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ABSTRACT

In this paper, an analytical approach for deriving the Green’s function of circular and annular plate was
presented. Null-field integral equations were employed to solve the plate problems while kernel func-
tions were expanded to degenerate kernels. The unknown boundary data of the displacement, slope,
normal moment and effective shear force were expressed in terms of Fourier series. It was noticed that
all the improper integrals were avoided when the degenerate kernels were used. After determining the
unknown Fourier coefficients, the displacement, slope, normal moment and effective shear force of the
plate could be obtained by using the boundary integral equations. The present approach was seen as an
“analytical” approach for a series solution. Finally, several analytical solutions were obtained. To see
the validity of the present method, FEM solutions using ABAQUS were compared well with our analytical

solutions.
presented.

The displacement, radial moment and shear variations of radial and angular positions were

Keywords : Green’s function, Null-field integral equation, Degenerate kernel, Fourier series.

1. INTRODUCTION

Green’s functions play an important role in solving
numerous problems in mechanics. It is the basic tool
of many numerical and analytical techniques, e.g.,
boundary element methods and integral equation meth-
ods. Green’s functions were widely used for the
qualitative analysis of initial and boundary value prob-
lems for equations of all the standard (elliptic, parabolic
and hyperbolic) types in mathematical physics. Boley
proposed an iterated form to obtain the analytical
Green’s function [1]. Wang and Sudak [2] derived
two-dimensional anti-plane time-harmonic Green’s
functions for a circular inclusion with an imperfect in-
terface. Time-harmonic Green’s functions can be ap-
plied to formulate the boundary integral equations for
the time-harmonic problems, and can also be employed
to investigate the dynamic Eshelby problem and scat-
tering problems in elastodynamics. Several techniques
had earlier been developed and could be successfully
utilized for computing Green’s functions for a certain
class of multiply-connected regions. Timoshenko and
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Woinowsky-Krieger [3] also treated the circular plate
problems in their books. In the Melnikov’s paper [4],
a semi-analytical approach was applied to construct
Green’s functions and matrices of Green’s type for the
Laplace and Klein-Gordon equations in two dimensions.
Mixed boundary value problems posed in multiply-
connected regions were also concerned by Melnikov [5].
Melnikov [6] also investigated the Green’s function of
plate problems. A Green’s function of the biharmonic
equation that can model bending of a thin plate is usu-
ally referred to as its influence function in elasticity.
Recently, Sharafutdinov [7] had considered the prob-
lems of an annular plate subject to a concentrated load
along its edges using functions of a complex variable.
In the recent years, the Green’s function of an isotropic
annular plate clamped along one edge and free at the
other was solved by Adewale [8]. Following the suc-
cess of null-field integral formulation for typical BVPs
[9-11], the present paper provides an analytical ap-
proach by using null-field integral equations in con-
junction with Fourier series and degenerate kernels to
derive the Green’s functions of circular and annular
plates.
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2. A UNIFIED FORMULATION FOR THE
GREEN’S FUNCTION OF NULL-FIELD
INTEGRAL EQUATION APPROACH

2.1 Problem Statement for a Thin Plate

Considering a Kirchhoff plate for the two-
dimensional domain under the concentrated load, the
governing equation is written as follows:

V“G(x,q):w , XeQ, (1)

where G(x, ¢) is the Green’s function and can be seen as
the displacement at x due to a concentrated load at C,
d(x—C) denotes the Dirac-delta function of source at ¢,
Q is the domain of the thin plate and D is the flexural
rigidity of the plate which is expressed as

Eh?
D= 20" 2

in which E is the Young’s modulus, v denotes the Pois-
son ratio, and h is the plate thickness. In order to em-
ploy the Rayleigh-Green identity [9], we need two sys-
tems, u(x) and v(x). We choose G(x, ¢) as u(x) and the
fundamental solution U(s, x) as v(x). The fundamental
solution satisfies

VAU (s, %) =8md(s —x) , (3)
where
U(s, x)=r’Inr, (4)

in which r is the distance between the source point s and
the field point x(r = |[x —s|).  After exchanging with the
variables x and s, we have four boundary integral equa-
tions as shown in the next section.

2.2 Conventional and present null-field boundary
integral formulation

The conventional boundary integral equations for the
domain point can be derived from the Rayleigh-Green
identity [9] as shown below:

81G(C, X) :—IBU(S, x) K, s[G(s,£)] dB(s)
+jB®(s, X) K, s[G(s, €)1 dB(s)
[ M (s, %) Ky L[G(s, €)1 dB(s)

+[ V(s %) GGs, €) dB(s)
+UE x), xeQ (%)

60

8K, ,[G(C, 0] == Ua(s, %) K, o[G(s, 0)] dB(s)
+{ 04(s, %) Ky, .[G(s, Q1 dB(s)
_IB Mo (s, X) Ko 4[G(s, )] dB(s)

+ij9(3, X) G(s, ¢) dB(s)
+Ue(C, X), xeQ ©)

81Ky, [G(C, W] =~ Un(s, ) K, ,[G(s, )] dB(S)
+[,0n(s, %) Ky S[G(s, €)1 dB(s)
= [ M (s, %) Ky ([G(s, ©)]dB(s)

