PENREE S ESEL g
The 8th National Conference on Structure Engineering
Sun Moon Lake, Taiwan, R. O. C., 1-3 Sept. 2006
Paper No. L-018
Regularized meshless method for antiplane shear problems with

multiple inclusions
Jﬁ»l"‘ @gﬁ-/z :"ﬁiﬁ ITx g % f}é;&(@‘.ﬁyﬁ

J. H. Kao', K. H. Chen? and J. T. Chen*
! Department of Harbor and River Engineering National Taiwan Ocean University Keelung
20224, Taiwan
2 Department of Information Management Toko University Chia-Yi 61363, Taiwan

Abstract

In this paper, we employ the regularized meshless method (RMM) to solve antiplane shear problem
with multiple inclusions. The solution is represented by a distribution of double layer potentials. The
troublesome singularity in the MFS is avoided and the diagonal terms of influence matrices are
determined. The coupled problem considerably reduces to two problems. One is the exterior problem
for matrix with hole subject to a far-displacement field, the other is the interior problem for inclusion.
The two boundary data between matrix and inclusion satisfy the continuous conditions in the interface
between the inclusion and antiplane matrix. The linear algebraic system is obtained by matching
boundary conditions and continuity conditions. Finally, the numerical results demonstrate the accuracy
of the solutions after compared with analytical solutions and the Laurent series expansion method.
Good agreements are obtained.
Keywords: antiplane shear, inclusion, regularized meshless method, MFS, shear stress.
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1. Introduction

It is known that most engineering materials contain some defects in the form of cracks, inclusions,
or second-phase particles. In 1992, Honein [1] derived the solution for double circular cylindrical
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elastic inclusions perfectly bonded to an elastic matrix of infinite extent, under anti-plane shear. The
solution was obtained via iterations of Mdbius transformations. Later, Gong [2] derived the general
solution for multiple circular inclusions under antiplane shear in 1995. The general solutions are
obtained by using antiplane complex potentials and the Laurent series expansion method [2]. In this
study, we implement a systematic method for multiple inclusions under anti-plane shear.

The method of fundamental solutions (MFS) [3] is one of the meshless methods [4] and belongs to a
boundary method of boundary value problems [5], which can be viewed as a discrete type of indirect
boundary element method [6, 7]. In the MFS, the solution is approximated by a set of fundamental
solutions of the governing equations which are expressed in terms of sources located outside the
physical domain. The unknown coefficients in the linear combination of the fundamental solutions are
determined by matching the boundary condition. The method is relatively easy to implement. It is
adaptive in the sense that it can take into account sharp changes in the solution and in the geometry of
the domain and can easily incorporate complex boundary conditions. A survey of the MFS and related
method over the last thirty years has been found [3]. However, the MFS is still not a popular method
because of the debatable artificial boundary distance of source location in numerical implementation
especially for a complicated geometry. The diagonal coefficients of influence matrices are divergent in
conventional case when the fictitious boundary approaches the physical boundary. In spite of its gain
of singularity free, the influence matrices become ill-posed when the fictitious boundary is far away
from the physical boundary. It results in an ill-posed problem since the condition number for the
influence matrix becomes very large.

Recently, we developed a modified MFS, namely regularized meshless method (RMM), to
overcome the drawback of MFS for solving the simply and multiply-connected Laplace problem [8, 9].
The method eliminates the well-known drawback of equivocal artificial boundary. The subtracting and
adding-back technique [8] can regularize the singularity and hypersingularity of the kernel functions.
This method can simultaneously distribute the observation and source points on the physical boundary
even using the singular kernels instead of non-singular kernels. The diagonal terms of the influence
matrices can be extracted out by using the proposed technique.

In this paper, the RMM is provided to solve the antiplane shear problem with multiple inclusions.
A general-purpose program is developed to solve the antiplane shear problems for arbitrary number of
inclusions. The results are compared with analytical solutions and the Laurent series expansion
method [2]. Furthermore, the stress concentration for different shear modulus ratio will be studied
through several examples to show the validity of our method.

2. Governing equation and boundary conditions

Consider inclusions embedded in another matrix of infinitely domain as shown in Fig. 2. The
inclusions and the matrix have different elastic properties. The matrix is subject to a remote antiplane
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shear, o, =17, .The displacement field of the antiplane deformation is defined as:

zy
u=v=0, w=w(xY), (1)

where w is a function of X and Y. For a linear elastic body, the stress components are

O =0y = lU—, 2
13 an =M ox (2)
oW
0-2320-32:/151 (3)
where g is the shear modulus. The equilibrium equation can be simplified to
00y, N 00, 0. @
OX oy
Thus, we have
2 2
w w
d A a—2=v2w=o. (5)
ox® oy
The continuity conditions across the matrix-inclusion interface is written as
wh=w', (6)
ow™ ow'
= , 7
Ho on Hy on (7

where the superscripts i and m denote inclusion and material.

