE DIFFERENT
FORMULAE OF RADIUS OF CURVATURE

3.1 Frenet formula
Although Eq. (34) derived by the Frenet equation and Eq. (17)
derived from the radius of curvature of mechanics of material
are both expressed by using the space-like (arc-length) parame-
ter, they look different.However, the result should be equivalent.
We will prove the equivalence by using two methods as shown
below.

Method I:
By employing the Frenet formula, we have

1
|x′y′′ − x′′y′| = 1

|∼τ × ∼τ
′| = 1

|∼τ ||∼τ ′| sin(π/2)

= 1
|∼τ ′| = 1

(1/ρ)|∼v|
= 1

1/ρ
= ρ, (36)

where the unit tangent vector ∼τ = (x′, y′). Then, Eq. (34) can
be derived as

1√
(x′′)2 + (y′′)2

= 1
|∼τ ′| = 1

(1/ρ)|∼v|
= 1

1/ρ
= ρ, (37)

where ∼τ
′ = (x′′, y′′). By using the Frenet formula, Eqs (17)

and (34) are proved to be equivalent.
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Method II:
Since x(s) and y(s) represent the space-like (arc-length) param-
eter curve, we have

(x′)2 + (y′)2 = 1. (38)

By differentiating both sides of Eq. (38) with respect to s, we
have

2x′x′′ + 2y′y′′ = 0. (39)

We can assume the proportional relation from Eq. (39) to have

y′′

−x′ = x′′

y′
= k, (40)

where k is a proportional function. Equation (40) yields

y′′ = −kx′, x′′ = ky′. (41)

By substituting Eq. (41) into Eqs (17) and (34), respectively, we
have

1∣∣x′y′′ − x′′y′
∣∣ = 1∣∣x′(−k)x′ − ky′y′

∣∣
= 1

|k| ∣∣(x′)2 + (y′)2
∣∣ = 1

|k| (42)

and
1√

(x′′)2 + (y′′)2
= 1√

k2(x′)2 + k2(y′)2

= 1

|k|
√
(x′)2 + (y′)2

= 1
|k| . (43)

The equivalence of Eqs (17) and (34) can be proved by us-
ing Eqs (42) and (43) after setting |k| = 1/ρ, respectively. In
other words, the proportional function is the curvature, which is
the inverse of radius, ρ. It also indicates that Eq. (40) presents
two simpler formulae for the radius of curvature. From Eq. (42)
or Eq. (43), we have

ρ = 1
|k| . (44)

On the basis of the arc-length expression, the two new and
neat formulae for the radius of curvature can be derived from
Eqs (40) and (44) as

ρ =
∣∣∣∣ x′

y′′

∣∣∣∣ (45)

and

ρ =
∣∣∣∣ y′x′′

∣∣∣∣ . (46)

3.2 Dynamics andmechanics ofmaterials
When a curve is expressed as a time-like parameter model, its
position vector can be expressed as

∼r(t ) = X(t ) ∼i + Y (t )
∼
j. (47)

Its tangent velocity vector is

∼V(t ) = d∼r (t )
dt

= Ẋ(t ) ∼i + Ẏ (t )
∼
j, (48)

where ∼V (t ) is the tangent velocity vector, and the speed function
V0 can be expressed as

V0 = ds
dt

. (49)

The unit tangent vector ∼et can be expressed as

∼et = ∼V
V0

=
Ẋ∼i + Ẏ

∼
j

√
Ẋ2 + Ẏ 2

. (50)

The unit normal vector ∼en is

∼en =
Ẏ ∼i − Ẋ

∼
j

√
Ẋ2 + Ẏ 2

. (51)

According to the vector calculus, the acceleration ∼a can be ex-
pressed as

∼a (t ) = d2∼r (t )
dt2

= Ẍ∼i + Ÿ
∼
j. (52)

By decomposing into tangent and normal components, we have

∼a = d
dt ∼V (t ) = V̇0∼et +V0

(
d
dt ∼et

)
(53)

and

d
dt ∼et = d∼et

ds
ds
dt

=
(

∼en
ρ

)
V0. (54)

Equation (53) can be written as

∼a = V̇0∼et +
V02

ρ ∼en. (55)

The magnitude of normal acceleration is

V02

ρ
= ∼a · ∼en. (56)

According to the dynamics, we have

ρ = V 2
0

∼a · ∼en
=
(
Ẏ + Ẋ

)3/2
√
ẌẎ − ẊŸ

. (57)

Equation (57) illustrates the equivalence of the formula in dy-
namics and mechanics of materials of Eq. (12). In summary, it
can be seen that the formula of the radius of curvature is equiva-
lent as shown in Fig. 2.

