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ABSTRACT

Dual boundary integral equations for elasticity problems with a smooth boundary are
derived by using the contour approach surrounding the singularity. Both two and three-
dimensional cases are considered. The potentials resulted from the four kernel functions in
the dual formulation have different properities across the smooth boundary. The
Hadamard principal value or the so called Hadamard finite part, is derived naturally and
logically and is composed of two parts, the Cauchy principal value and the unbounded
boundary term. After collecting the free terms, Cauchy principal value and unbounded
terms, the dual boundary integral equations of the problems are obtained without infinity
terms. A comparison between scalar (Laplace equation) and vector (Navier equation)
potentials is also made.

Keywords: dual boundary integral equations; elasticity; free terms; a smooth
boundary.

INTRODUCTION

Dual boundary integral equations (DBIEs) for crack problems were derived
using a limiting approach by Chen (1986) and published two years later (Hong
& Chen 1988). Also, the DBIEs for the Laplace equation with a degenerate
boundary was developed (Chen & Hong 1993, Chen et al. 1992). A number of
papers on the dual BEM were published by Aliabadi and his coworkers (1985).
The dual formulation has been mainly applied to problems with a degenerate
boundary (Chen & Hong 1999). e.g., a screen in an acoustic cavity (Chen &
Chen 1998), a crack in an elastic body (Hong & Chen 1988) and cutoff wall in
potential flow (Chen & Hong 1992, 1994). Later, the hypersingular formulation
was found to play important roles in dealing with degenerate scale problems
(Chen et al. 2001, 2002, 2002), spurious and fictitious solutions (Chen et al.
1998, 1999), adaptive BEM (Liang et al. 1999), and symmetric BEM (Bonnet et
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al. 1998, Chiu 1999). A detailed review for the DBIEs and the dual BEM can be
found in Chen & Hong (1999).

Recently, the hypersingular equation has been utilized to provide a constraint
at a corner in an analytical way (Elschner & Graham 1995, Gray 1989, 1990).
Gray & Manne (1993) have applied the hypersingular equation as an additional
constraint to ensure a unique solution by a limiting process from an interior
point to a corner. The three-dimensional case was also extended by Gray & Lutz
(1990). How to accurately determine the free term in hypersingular equations
has received much attention in the dual BEM (Guiggiani 1995, Mantic 1985,
1993 and Mantic & Paris 1995). From the viewpoint of dual integral equations,
the singular and hypersingular equations can provide sufficient constraints for a
singular system with a corner. In the case of a nonsmooth boundary, e.g., a
corner point, the jump terms of singular and hypersingular integral equations
were found to be the same in the former derivations as reported by Lutz et al.
(1991) and Chen & Hong (1992). Later, an additional free term in the
hypersingular equation was obtained by Chen & Hong (1994) and Chen et al.
(2001). Since the hypersingular integral equation can provide an additional
constraint for problems with the Dirichlet boundary conditions, the free terms
on a smooth boundary by approaching the interior domain to the exterior
domain must be examined. Many researchers, for example, Guiggiani (1995).
have derived the free terms in the boundary integral formulation for the Laplace
and the Navier equations. Guiggiani also found an additional free term for the
corner. In the recent papers (Mukherjee & Mukherjee 1998, Phan et al. 1998),
the interpretation of finite parts has been shown to be consistent with those of
the hypersingular boundary contour method formulation for 2-D and 3-D
elasticity problems. The relationship between the Cauchy principal value
(Mukherjee 2000 a) and the finite parts of an integral (Mukherjee 2000 b) was
explored no matter whether the boundary source point is regular or irregular.
However, they did not discuss the free terms using the bump - contour method.

To derive the free terms in a hypersingular equation, the bump-contour
approach around the singularity can be considered by using the Taylor
expansion for the boundary density. Therefore, the dual integral equations for a
smooth boundary can be obtained. Following the same symbols of Uy;, Ly, T
and My, kernel functions as in the book by Chen & Hong (1992) for a single-
layer kernel and its traction derivative, double-layer kernel and its traction
derivative, respectively, the bump contour method will be adopted to determine
the free terms. Two alternatives for constraint equations can be chosen: (1) by
using the singular (UT) equation; and (2) by using the hypersingular (LM )
equation. Both the free terms of the two-dimensional and three-dimensional
elasticity problems will be examined by using the bump contour approach in this
paper. Their results will also be compared with the scalar potential case (Laplace
equation) in Chen et al. (2000).