+[ Vi(s, %) G(s, €) dB(s)
+U, (@ x), xeQ (7

81K, . [G(C, 1=—[ U,(s, %) K, [G(s, )] dB(s)
+[,0,(5, %) Ky S[G(s, ©)] dB(s)
[ My(s, %) Ky o[G(s, ©)10B(S)

+vav(s, x) G(s, ) dB(s)
0,60, xeQ ®

where B is the boundary of the domain Q, G(x, (),
Kox[G(x, )1, Kmx[G(x, €)] and Ky [G(x, C)] are the dis-
placement, slope, normal moment and effective shear
force, respectively. The kernel functions U, ®, M, V, U,
®g, My, Vg, Up, O, M, Vi, Uy, By, M, and V, in Egs. (5)
~ (8) will be elaborated on later. The Kgx[], Knx[]
and K, [] are the slope, moment and shear force op-
erators with respect to the displacement field at point x
and are defined as follows:

0

Ke,x[']: anx ) (9)

Kn x[] = VVi +(1-v) fz ) (10)
’ o’ny

K= 20 (1—v)ati[ = (a%ﬂ AENEEY

where o/on, is the normal derivative with respect to the
field point x, o/ot, is the tangential derivative with re-

spect to the field point x, and V2means the Laplacian

operator. By moving the field point to the boundary,
Egs. (5) ~ (8) are reduced to

4nG(x, C) :—R.PV.IBU(S, x) K, S[G(s, ¢)] dB(s)
+R.PV. j L0, %) Ky S[G(s, ©)]dB(s)
~R.PV. j M (s, %) Ky S[G(s, 01 dB(S)

+c.P.vaV(s, x) G(s, &) dB(s)
+U(, x), xeB (12)
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47'CK9'X[G(X, C,a)] = _R'PV'IBUG(S! X) Kv,s[G(S’ C,a)] dB(S)
+RPV. j L04(5, %) Ky s[G(s, 01 dB(S)
—C.P.V._[BMG(S, x) K, .[G(s, €)1 dB(s)

+ H.P.v.ije(s, x) G(s, ¢) dB(s)
+Uy(C x), xeB
(13)

4rK ([G(X, Q1= -RPV.[ Un(s, X) K, [G(s, 0)1dB(s)
+CPV.[ 0,(s, %) Ky [G(s, )] dB(s)
—HPV.[ My (s, %) K [G(s, 0)1B(s)
+ F.P.ijm (s, X) G(s, &) dB(s)

+U,(, x), xeB
(14)

4nK, [G(x, g)]z—c.P.v.jBuv(s, X) K, ,[G(s, ¢)] dB(s)
+H.P.V.J'B®v(s, X) K, s[G (s, €)] dB(s)
—FP.f M(s, %) Kos[G(s, 0] dB(S)

+ F.P.ijV(s, x) G(s, ¢) dB(s)

+U,(C, x), xeB
(15)

where C.P.V,, R.P.V,, H.P.V. and F.P. denote the Cauchy
principal value, Riemann principal value, Hadamard
principal value and the finite part [10], respectively.
The conventional null-field integral equations by mov-
ing the field point x outside the domain are shown be-
low:

0=—[ U(s, x) K,[G(s, ¢ dB(s)
+IB®(5’ X) K s[G(s, €)] dB(s)
[ M (s, %) Kq[G(s, €)1 dB(s)
+[ V0 G(s 0 dBS) UG x) xeQ® (16)

0= _IBUG(S' X) K, s[G(s, €)] dB(s)
+[ 045, %) Kq [G(s, €)1 dB(s)
~[ My (s, %) Ky [G(s, €] dB(s)
+IBVe(s, X) G(s, £) dB(s) +Uy (&, X), xeQ°(17)

0=—[ Un(s, ) K,[G(s, 0] dB(s)
+I L On (8, X) Kns[G(s, £)] dB(s)
= [ Ma(s, %) Ky, [6(s, £)] dB(s)
+[ Vals, ) G(s, €) dB(9) +Un (G, X)X OF (18)
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0=—[_Uy(s, ) K..[G(s, )] dB(s)

+[_0,(5, %) Ky o[G(s, )1 dB(S)

[ M. (s, %) Ky [G(s, )] dB(s)

+[ Vu(s, %) G(s, ©) dB(s)+U, (G, x) . xeQ° (19)
where QF is the complementary domain of Q. If the
kernel functions in Egs. (5) ~ (8) and (16) ~ (19) are
expressed by using the degenerate (separable) forms for

Q or QF domain, we have alternative representation as
shown below:

81G(, X) =—IBU(s, X) Ky s[G(s, €)1 dB(s)
+ j _6(s, X) K;;,5[G(s, €)1 dB(s)
_IBM (s, X) Kqs[G(s, £)] dB(s)

+ij (s, X) G(s, &) dB(s)
+U, x), xeQuUB (20)

8K, ,[G (5, 0] == Ua(s, %) K, [G(s, 01 dB(s)
+[ 04(s, %) Ky a[G(s, Q)1 0B(s)
_jB M, (s, X) Ko s[G(s, £)] dB(S)

+ije(s, x) G(s, ) dB(s)
+Up(C, X), XxeQUB 1)