4. A CYCLOID EXAMPLE (2D CASE)
We verify the new formulae, Eqs (45) and (46), and compare
with Eqs (17) and (34) by a cycloid example (see Fig. 3). The
time-like parameter curve is expressed as follows:{

X(t ) = t − sin t,
Y (t ) = 1 − cos t . (58)
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Figure 2 Linkage of different formulae for the radius of curvature.

Figure 3 A cycloid of ρ(s) = √
8s − s2, 0 ≤ s ≤ 8, subject to the initial position (X(t), Y(t))= (0, 0), the initial normal vector

∼τ (0) = (0, 1) and the initial binormal vector ∼ν(0) = (1, 0).

According toEq. (3), the relationshipbetween the arc length and
the time can be expressed as follows:

s =
∫ √(

dX
dt

)2

+
(
dY
dt

)2

dt = −4 cos
(
t
2

)
+ c. (59)

If the initial condition s = 0 is corresponding to t = 0,
we have c = 4. The arc-length parameter description for the
cycloid is expressed as{

x(s) = 2 cos−1
( 4−s

4

)− sin
(
2 cos−1

( 4−s
4

))
,

y(s) = 1 − cos
(
2 cos−1

( 4−s
4

))
.

(60)

Now, we go through the four formulae of the arc parameter for
the radius of curvature. By using Eq. (17), we can obtain the ra-
dius of curvature as

ρ(s) = 1∣∣x′y′′ − x′′y′
∣∣

= 1∣∣∣[(4−s)2/16
√
8s−s2

]
+
[
(8s−s2) /16

√
8s−s2

]∣∣∣
=
√
8s − s2. (61)

D
ow

nloaded from
 https://academ

ic.oup.com
/jom

/article/doi/10.1093/jom
/ufab014/6311843 by N

ational Taiw
an O

cean U
niversity user on 03 July 2021



Construction of a curve by using the state equation of Frenet formula • 459

According to Eq. (34), we obtain the radius of curvature as

ρ(s) = 1√
x′′2 + y′′2

= 1∣∣∣√[(16 − 8s + s2) /16 (8s − s2)] + (1/16)
∣∣∣

=
√
8s − s2. (62)

Based on Eqs (45) and (46), we obtain the same radius of cur-
vature as

ρ(s) =
∣∣∣∣ x′

y′′

∣∣∣∣ =
∣∣∣∣∣
(
8s − s2

)
/4

√
8s − s2

−1/4

∣∣∣∣∣ =
√
8s − s2 (63)

and

ρ(s) =
∣∣∣∣ y′x′′

∣∣∣∣ =
∣∣∣∣ (4 − s) /4
(4 − s) /4

√
8s − s2

∣∣∣∣ =
√
8s − s2. (64)

The two new formulae of radius of curvature for the cycloid in
termsof the arc-parameter representation are consistentwith the
formulae of radius of curvature of Frenet andmechanics ofmate-
rial. This verifies the correctness of the new formulae of radius of
curvature. In total, seven formulae yield the same radius of curva-
ture as shown in Table 1 for four curves, i.e. a circle, a cycloid, an
astroid and a cardioid. Here, we also give an alternative formula
ρ = (1+ (x′)2)3/2/x′′ if x= x(y) is given instead of y= y(x).

4.1 Construction of the space-like parameter curve
using the Frenet formula (2D case)

Although we can straightforwardly obtain the radius of curva-
ture ρ(s) from the time parameter curve of Eq. (58), we intend
to solve the Frenet equation to reconstruct the arc-length param-
eter curve. We use the remainder theorem of the matrix to solve
the state equation: {

∼τ
′

∼ν
′

}
= [A (s)]

{
∼τ

∼ν

}
, (65)

subject to the initial condition, ∼τ (0) = (0, 1), ∼ν(0) = (1, 0)
and

[A(s)] =
[

0 1
ρ(s)

− 1
ρ(s) 0

]
. (66)

It could be easily obtained that the eigenvalues of the state ma-
trix, [A(s)], are i/ρ(s) and −i/ρ(s). The curve of cycloid is
shown in Fig. 3 and its radius of curvature is arc-length depen-
dent: ρ(s) = √