3. Conventional method of fundamental solutions

By employing the RBF technique [7], the representation of the solution in Eqg. (5) for multiple
inclusions problem as shown in Fig. 2, can be approximated in terms of the strengths «; of the

singularitiesat s; as

W(xi):ZN:T(sj,xi)aj

\ " (8)
1 1N, N
=T %)+ D T(s;,X)a; ++ D T(s5.%)a;

j=1 j=N;+1 J=Ng+Ny+-+N,_+1
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w(x) :iM (85, %)e;

on,.
)
Ny N;+N, N
=D M(s; x)a; + D M(s) X )a; ++ D M(s; %),
j=1 j=N;+1 J=Ny+Ny++Np 5 +1

where T(sj,xi) is RBF, X and s; represent ith observation point and jth source point,

respectively, «; are the jth unknown coefficients (strength of the singularity), N;,N,,---,N,are

the numbers of source points on m numbers of boundaries of inclusions, respectively, while N is

oT(s;,%)

——— . The
on

Xi

the total numbers of source points (N =N, +N,+--+N_ ) and M(s;,Xx)=

coefficients {a j }L are determined so that BCs are satisfied at the boundary points. The distributions

of source points and observation points are shown in Fig. 1 (a) for the MFS. The chosen bases are the
double layer potentials [7] as

((Xi _Sj)in')

iy

T(S"Xi):

i (10)

2((x =8 =s;)m)  (n;,n) ()

M(s;, %) =
i i

where (,) is the inner product of two vectors, i is ‘sj — xi‘, n. isthe normal vector at S, and

i

n; isthe normal vector at X;.

I

It is noted that the double layer potentials have both singularity and hypersingularity when source
and field points coincide, which lead to difficulty in the conventional MFS. The fictitious distance
between the fictitious (auxiliary) boundary (B’) and the physical boundary (B), d, shown in Fig. 1

(2) needs to be chosen deliberately. To overcome the abovementioned shortcoming, s; is distributed

on the physical boundary as shown in Fig. 1 (b), by using the proposed regularized technique as
written in next Section.

4. Regularized meshless method

The antiplane shear problem with multiple inclusions is decomposed into two problems as
shown in Figs. 3 and 4. One is the exterior problem for matrix with hole subject to a
far-displacement field, the other is the interior problem for inclusions. The two boundary data
between matrix and inclusion satisfy the continuous conditions in Egs.(6) and (7).
Furthermore, the exterior problem for the matrix can be decomposed into two problems as
shown in Fig. 4. One is the matrix with no hole subject to a far-displacement field, the other is

the matrix with hole. The representations of the two solutions for interior problem (W(Xil))
and exterior problem (w(xf’)) are formulated by using the RMM as follows:

4
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(1) Interior problem (Inclusions)
When the collocation point X; approaches the source point s;, the kernels in Egs. (8) and (9)

become singular. Egs. (8) and (9) for the multiply-inclusions problem as plotted in Fig. 2(b) need to be
regularized by using the regularization of subtracting and adding-back technique [8] as follows:

Ny+-+Ny

w(x') = ZT(SJ, X o+t ZT(SJ, X o +-

J=Ng++Np_+1

Ny+-+Np g
+ 0 DTS+ ZT(SJ, ! (12)
J=Np+ N+ j=Ng+ 4N+
Ny++Ny
- ZT(SJ, e, X' eB,, p=1 2, 3., m.
J=Ng++Np_ +1
where xi' is located on the boundaries Bp (p=1 2, 3,-~-, m),and
Ny+--+Np
ZT(SJ, x)=0, x' €B,, p=1 2, 3, m. (13)

J=Ng N+

Therefore, we can obtain

w(x') = ZT(SJ, X o+ ZT(SJ, |

j=Ng++Np,+1

Ny+-+Np Ny +o+Np g
+ ZT(SJ, X o+ DT(s).x)
j=i+l J=Ng++Np o +1 (14)
Np+-+Np
+ ZT(SJ’ i ZT(SJ’ |) T(S|’X|)
J=Ng- 4N+ j=Ng++Np_g+1

X €B,, p=1 2, 3., m,

Similarly, the boundary flux is obtained as

N, Ny+-+N,
owlx) SSM(s K et S M) K e+
ﬁl’l. j=1 =Nt N1
Ny+-+Np g
+ D M(s),x)a; + ZM(SJ, , (15)
J=Ng++Np o+ J=Ng+ N+
Np++N,
- ZM(SJ, Da;, X €B,, p=1 2, 3, m.
J=Ng+-+Np_ +1
in which
Np++N,
ZM(SJ, x)=0, x/ eB,, p=1 2, 3., m. (16)