Revisit of the free terms of the dual boundary integral equations for elasticity 3

FREE TERMS OF DUAL BOUNDARY INTEGRAL
FORMULATION FOR TWO-DIMENSIONAL ELASTICITY
WITH A SMOOTH BOUNDARY

In solving the plane elasticity problem without a degenerate boundary, the
standard integral representation for the i component of the displacement at the

point x inside the body B is (Rizzo 1967).

u(x) = / {Uki(s, x)tic(5) — Tri(s, x)ux(s)} dB(s) (1)
B'+B~+Bc+B*

where u;(s) and #;(s) are the k" components of the displacement and traction
vectors on the boundary point s, respectively, B, B~, Bc and B* are the contour
integration paths including the singularity inside the domain, D, as shown in
Fig.1, and Uj; and Ty, are the kernel functions. In many applications, it is not
trivial to derive the second equation of DBIEs (Bui 1977, Brebbia 1978).

ti(x) = /B/+B_+B +}W{Lk,-(s,x)tk(s) — Myi(s, x)ui(s)} dB(s) (2)

Singular Point

B' (A4 G)V(V.u(x)) + GVu(x) =0 B'

D

B'l

Fig.1: The considered boundary integration path for the two-dimensional elasticity problem.




4 Jeng-Tzong Chen, Wei-Chih Chen, Kue-Hong Chen and I-Lin Chen

Table 1. Properties of potentials resulted from different kernels across the smooth
boundary for 2-D elasticity problem

Kernel function

K(s, x) Uki(s, %) | Thi(s, x) Lyi(s, x) Mii(s, x)
(direct method)
Kernel function
K(S, _x) Ukl(sv X) Tk[(S7 -x) U* ki(S7 X) T /C[(S7 x)
(indirect method)
Singularity 2D O(In(r)) o(1/r) O(1/r) o(1/r?)
Density Function 5 (s) —u(s) 1 (s) —u(s)
e (s)
traction
Potential type single- double- traction derivative of derivative of
[ K(s,x) pu (s)ds layer layer single-layer potential double-layer
potential
Continuity continuous | discontinuous discontinuous pse':udo
across boundary continuous
G(33—4v) [ Ou , vOou, -G O
T6(1—) AGEO, 8(T—1) O5:|s—«
o g\)
Free I:lk:] 0 G(*1+4’U) {(1 )8u1+0U2 -G %
kel 8(1—v)(1-2v) Js; ' 0%, v |8(1=v) Osi|s=x
term |I=4K= no jump 0
(Navier) |i=1k=2 G(3—4v) [ Ou | Ou —G_ O
—elx) 1 T6(T—) { G+ gD, . S{T=1) 051 |s—x
@D) |i=2k=2
G(5—4v) Ouy | vOu, -3G Ouy
S—0(1-27) {i-ngerm), S(1—) Dsals—«
Free term
(Laplace) no jump U — % mt % mt
(2D)
Principal
Value R.P.V. C.P.V. C.P.V. H.P.V.

sense
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where Lj; and My; as well as Uy; and T}; are the four kernel functions in the dual
integral equations with the properties shown in Table 1. The Uy; and M}, kernels
are weakly singular and hypersingular, respectively, while the 7j; and Ly; kernels
are strongly singular. For the single and double-layer kernels, Aliabadi et al.
(1985) have employed the Taylor expansion to reduce the order of singularity.
Eq. (2) denotes the integral representation for the i component traction on the
collocation point x. The B integration path in Fig.1 denotes the contour
integration around the singularity with a radius ¢, and B’ + BT+ B~ is just the
definition of the integration region of the Cauchy principal value. The
boundaries of B and B~ denote two elements in the BT boundary near the
singularity as shown in Fig.1. First of all, we will integrate the B. path
integration to obtain the free terms for the four integrals of kernel functions.
The four kernel functions in the dual integral formulation for the two-
dimensional elasticity problems are shown below,

Uri(s,x) = C1(Cabpiln(r)— ygk) + Ay 3)
— 2 ;
Tk,'(S,X) = 153 [C4(f’l,-yk - nky,») + (C46k1+ %) yjnj}v (4)
_ _ 2y, _
Lii(s,x) = % [Co(Ary: — i) + (Cabut J;lzyk) y_,ﬂ,—]) ®)
) _ o 8y ViTi;
Lyi(s,x) = % {% RasTye + 2v(8yyim; + Fy;) — 2Ll i’zykn"]
2V VA _ _ .
+ ni<—vy;§/kn’ + aznk) +nn, (—zvf;’y" + azéik>
b (I o)}, ©)
where
_ —1 _a
Cl 87TG<1— ) , C2—3 4V,
—1
= _ —1 —1-2
ST &y - G
a =1—-2v,a = 1—4vy,

2 _
=YY, Yi = Xi — 8,

in which, r is the distance between the source point s and the field point x, G and
v are the shear modulus and Poisson’s ratio, respectively, &; are the components
of the Kronecker delta, A4y; is the rigid body term, and #; and 7; denote the i
components of the normal vectors for the source point s and the field point x,
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PR
. nisl

¥
i)

™ A ) Boundary
Boundary 1
o 001 E(00N
omain Daormain

(c) L(5,x) (dy M, (s,x)