81K, ([G(C, )] =—[ Un (s, ) K, [G(s, §)] dB(s)
+IB®m(S, X) Kns[G(s, )] dB(s)
— [ My (s, %) Ky [G(s, £)] dB(s)

+[ Va(s, %) G(s, €) dB(s)
+U,( x), xeQuUB
(22)

87K, L[G(C, )1 == U.(s, x) K, [G(s, G dB(s)
+[0,(s, %) K o[G(s, ©)1dB(S)
— [ My (s, %) Ky [G(s, €)1 dB(s)

+ijv(s, x) G(s, ¢) dB(s)
+U,(, x), xeQuUB (23)

o:—j U (s, X) Ky s[G(s, €)1 dB(s)
+f L0(s, X) Kqy[G(s, §)] dB(s)
[ M(s, %) Ky [G(s, §)10B(s)

+ij (s, X) G(s, ) dB(S)
+U@E, x), xeQ*UB (24)
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OZ‘JBUG(S’ X) K, s[G(s, €)1 dB(s)
+I . ©o (8, X) Kns[G(s, )] dB(s)
[ Ma(s, %) Ky [G(s, ©)1B(s)
+] Vo(s, %) G(s, €) dB(s)

It is noted that the collocation position of Egs. (20) ~
(27) can include the boundary point. Although Egs.
(24) ~ (27) in the plate formulation are provided, only
the first two equations are employed to solve unknown
boundary data for simplicity. In the real implementa-
tion, the collocation point in the null-field integral
equation can be exactly located on the real boundary

U6 %), xeQ"UB (25) from QF once the kernel functions is expressed in terms
of interior and exterior appropriate forms of degenerate
OZ_J-BUm(S! X) K, s[G(s, €)] dB(s) kernels. In other words, Egs. (24) ~ (27) are imple-
+J‘ @, (s, X) K, .[G(s, €)]dB(s) mented for x e Q° v B if kernels of _degenerate forms
B ' are properly used in the Wu’s thesis [15]. Conse-
—IB M (s, X) Ko [G(s, €)] dB(s) quently, all the improper integrals disappear in the BIEs
since the potential across the boundary can be deter-
+IBVm(S’ X) G(s, €) dB(s) mined in both sides by using the degenerate kernels
+Un (G x), xeQ°UB (26) [16].
0=—[ U,(s, %) Kys[G(s, ©)1B(s)
+[_0,(s, %) Ky [G(s, )] dB(s) 2.3 Expansion of Kernels
[ MG, %) KB (s, 01 0B(s)
For the kernel function U(s, x), it can be expanded in
V, B
+IB «(8, %) G(s, C) dB(S) terms of degenerate kernel in a series form as shown
+U, (X)), xeQ°UB (27) below:
3
U'(s, x) =p2(L+InR) +R%In R—[Rp(1+2ln R) %%} cos(0 - ¢)
) 1 pm+2 1 pm
- - cosim(6—-¢)], R=>
mZ:Z [m(m+1) R™ m(m-1) Rm‘z} [(m(®=0)] P (28a)
U(s, x)= ,
UE(s, X) =R*(L+Inp)+p° Inp—{pR(1+2In p)+%R—} cos(0 —¢)
p
) 1 Rm+2 l m
- - cos[m(®-¢)], p>R 28b
n; {m(m+l) o m(m-1 p“} mOG-0)1. p (28b)

where x(p, ¢), s = (R, 0) , the superscripts “1” and “E”
denote the interior and exterior cases of U(s, x) kernel
depending on the geometry as shown in Fig. 1. Then,
he kernel function with the superscript “I” is chosen
while the field point is inside the circular region; other-
wise, the kernel with the superscript “E” is chosen.
The other degenerate kernels in the boundary integral equa-
tions can be obtained by utilizing the operators of Egs. (9) ~
(11) with respect to the U(s, x) kernel. The degenerate
kernels of U, ®, M, V, Uy, ®y, Mg, Vg, U, O, Min, Vi, Uy,
0,, M, and V, in Egs. (20) ~ (23) are listed in [9-11].

3. SERIES REPRESENTATION FOR
THE GREEN’S FUNCTION OF
THE ANNULAR PLATE

For the annular case as shown in Fig. 2, the unknown
Fourier coefficients can be analytically determined.
By collocating x on (b*, ¢) and (a”, ¢), Egs. (24) and (25)
yield

62

o:_J'BlUE(s, x) K, s[G(s, £)] dB(s)

+[, 05 0 K, .[6(s, 01 dB(S)

—fBlM £(s, %) Ky, s[G(s, €)1 dB(s)

+jBlvE(s, X) G(s, ¢) dB(s)

- j 5 UT(50) K,([G(s, T dB(s)

[ ©%(s, %) Ky [G(s, )] dB(S)

_IBZ ME(s, x) Ky s[G(s, €)] dB(S)

+[ VE(s, %) G(s, Q) dB(S)+US(C, ), peb,

(29)
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OZ‘JB}’ '(s, X) Kus[G(s, €)]dB(s)

+IBI@' (s, X) Kq s[G(s, €)1 dB(s)

_Ja M' (s, X) Ko [G(s, £)] dB(s)

+J‘31VI (s, X) G(s, €) dB(s)