8s − s2, 0 ≤ s ≤ 8. Equation (66) is a state
equation for (∼τ, ∼ν)

T. The state solution is obtained by{
∼τ (s)
∼ν(s)

}
= exp

∫ s
0 [A(w)]dw

{
∼τ (0)
∼ν (0)

}
. (67)

According to the remainder theoremof the functionof real num-
ber and the eigenvalue functions of [A(s)], the corresponding
exponential function is shown below:

eus =
(
u2 + 1

ρ2

)
Q (u) + p(s)

(
u − i

ρ

)
+ q(s), (68)

where i is the imaginary unit. If ρ is not a function of arc length,
i.e. the statematrix is a constantmatrix, then thematrix function
could be expressed as

e[u]s =
(
[u]2 + 1

ρ2

)
Q ([u]) + p (s)

(
[u] − i

ρ

)
+ q(s) .

(69)
If u is a function of arc length, then we have

e
∫ s
0 u(w)dw =

(
u2 (s) + 1

ρ2 (s)

)
Q (u(s))

+ p (s)
(
u (s) − i

ρ (s)

)
+ q (s) . (70)

By using the remainder theorem of the matrix, we can express
the matrix function of e

∫ s
0 [A(w)]dw as

e
∫
[A(s)]ds =

(
[A (s)]2 +

(
1

ρ (s)
[I]
)2
)
Q (A (s))

+ p (s)
(
[A (s)] − i

ρ (s)
[I]
)

+ q (s) [I] ,

(71)

where [I] is the identity matrix. The two functions, p(s) and
q(s), can be obtained by way of Eq. (70) as

p (s) = 8s − s2

4
, q (s) = 4 − s

4
+ i

√
8s − s2

4
. (72)

By introducing the Cayley–Hamilton theorem into Eq. (71), we
have

e
∫ s
0 [A(w)]dw = p (s)

(
[A (s)] − [I]

ρ (s)
i
)

+ q (s) [I]

=
⎡
⎣− p(s)

ρ(s) i
p(s)
ρ(s)

− p(s)
ρ(s) − p(s)

ρ(s) i

⎤
⎦+

[
q (s) 0
0 q (s)

]
.

(73)

By substituting p(s) and q(s) of Eq. (72) into Eq. (73), we have

e
∫ s
0 [A(w)]dw =

⎡
⎣ 4−s

4

√
8s−s2
4

−
√
8s−s2
4

4−s
4

⎤
⎦ . (74)

Therefore, we obtain

∼τ (s) =
(√

8s − s2

4
,
4 − s
4

)
. (75)

By integrating ∼τ (s), we have{
x (s) = 2 cos−1

( 4−s
4

)− (4−s)
√
8s−s2

8 ,

y (s) = 8s−s2
8 ,

(76)

subject to the initial position of (X(t), Y(t)) = (0, 0). By em-
ploying Eq. (59), Eq. (76) can be replaced by using the time-like
parameter model: {

X(t ) = t − sin t,
Y(t ) = 1 − cos t . (77)
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This method of determining the space-like parameter curve
with the nonconstant coefficient matrix uses the remainder the-
orem for the matrix. We use the matrix function, the matrix
remainder theorem and the Cayley–Hamilton theorem of ma-
trix. The analytical solution for the space-like parameter curve is
obtained.
All the different formulae of radius of curvature in the text-

book and two new formulae agree well. In Table 1, we ver-
ify the consistency of the seven formulae by using a circle, an
astroid, a cardioid and a cycloid. Besides, the equivalence of
each formula is proved. Finally, animation with the position vec-
tor (∼r), the unit tangent vector (∼τ) and the unit normal vec-
tor (∼ν) is also implemented. In Table 2, the details for con-
structing the curves of cycloid are given by using the Frenet
formula.

4.2 A spiral example (3D case)
Here, we give a 3D spiral as an example. The governing equation
of curve for Frenet formula is given as shown below:

∼S
′ = [A] ∼S, (78)

where

∼S
′ =

⎧⎨
⎩

∼τ
′ (s)

∼ν
′ (s)

∼β
′ (s)

⎫⎬
⎭ , [A] =

⎡
⎣ 0 1

2 0
− 1

2 0 1
2

0 − 1
2 0

⎤
⎦ ,

∼S =
⎧⎨
⎩

∼τ (s)
∼ν (s)
∼β (s)

⎫⎬
⎭ .