Boundary

X
=i 0,01y ISLIRIE]

L b L Huundury/(~ L
Domizin Domain

Fig.2: Related symbols of a smooth boundary for the two-dimensional elasticity problem.

respectively. Without loss of generality, we have the following notations for the
cylindrical coordinate system in Fig. 1 and Fig. 2 :

x = (0,0), (7)
s = (e cos(f), —e sin(6)), (8)
ro=lx=s], ©)
yi = —e cos(f), (10)
v = e sin(d), (11)
n(s) = (n1,n2) = (cos(), —sin(6)), (12)
n(x)= (m , m)=(0,1) for normal vector, (13)
ui(s) = w (x)+g—l;1' e cos(6) — g—?z‘ o esin(f)+higher order terms,  (14)
u(s) = uz(x)+g—?12 o ecos(f) — g—g‘j o esin()+higher order terms,  (15)

where 0 < 0 <7 for the surrounding contour on the smooth boundary. To
obtain the strain field, €; ;, we can differentiate the displacements, u;, with respect
to the spatial coordinates, i.e.,

N L
Z':l/ 2<axj+ axi)‘ (16)
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Stress, o;;, can be otained from Eq. (16) using Hook’s law, which can be stated as

v
oij = 2G(eij + Ty 6ij€kk)- (17)

The traction vectors, t;, can be determined according to the relationship of the
stress tensor and its unit outward normal vector, i.e., t; = o;n; as shown below:

In the case of n(s) = (cos @, —sin #), we have

26 0| 0 Cotm| o]

1 (s) T (1=v) Do, s:x—l—v 25, S:x} cos(6) G{8s2 S:x—l— D, S:x} sin(f) (18)
_oow| o L VRN A R VYR

1(s) G{E)sz S:x+ D5, S:x} cos(f) T (1-v) o5, S:X+v D, S:x} sin(f) (19)

In the case of n(x) = (0, 1), we have
— Gg{ou Ouy

0= Gal el b 20
= 2G ¢ _ 0w Ouy

1) = T =50 s, ey

According to the related symbols in Fig.2, the free terms of the boundary
integration of the four kernel functions for the two-dimensional elasticity can be
obtained as follows:

(1). Single-layer potential (Uy; kernel):
lim [ Ugi(s, x) te(s) dB(s) = lin%{e (finite value)} =0, (i=1,2;k=1,2) (22)

e—0

Be

where k 1s no sum.

(2). Double-layer potential (7}; kernel):

lim / Tia(s, ) we(s) dB(s) = lim{~ “lgx) + ¢ (finite value)} = — ”léx) (i=k=1)(23)
Be

lim / Tui(s,) ue(s) dB(s) = lim{ - ”2§x) + ¢ (finite value)} = — “2§x> (i=k=2) (24)
Be

12% Tri(s, x) u(s) dB(s) = 113&{6 (finite value)} =0, (i # k) (25)

Be
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where k is no sum.

(3). Traction derivative of single-layer potential (Lx; kernel):

iy 1) 9 ) = T + o )=k (26)
i / L6 160 dB) =gt (1) K = =20
i [ o0 ) 4Bls) = S Z—z g—} (i=1, k=2) (28)
im / L) 1(6) d86) = o (1= 5 o =0

where k is no sum.
(4). Traction derivative of double-layer potential (My; kernel):
lim | Myi(s, x) uk(s) dB(s) = =G du

e—0 8(1—v) dsy
Be

+ Boundary term, (i=k=1), (30)

S=X

where the boundary term B () is

__ =G ux)
B(e) R 31
. -G Ou . .
The free term is ==Ll , and the boundary term, B(e), in Eq. (31) is
m(1=v) Os,

unbounded. .

) -G Ou . B

111}% /Mki(s,x) uk(s) dB(S) = m a‘_g‘l s (l = 2, k= 1) (32)
Be S=X

. =G ouw . B

113% /Mki(sax) uk(s) dB(s) = m Bs1| (i=1k=2) (33)
Be §=X
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. -3G  Ouwp

lim | Mi(s, B(s) = 2

0 k(s x) ui(s) dB(s) 8(1 —v) Os,
Be

+ Boundary term, (i=k=2) (34)

S§=X

where the boundary term B(e) is

__ G wx)
B(e) = e (35)
. =3G Ou, . .
The free term is ——— ==%| , and the boundary term, B(e), in Eq. (35) is
8(1—v) Os,

unbounded. In Eq. (30), Eq. (32) to Eq. (34), k is no sum.