=[G 0 KB, 01 dB(S)

+IB ©'(s, X) Kys[G(s, €)] dB(s)

_JBZ M (s, X) Kys[G(s, €)] dB(S)

+ij'(s, x) G(s, ) dB(s)+U' (¢, x), pea,

(31)

x =
s=(R&)

Fig. 1 Degenerate kernel for U(s, X) 0= —J‘Ber' (s, x) K, s[G(s, £)] dB(s)

+, ©5(5. %) Ky [G(s, €)] dB(S)

= [, Mi (s, ) Ko, [G(s, )] dB(s)

+ Vs (5. ) G(s, ©) dB(s)

=], Us (s ¥ K, [G(s, ©)] dB(s)

+, 035, %) Kn [G(s, €)] dB(s)

[ Mis, 0 Kos[G(s, 0] dB(S)

+j;ve' (s, X) G(s, £) dB(s)+U; (G, ), pea’,

(32)

The Fourier expansions of the boundary densities for the
radial slope, normal moment and shear force are shown
below:

M
K,s[G(s, ©)]=a,+Y_ (a,cosnb+b,sinnb) , seB,
n=1
Fig. 2 Green’s function of the biharmonic equation (33)

for the annular plate problem (R. is the dis-

M pu—
tance between the source and the center of the K,.[G@, O)]=3, +Z (@, cosnd+b, sinn) , seB,

circle) 2,
(34)
Kes G ) = Mo h 0 n innod , B,

0=—[, Uf (s ¥ K,.[6(s, )1 dB(s) S[GG O1=py+ 2, (prcosnd+gusinnd), s
+], 0560 Ky [6(6. O] dB(6) ] )
—JBl Mg (s, X) Ko, s[G(s, §)1dB(s) G(s, §)=Po+ Y. (P,cosnO+7,sinnb), seB, (36)

n=1

+| Vi(s, X) G(s, €) dB(s _
'[Bl 9( ) ( Q) () Where am bnv a|'|1 bnvpnv qn: ﬁn and q_n (nzol l’ 2.)

—JBZUeE(S, x) K, s[G(s, €)] dB(s) are the Fourier coefficients. By substituting all the

+J‘ ®E (s, X) K, .[G(s, O)] dB(s) boundary data into Egs. (29) ~_(32) for _th_e direct problem,

B, ' we obtain the unknown Fourier coefficients after com-

—JBZ Mg (s, X) Ko [G(s, €)] dB(s) paring with the coefficients of constant, cos(6, — 6) and

+J‘ VE(s, X) G(s, ©) dB(s)+UE (L, X), peb”, c_o_s n(_eg -0) tgrms. By substltutlr.wg all the bounda}ry dgn-

B, sities into the integral representation for the domain point,
(30) we have the Green’s function as shown below:
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8rG(x, §) = —J'BIU '(s, ) K, [G(s, €)1 dB(s)
+],©' (s, %) Ky [G(s, €)] dB(s)
-f M (s, %) Ko [G(s, 1 dB(S)
+],V' (5, ) G(s, ©) dB(S)
= [, U5 %) Ky, [G(s, 2] dB(s)
+ j BZG’E(S’ X) K., s[G(s, €)] dB(s)
= [, MEGs, 0 Kq [G(s, €)1 dB(s)

+jB VE(s, X) G(s, €) dB(S)
+UL X, a<p<b (37)

4. ILLUSTRATIVE EXAMPLES

Case 1: Green’s function of the biharmonic equation for
the circular plate problem

A circular plate subjected to a concentrated load as
shown in Fig. 3 has been solved by Szilard [12] and
Melnikov [13]. The concentrated load is set at the
center of the plate in the Szilard’s solution. Here, we
revisit the same problem to obtain an analytical solution,
and then verify the validity of our approach after com-
paring with Szilard and Melnikov solutions. The
equivalence between the Melnikov and present solutions
is shown in Appendix 1. The displacement contours of
a circular plate subjected to a concentrated load are
plotted in Fig. 4. Also, two displacement contours with
the source at different angles and radial positions are
plotted by using the Melnikov’s solution and the present
analytical solution as shown in Figs. 5 ~ 6. Good
agreement is made after comparing with the Melnikov’s
solutions.  Although Melnikov offered a closed-form
solution in the circular plate, extension to a closed-form
solution for an annular plate is not straightforward.
Based on our formulation, we can deal with the annular
case in a straightforward way as well as a circular plate.

’

a s :
11’ b Gxn0)=0
gy | KIG(0I=0
; . YER

VG (xC)=6(x—()
ref

Fig. 3 Green’s function of the biharmonic equation
for the plate problem
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Case 2: Green’s function of the biharmonic equation for
the fixed-free annular plate problem

For the fixed-free boundary condition, we can obtain
the analytical solution from Eq. (37) as shown in Appen-
dix 2. Figure 7 shows the displacement contours of
Green’s function by using FEM (ABAQUS) and the pre-
sent method, respectively. Good agreement is obtained
between our analytical solution and FEM result. The
radial slope, normal moment and shear force contours are
shown in Fig 8. Next, we present different cases of
boundary conditions.