Here, [A] is a constant matrix instead of a nonconstant matrix in
a cycloid. The initial position is given by⎧⎨

⎩
x (0) = −1,
y (0) = 0,
z (0) = 0.

(79)

The initial tangent, normal and binormal vectors are⎧⎪⎪⎨
⎪⎪⎩

∼τ (0) =
(
0, 1√

2
, 1√

2

)
,

∼ν(0) = (1, 0, 0) ,

∼β(0) =
(
0, − 1√

2
, 1√

2

)
,

(80)

respectively. The state vector of ∼X can be obtained as

∼X = e[A]s

⎧⎨
⎩

∼τ (0)
∼ν(0)
∼β(0)

⎫⎬
⎭ , (81)

where e[A]s is obtained by employing the similar transformation
as shown below:

e[A]s =

⎡
⎢⎢⎣

−1 −1 1

−i
√
2 i

√
2 0

1 1 1

⎤
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e(i/

√
2)s 0 0

0 e(i/
√
2)s 0

0 0 e(i/
√
2)s

⎤
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−1
4

i
2
√
2

1
4

−1
4

−i
2
√
2

1
4

1
2 0 1

2

⎤
⎥⎥⎦ . (82)

Equation (82) yields

e[A]s =

⎡
⎢⎢⎢⎢⎣
cos2

(
s

2
√
2

)
sin(s/

√
2)√

2
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s

2
√
2

)
− sin(s/

√
2)√

2
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s√
2
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√
2)√

2

sin2
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s
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√
2)√

2
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s

2
√
2

)

⎤
⎥⎥⎥⎥⎦ . (83)

Equation (83) can also be derived by using the remainder theo-
rem of the matrix and the Cayley–Hamilton theorem. By substi-
tuting Eqs (80) and (83) into Eq. (81), we have
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After rearranging, we have

∼X =
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⎩
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∼ν(s)
∼β(s)
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⎭ =
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.

(85)

By integrating ∼τ (s) in Eq. (85) to obtain (x(s), y(s), z(s)), we
have

x(s) =
∫ sin

(
s/

√
2
)

√
2

ds = − cos
(

s√
2

)
+ c1, (86)

y (s) =
∫ cos

(
s/

√
2
)

√
2

ds = sin
(

s√
2

)
+ c2, (87)

z (s) =
∫

1√
2
ds = s√

2
+ c3. (88)

By substituting Eqs (86)–(88) into the initial position of Eq.
(79), we have c1 = c2 = c3 = 0. Therefore, the space-like de-
scription curve (one length) (x(s), y(s), z(s)) yields

(x (s) , y (s) , z (s)) =
(

− cos
(

s√
2

)
, sin

(
s√
2

)
,

s√
2

)
.

(89)
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Figure 4 Animation of the cycloid curve in each step by the space-like parameter.

5. ANIMATION
To view the trajectory of curves, the animation for a circle (2D),
a cycloid and a spiral curve (3D) is performed as shown at the
website. Since the article is presented in a paper form, the ani-
mation action is disassembled as piecewisely shown in Fig. 4 for
the 2D cycloid. Figure 5 shows the 3D spiral curve step by step.
The animation can be found at the following website.

Cycloid by Y.T. Chou:
http://msvlab.hre.ntou.edu.tw/univ/cycloid.avi.
Circle by Y.H. Shih:
http://msvlab.hre.ntou.edu.tw/univ/track%202D%20change.
avi
Spiral curve by J.H. Dai: http://msvlab.hre.ntou.edu.tw/univ/
track%203D%20change.avi.

6. CONCLUSIONS
In this paper, the Frenet formula was used to successfully link
all the different formulae of radius of curvature for the 2D curve
in the textbook. According to the Frenet formula, two new and
simpler expressions of the radius of curvaturewerederived. Illus-
trative examples of a cycloid, a circle, an astroid and a cardioid
were given to show the same radius using the seven formulae.
In addition, the initial conditions (position, normal, binormal
and tangent vectors) and the given radius of curvature were used
to construct the space-like parameter curve by solving the state
equation of Frenet formula. A cycloid was used as an example to
provide a reference for teachers and students in the engineering
field. By solving the state equationof Frenet formula, another 3D
spiral curve was demonstrated to obtain the curve. Finally, the
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Figure 5 Animation of the spiral curve in each step by the space-like parameter.

animation was also provided for a circle, a cycloid and a spiral
curve by using theMathematica software.
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