The boundary term is infinite as € approaches zero in Eq. (31) and Eq. (35). By
combining the boundary term with the Cauchy principal value of the M}, kernel
integration over B’ including B™ and B~ as shown in Fig. 1, the finite part can be
extracted and the infinity can be cancelled out. Therefore, the Hadamard
principal value in the contour integration with a smooth boundary for the My;
kernel can be defined by

H.P.V. /BMH(S, x) ui(s) dB(s) = C.P.V. /BM11(S, x) ui(s) dB(s) —

G ur(x)
m(l—v) €

HRVA%MJMMMWQZCRVA%“JMMMW@ ()

where C.P.V and H.P.V. denote the Cauchy and Hadamard principal values,
respectively. It is found that both displacement and traction on the boundary
can be solved by using either UT or LM equations, respectively. After collecting
the free terms and unbounded values, we can derive the dual boundary integral
equations on the smooth boundary point for the two-dimensional elasticity
problems as follows.

%ui(x) =R.P. V./

Uyi(s, x) ti(s) dB(s) — C.P. V./ Tri(s, x) ur(s) dB(s), (38)
B

B

%MM:CRV/

i Lyi(s,x) ty(s) dB(s) — H.P. V./B Myi(s, x) u(s) dB(s), (39)

by using

/ Uyi(s, x) tx(s) dB(s) = R.P. V./ Uyi(s, x) tr(s) dB(s), (40)
B+B~ Bt

B



10 Jeng-Tzong Chen, Wei-Chih Chen, Kue-Hong Chen and I-Lin Chen

/  Tls, x) ur(s) dB(s) = C.P. V./ Tri(s, x) uk(s) dB(s), (41)
B'+B~ Bt »

/B/ o Lii(s, x) tx(s) dB(s) = C.P. V./B Lii(s, x) tx(s) dB(s), (42)
/B’ g Hil5,3) uels) dB(s) = H.P.V. /B Mi(s, x) u(s) dB(S)+7T(1G—v ui(ex). (43)

FREE TERMS OF DUAL BOUNDARY INTEGRAL
FORMULATION FOR THREE-DIMENSIONAL ELASTICITY
WITH A SMOOTH BOUNDARY

Similarly, we can extend the two-dimensional elasticity to the three-dimensional
case by changing the four kernel functions of Eq. (3) ~ Eq. (6) into the three-
dimensional case as shown below:

4 S B e L Vi

Ukl(s7 -x) 167T(1—V)G r [(3 4‘})6/(1 + ’,2 ]7 (44)
A _ b e iy Yk s Y

Tri(s, x) o {(1 =2v)( ;. p )+ [ r2 + (1 —2v)dy] - }, (45
. = = e o (Wi ey 3y .1 Vi

Lii(s, x) o {1 =2v)( . p )+ o+ 2v)6y] 1 (40)

Fig.3: The considered boundary integration path for the three-dimensional elasticity problem.
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G 3,n,
{=

Mii(s, x) = dr(l—v)r’ > r?

~ B B 5y T
(L =2v) A, + v(oayii; + Wyi)— % ]

P (1 2] 4+ P (1 - 20)6]

4 PUZZDU (1 gy, !

Without loss of generality, we have the following notations for the spherical
coordinate system in Fig. 4:

x = (0,0,0), (48)

s = (e sinfsin¢, esinfcosp, ecosh) (49)

ro=|x—sl. (50)

Y| = —e€ sinfsin ¢, (51)

V3 = —e sinf cos ¢, (52)
(a) U, (s,x) (b) T,.(s5,x)

g4

L7 ; g T A2
n

Domain Dormnain
(c) L,;(s,x) (d) M, (s,x)
3 PNES]
(& i
r XE
KL
Domain

Fig.4: Related symbols of a smooth boundary for the three-dimensional elasticity problem.
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y3 = —e cosb,
n(s) = (m, na, n3)
n(x) = (A1, n, m3)

Ouy

u(s) = uy(x) + 05,

Ouy
+ 833

Ouy

le(s) = uz(x) -+ aSl

Ouy
+ 65’3

uz(s) = uz(x) + g—?:
Ouy
+ 8S3

= (sin(#) sin(¢), sin(6) cos(¢), cos(h)),
= (0, 0, 1),

for normal vector.

esin@sinqﬁ—l—% esin 6 cos ¢
85’2

S=X S=X

e cos @ + higher order terms,

S§=X

Ouy

esinfsin ¢ + B5s

esin  cos ¢

S=X §=X

ecos f + higher order terms,

S=X

esinGSinqb—i-%

esin 6 cos
832 ¢

S=X S=X

ecos @ + higher order terms,

§=X

can be determined as shown below:

In the case of n(s) = (sin(f) sin(¢), sin(#) cos(¢), cos(d)), we have

8u3 (S)
831

Ous(s)

852

1) = GHAA] 4 280y g pags g+ 2l

n(s) = G{(abgs(f + agzs(ls) ) sin @ cos ¢ + (&gs(f) +
b2l 2l 7‘ 2l K Ouls) )

13(s) = G{ (&gs(:) : + c’hgs(ls) : ) sinfcos ¢ + (8Lgs(3s) : + 6L§S(2s)

(53)
(54)
(55)