Case 3: Green’s function of the biharmonic equation for
the fixed-fixed annular plate problem

For the fixed-fixed annular plate problems, the dis-
placement and the slope on the outer and inner circles
are both zero for the fixed boundary. Figure 9(a) is the
displacement contour by using the present method and
the ABAQUS program. Good agreement is obtained.
The analytical solutions had been shown in the Liao’s
thesis [14]. The convergence property of the present
method has been studied in the Wu’s thesis [15]. Since
the present method is analytical, collocation points are
not required. In our experiences for several cases, the
fifty terms of Fourier series were used to yield acceptable
results which compared well with the ABAQUS data.

Case 4: Green’s function of the biharmonic equation for
the free-simply supported annular plate problem
For the free-simply supported annular plate problem,
the moment and the shear force on the inner circle are
zero for the free boundary and the displacement and the
moment on the outer circle are zero for the simply sup-
ported boundary. Figure 9(b) is the displacement con-
tour by using the present method and the ABAQUS
software. Good agreement is obtained. The analyti-
cal solutions can be founda in the Liao’s thesis [14].
The number of nodes and elements in FEM were shown
in Fig. 10.

5. CONCLUDING REMARKS

For circular and annular plate problems, an analytical
approach by using degenerate kernels, null-field integral
equation and Fourier series was proposed. The main ad-
vantage of the present method is that all the improper inte-
grals are avoided when degenerate kernels are used. Once
the Fourier coefficients of the unknown boundary densities
were determined, the displacement, slope, normal moment
and effective shear force of the circular or annular plate can
be easily determined by substituting the boundary densities
into the boundary integral equations for the domain point.
Not only the circular plate but also the annular problems
have been solved analytically by using the present method
in comparison with available exact solutions and FEM re-
sults. The advantage of the present method is an
analytical approach for the circular and annular cases free
of boundary elements. However, ABAQUS program is
based on the numerical method (FEM). The extension to
general boundaries is under investigation.
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(a) Present method (M =1) (b) Szilard’s approach (c) Melnikov’s approach

Fig. 4 Displacement contours of the Green’s function of the biharmonic equation for the circular plate problem
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Source at different radial angles
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Fig. 5 Displacement contours of the Green’s function of the biharmonic equation for the circular problem
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Fig. 6 Displacement contours of the Green’s function of the biharmonic equation for the circular plate problem

(a=3, 6, =n/6)
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Fig. 7

Fig. 8
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-0.61

-0.81

-0.8

Present method
Displacement contours of the Green’s function of the biharmonic equation for the fixed-free plate problem

(R;=0.7, 0, =0, M = 50)
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Radial slope

0.8

0.6

0.4

0.29

-0.29

-0.41

-0.61

-0.8+

T
-0.2 0 0.2

Shear force

Three contours of the Green’s function of the biharmonic equation for the fixed-free annular plate using the

present method (R; = 0.7, 6. = 0, M = 50)
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Present method

ABAQUS
(a) Fixed-fixed annular plate (b) Free-simply supported annular plate
Fig. 9 Displacement contours of the Green’s function for the biharmonic equation using the present method and the
ABAQUS program (R, = 0.7, 6, = 0, M = 50)

APPENDIX 1
EQUIVALENCE BETWEEN THE PRESENT SO-
LUTION AND THE MELNIKOV’S RESULT

G(x,()=0
B [G(xc)]=0
, xeR

Number of element = 3648, Number of node = 3794
The position of the concentrated load @

Fig.10 The model of FEM figure Fig. A-1Green’s function for the biharmonic equation
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For the circular plate subject to a concentrated load
solved by Melnikov [13], the closed-form solution is
shown below:

where D is the flexural rigidity, a is the radius, z = pe't
and ¢ = R, e denote the field and the force point, re-
spectively. The problem is also solved by using the
present method. We have a series-form solution as

G(x, c>—ﬁ[2—12 a’~|2P)(a*~ |G [) shown below:
2. 18° -2
-0 CJ (AL-1)
3
8nG(x, ¢) =— 2nap’(1+Ina) a, —2na’ Inaa, +{ap(1+2ln a)+%%} na(a, cosd+hy, sin¢)
+ i p"* ! P’ na(a, cosng + b, sinno)
~ n(n+1) a" n(n-1)a"? " "

+ 2mp°p, +2na’(1+2Ina) p, {p(3+2In a)—%

3

?} ma(p, cosd + g, Sin )

) +2 n_2 pn .
+ - a(p, cosnd+g,sinn
Z:;‘ {n+l a" n(n-1a"t ma(p b+ )
+ (x=0)?%In|x=¢|, xeQ, (A1-2)
1 —cos 6, R.(R? -3a%) —sin@, R, (R} —3a%)
4 4
where {ao}: 22na L {al}: 2ma , {bl}: . 2ma
Po) & R Py cosO, R.(a* —R?) % sin@, R.(a* —R?)
4ma’® 2na’ 2ma’
a"*cosnb, R] [(n +2)a’ - an] a"®sinno, R [(n +2)a’ - an]
{an } _ on {bn } _ 2n
[ a"?cosnd, R7[a* - R?] d, “sinng, Rl[a* - R?]
2n 2n
By rearranging Eq. (Al1-1), we have
2
G(x, €)= 8D [2 > (a2 -p?)(a? - RQZ)_|:p2 + RCZ —2p R, cos(6, —d))]l:ln 1—? +In a:|
+(x=¢yIn|x=¢[], (A1-3)
(@°-p’)@ -R”)
_ G(x, C)=8 D{ o —(p*+R?)Ina
where In 1—X—§’ can be expanded by using the degen-
a +2pR. Inacos(6, —¢)

erate kernel as shown below:

XC

In

© 1 PRC m ,
==y — 7 cosm(6, —¢) , a” >pR,

m=1

(Al1-4)

After substituting Eq. (Al-4) into Eq. (Al-3), we can
have another series-form solution as shown below:

68

m

+ iﬂ[p{%}m cosm(0; —¢)
_i&@%m cos(m+1)(0; — ¢)
_Z%["aﬁ] cos(m~1)(0; ~¢)
+ (=0 In|x—¢| } ,

(A1-5)
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Eg. (A1-5) can be rearranged to

- - PR,
60 0= D{(a L
{@R Ina+(p? + R’ )pRC pzc(p: j }co 0, —0)

-1 m+1
2| p +R PR PR, ( PR, " PR, (PR,
*Z[ ( ] @) mela ) [om%?
m

+ (x=0)*In|x-¢]| } (A1-6)

By substituting the Fourier coefficients into Eq. (A1-2), we have

2 2 2 2

_R _
81G(x, §) =—p*(1+Ina)—a’Ina+p? ==+ (1+2Ina) >
R.(3
+ {ap(l+2|n a)+ }%cos(eC 0)
a

2

{p(3+2|n a)— 12 }%cos(ec -)
+i 1 P 1y a "R’ [(n+ 2)a’ - an]
nn+1) a" n(n-1)a"? 2

© n+2 _ n a—n—an a2 _ RZ
+Z{ Lp- n=2p } 4l C]cosn(eg—q)) (AL1-7)

~In+la" n(n-1)a"* 2

cosn(0, —¢)

n=2

Although Egs. (A1-6) and (A1-7) look different, we use Mathematica symbolic software to mathematically prove the

equivalence between the two solutions in three aspects, constant, cos(6. — ¢) and cosm (6, — ¢) terms as shown in Ta-
ble Al.

Table A1 Comparison of the Melnikov solution and our solution in three aspects

Melnikov term Present term
2 2 2 2 2 2 2 2
a“ — a“—-R R a“-R a“-R
constant ( pz)(z g)—(szer)Ina—pRCp—f — —p*(l+Ina)-a’lna+p’ £ +(@+2Ina) £
a a
R.(3a
ap(1+2lna)+ # cos(0, —¢)
a 2a

R pR (pR Y
cos(0; - ¢) {ZpR Ina+(p” +R’ )p : pz‘; (‘;—‘;J } cos(0, —¢)

{ } R.(a*-R?)
p(+2Ina)- =2 | =25 2 cos(6, - ¢)
2a’

) n+2 1 pn
o PZJFRcZ oR. m PR, [ pR. m-1 nz:; {n(n+1) a" n(n—l) a“}
2 ) )

2

- m-1\ a a"?R"| (n+2)a’ —nR?
m= c g
— . [ J cosn(6, —¢)
cosm mil p— 2
_ PR, [ PR
(ec ¢) = _2 0 +2 n _2 pn
m+1 + — —

= |n+l a“* n(n-1) a"

-cosm(0, —¢) a’“’le [a® - Rc ]

2

cosn(6, —¢)
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APPENDIX 2
THE ANALYTICAL SOLUTION OF FIXED-FREE ANNULAR PLATE
8nG(E, x)=U (L, x)
2 —
- an[pz (L+Inb)+b*In b] 8 + 2nb[%+ b(l+2In b)} a, —2ma[2(1+v)(L+Inp)] p,
3 3

+[bp(1+ 2Inb) %%} nb(a, cos ¢+ b, sin ¢) —{p(3+ 2Inb) -%E—Z} nb(a, cos ¢+ b, sin ¢)

+[(v +3)3} na(p, cosd + g, sin §) + (—3—v)1na(ﬁcos¢+q_lsin )
p p

© 1 pm+2 1 pm i
- b(a, cosmd+b,, sinm
+mZ:2 mm+1) b m(m-1) b“}t ( o+ )
o [ 1 pm+2 m—2 pm _ —
- b(a,, cosm¢ +b,, sinm
+mZ:2 b mmoD bml}c ( o+ )
o [ m m-2
_z mv—1)-2(v+1) am +({1-v) am72 }ta( Py COS M+, SN M)
m—2 | m P P
w [ a‘m—l a.mf3 _ —
+Z (mA-v)-4)— —m(l—v)—mz}ca(pm cosmy+q,sinmd), a<p<b, (A2-1)
m=2 [ p
where 3 =((b2 —Rg)(—a“(?,+v)+b2 (—1+v)R§))coseg
4 4
. % 22 I(2bm(b* (14 v)-a* 3+ V)R (A2-7)
T

& = (b’ (v—1)+2a(v+1)(Inb+InR,) ~ (v~ DR?)
/(4n(—b2(v ~D+a’(v +1)))
(A2-3)

Py =(a(b2(—1+2Inb—2In R.)+ Rg)) 2
/(4n(—b2(—1+v)+a2(1+v)))

_ 2a’ (1+v)((a* ~b*) + 20*(Inb—Ina) ) (1+InR. )
Po= b (-1+v)+a’(@L+V)

(0 —a%)(~1+v)+2a* @+ v)(Ina—Inb)) (b* @+ 2Inb) + R?)