(56)

(57)

(58)

where 0 < 0 <g , and 0 < ¢ < 2x. Similarly, the traction for the normal vector

)] sin@sin ¢}. (59)
) cos 0
)] sin@sin¢}. (60)

) sin 6 cos ¢



Revisit of the free terms of the dual boundary integral equations for elasticity 13

2 Oy (s) Ou, () Ou, ()
+15, [(1—v) 0. +( 0, +—8s2 )] cos 6}. (61)
In the case of n(x) = (0,0, 1), we have
A 0u(s) Ous(s)
11(x) =G{ 95, + O, 1, (62)
o Guz(s) 81/!3(5)
1(x) = G{ 0. + O, 1, (63)
2G Oy (s) Ou, (s) Ous(s)
A =2 (1 - 280 Qub)] L O]y (64

The free terms of the boundary integration of the four kernel functions for the
three-dimensional elasticity can be obtained as follows:

(1). Single-layer potential (Uy; kernel):

€—

liHé Uki(s, x) tx(s) dB(s) = lir%{e (finite value)} =0,(1=1,2,3; k=1,2,3) (65)

Be

where k 1s no sum.

(2). Double-layer potential (T%; kernel):

lim / Tia(s. x) ue(s) dB(s) = lim {—@ + ¢ (finite value)} = — uléx) J(i=k=1) (66)
Be
11_{% /Tk,-(s, x) u(s) dB(s) = 15% {—@ + € (finite value)} = — uzéx) L(i=k=2) (67)

Be

lim / Tu5, ) ue(s) dB(s) = lim {—@ + ¢ (finite value)} = — u3§X) (i=k=3) (68)
Be

lii% Tri(s,x) ur(s) dB(s) = hi% {e(finite value)} =0, (i # k) (69)

Be
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where k is no sum.

(3). Traction derivative of single-layer potential (Ly; kernel):

. G4 —5v) _ 0Ou ou
lim [ Lia(s, x) te(s) dB(s) = ﬁ{ a_s; 8—s13 Lo(i=k=1) (70)
Be S=X S=X
lir% Lyi(s,x) ty(s) dB(s) =0, (i=2, k=1) (71)
Be
) ~ G(—=1+5y) Ou,
11_11% Lki(s7x) tk(s) dB(S)_ 15(1 —V)(l —2\7){( _V)a—sl
Be S=X
8142 8u3 - -
+v( D5 05 )b (=3, k=1) (72)
lir% Lii(s,x) t;(s) dB(s) =0, (i=1, k=2) (73)
Be
. G(4 —5v) . Ou ou .
iy [ La(s,) 1(s) dB6) = S (54 52| =k=2) (74
Be S=X S=X
. G(—1+ 5v) Ouy
lli% Lki(s7x) tk(s) dB(S): 15(1 —V)(l _2‘}){(1_‘))8—5,2
Be S=X
(31/!1 8u3 . o
+v( D5, 95 )} (=3, k=2) (75)
. G(4—5v) Ou ou .
iy [ 22(0.3) ) dB6) = S 151+ GO ) =1 k=3) ()
Be S=X S=X
. G(4—5v) Ou Oou
iy [ 2a(0.3) 6) dB6) = S 1 52+ GO =2 k=3) ()
Be s=Xx s=X
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11_13 Lyi(s, x) ti(s) dB(s) = 15(1G£7v)_(15‘2 2y) (= g_zj
ouy Ouy
gl g b =k=3) (78)

where k is no sum.

(4). Traction derivative of double-layer potential (My; kernel):

= % g—z + Boundary term, (i=k=1), (79)

e—0

lim / Mus(s, ) we(s) dB(s)
Be

S§=X
where the boundary term B(e) is shown as follows:

Ble) = G(—2+v)u1(x).

4(1—-v) € (80)
. —=T+5v Ouy - -
The free term is 30(1=v) Bs: , and the boundary term, B(e), in Eq. (80) is
unbounded. §=x
lin% Myi(s,x) ue(s) dB(s) = 0, (i=2, k=1) (81)
Be
i ~ —G(1+5v) Ouy B B
1{1{?)[ Mk,’(S,X) l/lk(S) dB(S) = m 6_5‘1 s (l = 3, k= 1) (82)
Be S=X
lim [ Mpi(s,x) ux(s) dB(s) = 0, (i=1, k=2) (83)
Be

. G(—=7+4 5v) Ouy
i\9, B TT30(1—v) Oss
iy | M5 (5 48) =S5 5

Be

+ Boundary term, (i = k = 2) (84)

S=X
where the boundary term B(e) is shown as follows:

B(e) = W (85)
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Table 2. Properties of potentials resulted from different kernels across the smooth
boundary for 3-D elasticity problem

Kernel function

K(s, x) Uki(s,x) | Tri(s, x) Lii(s, x) Mii(s, x)
(direct method)
Kernel function
K(s, x) Uki(s,x) | Tri(s, x) U* ki(s, x) T k(s x)
(indirect method)
Singularity 3D | O(1/r) | O(1/r?) o(1/r?) o(1/r?)
Density l(? 1)1nct10n t(s) —u(s) 1 (s) —ui(s)
(s
traction
Potential type | single- [ double- traction derivative of derivative of
| K(s,x) p (s)ds| layer layer single-layer potential double-layer
potential
Continuity continuous | discontinuous discontinuous pse.:udo
across boundary continuous
G(4—5v) {(aul +au;)} G(=T+5) oy,
30(1—\/) 8& 85‘1 §=X 30(1—1)) (933 S=X
0 (x) 0 0
. 2 G(-1+5v) u , (Ouy | Ous (1+5V) Ouy
i=Lk=1 0 715(1-v)(1-zv)‘{“ g GE gl T3(1=v) Ot s —
Free
i=2k=1 0 0 0
term |, G(4=5v) [, 0u, | Ous G(=T+5) Ouy
N RELE . 0 [30(1=y) {Ge+ gl _. 30(1=) 05— v
(Navier) ko2 JUmp - g (x) (o145 5
A 2 (_ + U) {(1 —V>%+ <3ll| +0U;>} + V) ﬁuz
(3D) —2 k=) 0 15(1—\1)(1—2") aSz (931 833 s=x 15(1—1’) 632 s=x
I=2k=
) 0 4 51)) 61,{1 8u3 G(—7+5v).%
1:37k:2 0 V) { 833 8&1 } = 30(1—1’) &Y] s=x
=1,k=3 uy(x) |GA=5v) { 6142 au; } G(=T+5v) Ouy
ks ) 3() 30(1—v) 'Oss + 05, 30(1-v)  Osy|s=x
i=2k=
G(7-5v) Ouy  (Quy , Oy 8G_ Juy
i=3k=3 == {-ngeige *as)}._\ HER .
Free term
(Laplace) no jump 27u — % Tt % e
(3D)
Principal
value R.P.V. C.P.V. C.P.V. H.P.V.

sense
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(=745v) du,

The free term is Gm 8S3

, and the boundary term, B(e), in Eq. (85)

. S=X
is unbounded.

, G(1+5v) Ouy
lim [ My(s, ) dB(s) = — — 20 A —3 k=2
lim [ Mii(s, x) ui(s) dB(s) I5(=v) 95 (i=3; k=2) (86)
Be S=X
) _ G(=T7+5v) Ouz B B
ll_l}(l) Mii(s, x) uk(s) dB(s) = 30(1—v) 0s1 i=1; k=3) (87)
Be S=X
) _ G(=T+5v) Ous B
lim /Mkz(S,x) ur(s) dB(s) =300 =) 0| (i=2; k=3) (88)
Be §=X
. _ —8G  Ous .
11_1)13 Myi(s, x) uy(s) dB(s) = 0= 0 + Boundary term, (i = k = 3) (89)
Be §=x

where the boundary term B(e) is

_ =G u(x)
B(e) 2(1—v) ¢ (90)
The free term is _—8G _Ouy and the boundary term, B(e), in Eq. (90) is
15(1—v) Os; ’ ’ ’
s=X

unbounded. In Eq. (79), Eq. (81) to Eq. (84) and Eq. (86) to Eq. (89), k is no
sum.

The dual boundary integral equations on the smooth boundary point for the
three dimensional elasticity problems are derived as the same forms of Eq. (38)
and Eq. (39). All the above results are summarized in Table 1 and Table 2 for 2-D
and 3-D cases, respectively.

CONCLUSIONS

The free terms of the dual boundary integral equations for the two and three-
dimenstional elasticity problems were derived by using the bump-contour
approach. The behavior of potential across the boundary for the four kernel
functions: single layer, double layer, traction derivatives of single layer and
double layer, were also examined. The finite part for the hypersingular integral
was found to be composed of two parts, which are the cauchy principal value
and unbounded boundary term. The classical definition of one-dimensional
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Hadamard principal value can be seen as a special case of the present
formulation. After collecting the free terms and unbounded boundary term, the
dual boundary integral equations on the smooth boundary point for two and
three-dimensional elasticity problems can be implemented with the Navier case
as shown in Table 1 and Table 2 for 2-D and 3-D cases, respectively.

ACKNOWLEDGMENTS

Financial support from the National Science Council, under Grant No. NSC
90-2211-E-019-021, is gratefully acknowledged.

REFERENCES

Aliabadi M. H. 2002. The Boundary Element Method, Vol. II, John Wiley, New York.

Aliabadi M. H., Hall, W.S. & Phemister, T.G. 1985. Taylor expansions in the boundary element
methods for Neumann problems. Boundary Elements VII, edited by Brebbia, C.A. & Maier, G.
Computational Mechanics Publication 12.31-12.39.