+
T

—b?(-1+v)+a’(1+v)

+2(b*Inb+(1+Inb)R? ) —2a* 1+ INR.) +R? INR. j/lGrc
(A2-5)

a = _((a“b2 (3+v) + (=30 (-1 +v) +a* (3+v))R?
+b?(-1+V)R? ))cos 0,

/(2b2n(b4(—1+v)—a4(3+v))Rc)
(A2-6)
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b, = —((—aZb2 (-b*(-3+v)+a2(3+v))
+(-2a%0? (-3+v) +b" (~1+v) +a‘ (3+v)
+ 2(-b*(-1+v) +a*(3+v))(Inb—In Rg))Rg2
+(a? (—3+v)—bz(—l+v))Ré))coseg
/(8r(-b*(-1+v)+a‘ 3+ V)R
(A2-8)
B, = (a(azb2 (~b?(1+v)+a?(3+v))
+(—(a—b)(a+b)(—b2(—1+ v)
+a*(3+v))+2(-b* (-1+v)
+a*(3+v))(=Inb+1In Ré))Rcz
—(-b*(-1+v)+a* @+ \»))Rg‘))coseg

/(8n(—b4 (-1+v)+a*(3+V)) Rg) (A2-9)

b, = —(a4b2(3+v) +(-3b* (-1+v) +a*(3+V))R?
+b? (=14 v)R? )sin 0,
/(2b27r(b4(—1+ v)-a‘(3+v)) Rg)
(A2-10)

b, = ((b? - R?)(—a" (3+v) +b* (-1+ v)R?)sin 6,
/(2bn(b4(—1+v)—a4(3+v))RC)
(A2-11)
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G = —((—a2b2 (~b?(-3+v) +a2(3+v))+(-2a%?(-3+v) +b* (-1 +V)
+a*(3+v)+2(-b*(-1+v) +a*(3+v))(Inb—1In RC))RE +(a’(-3+v)
A (-1+V))R! ))sin 0. /(8m(-b* (-1+v) +a*(3+v))R.)

4= (a(azbz (-b*@+v)+a® (3+v))+(—(a—b)(a+ b)(—b®(~1+v)
+a?(3+v))+2(-b* (-1+v) +a* (3+v)) (- Inb+1In RC)) R?
(b (-1+v) +at(@+v))R? ))sin 0. /(8n(-b* (-1+v)+a‘ 3+v))R;)

a, = (b’“” R" (a2(1+"> (az”bz (=2+n)(=1+Vv)(3+ V) +b* (—b2 (=2+n+n°)(-1+v)?
+a” (n?(-1+v)’ +8(1+v))))+az”n(—l+v)(b2” (-a® @+ n) +b?(2+1)) (-1+V)
~a*" (3+v))RZ +RY" (—azbZ“ (-1+v)3+v)(b*(2+n) - nR?)
+a? (a2 (~02(-2+ M@+ M)(-1+v)? +a* (n?(~1+v)’

+ 8(L+V)))~ (b (-2 )+ a% (~1+ M) )n(~L+v)*R? ))))cos 6,
/(2n(-a2+4“b2(-1+v)(3+v)-a2b2+4”(-1+v)(3+v)

+a¥p” (b4n2(—1+ v)? - 2a%0? (-1+0?)(-1+v)? +a’ (n? (~1+v)? +8(l+v)))))

a - —(b“ R (a2 (2P n(-1+v)(3+) +b*" (b (-1+ mn(-1+v)?
~a?(n?(-1+v)’ +8(1+v))))+ a?n(-1+v)(b™ (-b?n-+a*(L+n)) (-1+V)
- "™ (3+v) )R + R (@’b*'n(-1+v)(3+v)(b* ~R?)
+a? (az(—bzn(l+ N)(-1+v)* +a* (n(-1+v)* +8(L+v)))-n(a* (-1+n)
~ b?n) (-1+v)?R? ))))cos 0, /(207 (-8 " (~L+ v)(3+v)
— a2 (<14 v)(3+v) +a2h?" (b*n?(~1+v)? - 2a%h (14 n?) (~1+ v)?

+a' (n*(~1+v)* +8(L+ v)))))

D, = (a“” R:" (02" (~1+n) (~a%b™" (~4+n(-1+V))
+a”™ (a(@+n) (4+n(-1+v))-b’n? (-1+ v)))+b2”n(1+ n) (b2
(-1+v)+a”™ (b?(~1+n)(-1+v) +a’ (-4 +n- nv))) R?
+R (b2 (1+0)(@2 (44 n(-1+v)) +b™ (a2 (-1+n) (~4+n(-L+v))
- bznz(—1+v)))+ (-1+ n)n(—aznbz(—1+v)+b2” (0® @+ n)(-1+v)
+a’(4+n- nv))) R? )))cos ne, /(2(—1+ mn(L+n)r(—a**"? (~1+v)
(3+v) — 2> (~1+v)(3+v) +a%'b?" (b*n? (-1+v)? — 2a’h? (~1+ n?)