Aliabadi, M.H., Hall, W. S. & Phemister, T.G. 1985. Taylor expansions for singular kernels in the
boundary element method. International Journal Numerical Methods in Engineering 21: 2221-
2236.

Bonnet M., Maier G. & Polizzotto C. 1998. Symmetric Galerkin boundary element. Applied
Mechanics Review 51: 669-704.

Brebbia C. A. 1978. The Boundary Element Method for Engineers. Pentech Press, London.

Bui H. D. 1977 An integral equation method for solving the problem of a plane crack of arbitrary shape.
Journal of the Mechanics and Physics of Solids. 25: 29-39.

Chen, 1. L., Kuo, S.R. & Chen, J.T. 2001. Dual boundary integral equations for Helmholtz
equation at a corner using contour approach around singularity. Journal of Marine Science and
Technology 9 (1): 53-63.

Chen, J. T. 1986. On Hadamard principal value and boundary integral formulation of fracture
mechanics. Master Thesis, Institute of Applied Mechanics, National Taiwan University.

Chen, J. T. & Hong, H.-K. 1992. Boundary Element Method. Second Edition. New World Press,
Taipei, Taiwan, (in Chinese).

Chen, J.T. & Hong, H.-K. 1993. On the dual integral representation of boundary value problem in
Laplace equation, Boundary Elements Abstracts, 4 (3): 114-116.

Chen, J. T., Hong, H.-K. & Chyuan, S. W. 1994. Boundary element analysis and design in seepage
flow problems with sheetpiles. Finite Elements in Analysis and Design. 17. 1-20.

Chen, J. T. & Hong, H.-K. 1994. Dual boundary integral equations at a corner using contour
approach around singularity. Advances in Engineering Software 21: 167-178.

Chen, J. T. & Chen, K.H. 1998. Dual integral formulation for determining the acoustic modes of a
two-dimensional cavity with a degenerate boundary. Engineering Analysis with Boundary
Elements 21 (2): 105-116.

Chen, J. T. 1998. On fictitious frequencies using dual series representation. Mechanics Research
Communications 25 (5): 529-534.

Chen, J.T. & Hong, H.-K. 1999. Review of dual boundary element methods with emphasis on
hypersingular integrals and divergent series. Applied Meachanics Reviews, ASME 52 (1): 17-33.



Revisit of the free terms of the dual boundary integral equations for elasticity 19

Chen, J.T., Huang, C.X. & Chen, K.H. 1999. Determination of spurious eigenvalues and
multiplicities of true eigenvalues using the real-part dual BEM. Computational Mechanics 24
(1): 41-51.

Chen, J.T., Kuo, S.R., Chen, W.C. & Liu, L.W. 2000. On the free terms of the dual BEM for the
two and three-dimensional Laplace problems. Journal of Marine Science and Technology 8 (1):
8-15.

Chen, J.T., Lin, J.H., Kuo, S.R. & Chiu. Y.P. 2001. Analytical study and numerical experiments for
degenerate scale problems in the boundary element method using degenerate kernels and
circulants. Engineering Analysis with Boundary Elements 25 (9): 819-828.

Chen, J.T., Kuo, S.R., & Lin, J.H. 2002. Analytical study and numerical experiments for
degenerate scale problems in the boundary element method for two-dimensional elasticity.
International Journal for Numerical Methods in Engineering 54 (12): 1669-1681.

Chen, J.T., Lee, C.F., Chen, L.LL., & Lin, J.H. 2002. An alternative method technique for
degenerate scale problem in boundary element methods for the two-dimensional Laplace
equation. Engineering Analysis with Boundary Elements 26 (7): 559-569.

Chiu, Y.P. 1999. A study on symmetric and unsymmetric BEMs. Master thesis, department of
Harbor and River Engineering, National Taiwan Ocean university. Keelung, Taiwan, (in
Chinese).

Elschner, J. & Graham, 1.G. 1995. An optimal order collocation method for the first kind boundary
integral equations on polygons. Numerische Mathematik 70: 1-31.

Gray, L. J. 1989. Numerical experiments with a boundary element technique for corners. Advances
in Boundary Elements 1: 243-250.

Gray, L.J. & Lutz, E. 1990. On the treatment of corners in the boundary element method. Journal
of Computational and Applied Mathematics 32: 369-386.

Gray, L.J. 1990. Electroplating corners. Computational Engineering with Boundary Elements 1:
63-72.

Gray, L.J. & Manne, L.L. 1993. Hypersingular integrals at a corner. Engineering Analysis with
Boundary Elements 11: 327-334.

Guiggiani, M. 1995. Hypersingular boundary integral equations have an additional free term.
Computational Mechanics 16: 245-248.

Hong, H.-K. & Chen, J.T. 1988. Derivation of integral equations in elasticity. Journal of
Engineering Mechancis ASCE 114 (6): 1028-1044.