(-1+v)? +a (n* (14 v)? +8(1+ v)))))
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(A2-12)

(A2-13)

(A2-14)

(A2-15)

(A2-16)
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B, = (az*”Rg” (6207 -1+ ) (a%*" (2-n + @2+ n)v)
+ @™ (—b’n?(-1+v) +a* 1+ n) (n(-1+v) - 2(1+ v))))
+b?"n(L+n) (—b2<1+“> (-1+v)+a” (b*(-1+n)(-1+v)
+a’(2+n+2v— nv))) RZ +R¥" (b2(1+ n)(a*™ (n(-1+v)
= 2(L+v))+b™" (bn?(-1+v) —a® (-1+n) (2—n+ (2+ n)v)))
+(-1+ n)n(—aznbz (~1+v) +b™ (=b?(L+n)(-1+v) +2%(2—n
+ (2+0))))R? )))cos 00, /(20-n)n? (L+ ) (~a% b (~1+ v)(3+v)
—a’h®" " (~1+v)(3+v) +a’b?" (b*n® (-1+ v)* - 2a%b? (~1+n°)

(-1+v) +a* (0 (~1+v)? +8(1+v))))) (A2-17)

b, = (b’“” R" (a““"’ (aZ”bz (=2+n)(~1+Vv)(3+ V) +b* (—b2 (=2+n+n*)(-1+v)*
+a? (n?(-1+v)’ +8(1+v))))+az”n(—1+v)(b2” (-a*@+n)
+ b*(2+n)) (-1+v) —a** (3+v)) R? +RZ" (—azbz”(—1+v)(3+v)(b2(2
+n)—nR?)+a”" (a2 (~b2 2+ M@+ N)(-1+v)* +a* (n(~1+v)?
+ 8L+ V)))—(~b*(<2+ )+ a* (-1+1) ) n(L+ V) R? ))))sin o
/(2m( a0 (-1 4+ v)(@+ V) 2™ (<1+v)(B+ V) + 277 (b’ (1+v)?

— 28%% (<14 1?)(-1+v)’ +a* (0 (~1+ V)’ +8(1+v))))) (A2-18)

b = —(b“Rg” (a2<1+“> (227 n(-1+ v)(3+v) +b7" (b (-L+ M)n(-L+ V)’
—a?(n?(-1+v)’ +8(1+v))))+a2”n(—1+v)(b2” (~b*n+a?(w+n))
(-1+v)—a**" (3+v))R? +R¥" (azbznn(—1+v)(3+v)(b2 —R?)+a” (@’
(—bzn(1+ n)(~1+v)? +a* (n?(-1+v)? +8(1+ v)))-n(a2 (-1+n)

— b2n)(~1+v)2R? ))))sin 6, /(2nm(~a®"*"b? -1+ v)(3+v)
—a’b? " (<14 v)(3+v) + 2’ (b*n’ (~1+v)* —2a%’ (-1+n?)

(-1+v) +a* (0 (-1+v)? +8(1+v))))) (A2-19)
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q, = (a“”Rg” (624" (-1+n) (%™ (~4+n(-1+ V)
+a” (2’ (L+n)(4+ n(—1+v))—b2n2(—1+v)))+b2”n(1+ n) (b2
(~1+v)+a” (b? (—1+n)(-1+v) +a’ (-4 + n—nv))) R?
+R2" (b2 (1+ ) (@%7 (4+n(-1+v)) +b™ (a? (-1+ n) (-4 + n(-1+ V)
- bznz(—1+v)))+ (-1+ n)n(—az"bz(—1+v) +b? (b2(A+n)(-1+v)
+al(4+n—nv))) Rg)))sin 0, /(2(-L+ )L+ (202 (-1 v)

(3+v)-a’h?*" (=1+v)(3+v) +a’"b*" (b“n2 (-1+v)* —2a%b?(-1+n?)

(14 V)2 +at (n* (1+v)? +8(1+v))))) (A2-20)
g, = (a“” R:" (b2 (~1+n)(a%™ (2-n+ (2+ n)v)
+ @™ (-b*n?(-1+v) +a*(1+n) (n(-1+v) - 2(1+ v))))
+b*n(+n) (-b2<1+"> (-1+v)+a”™ (b? (~1+n)(-1+V)
+a?(2+n+2v— nv))) RZ+RZ (b2(1+ n) (a2 (n(-1+v)
— 2(L+v))+b*" (b*n?(-1+v) ~a® (-1+ n)(2—n+(2+n)v)))
(14 n)n(—az”bz (<14 v) +b™ (-b?(L+ n)(-1+v) +a%(2—n
+ (2+n)v)))R? )))sin no, /(2(1— n)n? (L+n)r(~a%“"b? (~1+ v)(3+)
—a’h®™*" (~1+v)3+v) +a’b?" (b*n’ (-1+v)* - 2a%b? (-1+n°)
(14 V) +a* (0 (~1+v)? +8(1+v))))) (A2-21)
wheren=2, 3, 4---
Source for Perforated Compound Plates with Facial
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