Liang, M.T., Chen, J.T. & Yang, S.S. 1999. Error estimation for boundary element method.
Engineering Analysis with Boundary Elements 23 (3): 257-265.

Lutz, E., Gray, L.J. & Ingraffea, A. R. 1991. An overview of integration methods for hypersingular
boundary integrals. Proc. BEM13 Confernece, Computational Mechanics Publishing,
Southampton.

Mantic, V. 1985. On computing boundary limiting values of boundary integral with strongly
singular and hypersingular kernels in 3-D BEM for Elastostatics. Engineering Analysis with
Boundary Elements. 12: 115-134.

Mantic, V. 1993. A new formula for the C-matrix in the Somigliana identity. Journal of Elasticity
33:191-201.

Mantic, V. & Paris, F. 1995. Existence and evaluation of the two free terms in the hypersingular
boundary integral equation of potential theory. Engineering Analysis with Boundary Elements
16: 253-260.

Mukherjee, S. & Mukherjee, Y.X. 1998. The hypersingular boundary contour method for three-
dimensional linear elasticity. Journal of Applied Mechanics ASME 65: 300-309.



20 Jeng-Tzong Chen, Wei-Chih Chen, Kue-Hong Chen and I-Lin Chen

Mukherjee, S. 2000 a. CPV and HFP integrals and their applications in the boundary element
method. International Journal of Solids and Structures, 37: 6623-6634.

Mukherjee, S. 2000 b. Finite part of singular and hypersingular integrals with irregular boundary
source points. Engineering Analysis with Boundary Elements 24 (10): 767-776.

Phan, A,-V., Mukherjee, S. & Mayer, J.R.R. 1998 The hypersingular boundary contour method for two-
dimensional linear elasticity. Acta Mechanica 130: 209-225.

Portela, A., Aliabadi, M.H. & Rooke, D.P. 1992. The dual boundary element method: Effective
implementation for crack problems. International Journal for Numerical Methods in
Engineering, 33: 1269-1287.

Rizzo, F. J. 1967. An integral equation approach to boundary value problems of classical
elastostatics. Quarterly Journal of Applied Mathematics 25: 83-95.

Wrobel L. C. 2002. The Boundary Element Method, Vol. I, John Wiley, New York.

NOTATIONS
DBIEs dual boundary integral equations
BEM boundary element method
B,B", B. B~ contour integration path including the singularity
R.P.V. Riemann principal value
C.P.V. Cauchy principal value
HPV. Hadamard principal value
Upi(s, x) kernel function of the first dual integral equation (vector field)
Ti(s, x) kernel function of the first dual integral equation (vector field)
Lyi(s, x) kernel function of the second dual integral equation (vector field)
Mp(s, x) Kernel function of the second dual integral equation (vector field)
X position vector of the field point
s position vector of the source point
g (x) the k" potential on the boundary point x
uy(s) the k™ potential on the boundary point s
ni(s the i component of the normal vector on the point s
7;(x) the i component of the normal vector on the point x
1:() traction of the souce point s
ti(x) traction of the field point x
€ radius of the contour integration around the singularity
(€,0) polar coordinate
(6,0, 9) spherical coordinate

Submitted : 25/8/2002
Revised :  5/5/2003
Accepted : 13/5/2003



Revisit of the free terms of the dual boundary integral equations for elasticity 21

dgdod| Lol Y slandl L) 3uaeMI 5 gdoedl J o>~
slal BNy el b D pedt Dled

e =l 5 ot e S b ed - s et R -
Slaseeld 2ol 1 Ol b Frsler = 5LeV1s ) sedl Avdin (3
Ol 56 - 20224 7= LS

oM

& Bl Bled Eed) L SVsladl S plinal o5 el Va3
u.iv\&j\ <=Ua_: L?.e dUJ} (BJJk'LcJ\) .)au.\jb Z\LL>->“ ai“aj)a f\u\}dmb u..l.a )Ual S99
CpsSs de sg VI sl e Bl el OF L ) 55 sl B3I
gl o s L el dedl I Aol aslas ol Sl el oY)
a4 oy s Ll ssaseadl sl ke Gl Lo ST sslelsly sl sae )
Vg dm L BLoYL 35S bl ol Loa 55 e b S Gl
. D gdowo

LJ}J\ J_jb;s\ éMJSj sz 4};,,.5".”"'\ ZMLD- QL.B ZJ:.E.ay\.S\ ))J}J\ t.o}w“ =09
Ok e dyandl o5 08 Alaal) B! 2SI S Nslaadl LS OB 53 5doeeSUl
.Eijoua}U\ J}.bJ\ Lfsl 2&>-L>J\

(LY Wsles) pladual speadl o Solas Jore Jo ol Joxil 155
Cigzeadl (iU dslas 5) dgaeadUl