J=Ng+ 4Ny +1

Therefore, we obtain
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wlx) iM(sj,,)a+ + ZM(SJ,I

6” | j=1 J=Ng+e+Np +1
N1+ +N 1+ +Nm1
+ ZM(SJ, XDag+-+ D M(s],X)
j=i+l j=Np++Np o +1 (17)
Np+-+N,
+ ZM(SJ, xa; - ZM(SJ, x)-M(s' x') |
J=Ng+-+Np+1 J=Ng+-+Np_4+1

x €B,, p=1 2, 3., m,

(2) Exterior problem (Matrix)
When the observation point x° locates on the boundaries B, (p=1 2, 3, m), Eq.(12)
becomes

Ny++Ng

w(x®) = ZT(SJ, X2)a; + e+ ZT(SJ, X2)a; +-

Jj=Ng+-+Np_+1

Ny+-+Np 4
+ > TE) X))+ ZT(SJ, { (18)
j=Ng+ N o+ J=Ng++N 5+
Np+-+N,
-~ ZT(SJ, Da;, x*'eB,, p=1 2, 3, m.

J=Ng+-+Np_+1
Where XiO is also located on the boundaries Bp (p=1 2, 3,---, m)and

ZT(sJ, x)a =0, x{ €B,, p=1 2, 3., m. (19)

j=Ng+-+Nj 4 +1

Hence, we obtain

w(x°) = ZT(SJ, X\)a; +-e+ ZT(SJ, ,

j=Ng+-- +Np 1+l

Np+-+N, Ny 4Ny
+ ZT(SJ, Naj++  DT(D %
j=i+l j=Ng+-+Np o+l (20)
Np+--+Ny
+ ZT(SJ’ i - ZT(SJ’ |) T(S| ’X| )
j=Ng++Np g +1 j=Ng++Npy+1

x**'eB,, p=1 2, 3., m.

Similarly, the boundary flux is obtained as

8W X N, Ny+-+N,
W(K’) =Y MY, X))+ + ZM(SJ, XO)a +- (21)
on X0 j=1 j=Ng++Np +1
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Ny+-+Np
+ Y MY x)a; + ZM(SJ, ,
j=Ng+ Ny o+ j=Np+ N+
Np+-+N,
- ZM(s,, De, X" eB,, p=1 2, 3., m.
J=Ng+-+Np_;+1
in which
ZM(SJ, = x{ €B,, p=1 2, 3., m. (22)

j=Ny+-+Nj;+1

Hence, we obtain

6W(Xi) ZM(SJ’ I)a et ZM(SJ, i
anxio j=1 J=Np+-+Np,+1
Np+-+N, Np+-+Np
+ ZM(SJ, xa;++ Y M), X))
j=i+l j=Ng++Np o+ (23)
Ny +-- +N
+ ZM(SJ’ |)0!_ ZM(SJ, |) M(S|’ |)
J=Np 44Ny +1 j=Np+-+Npy+1

x.o°"eBp, p=1 2, 3, m.

The detailed derivations of Egs. (13), (16), (19) and (22) are given in the reference [8].
5. Construction of influence matrices for inclusion problems under antiplane shear

By superimposing the original system to two systems and matching continuity conditions as
shown in Figs. 3-5, the linear algebraic system for antiplane shear problems can be obtained as:

] Rl i )

Al melllfam) _{g_ﬁ\;vm} ' (24)

where W™ denotes the out-of-plane elastic displacement at infinity. Following Eq. (24), the
unknown densities ({ai} and {am}) are obtained and the field solution can be solved by using Eqg.

(8)
6. Numerical example

Fig. 5 shows the matrix imbedded three inclusions under antiplane shear. The geometry conditions
is d =2r,. Itis interesting to note that a uniform stress field results when the shear modulus is the
same for the inclusion and the matrix. Therefore, the stress concentrations o, in the matrix around
the interface of the first inclusion are shown in Figs. 6 (a)~(d), respectively. From Fig. 6 (a), it is
obvious that the case of holes ( 4/, =,/ ptg = 143/ 14,=0.0) leads to the maximum stress

concentration at @ =0°. Because of the interaction effects, it is larger than 2 of a single hole [1].
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The stress component o,, Vvanishes in the case of approximate to rigid inclusions

(! g = 1, 1y = 151 11, =5.0). The agreement result compared with the Laurent series expansion
method.

7. Conclusions

In this study, we employed the RMM approach to solve for antiplane shear problems with multiple
inclusions. Only the boundary nodes on the physical boundary are required. The major difficulty of the
coincidence of the source and collocation points in the conventional MFS is then circumvented.
Therefore, the controversy of the fictitious boundary outside the physical domain by using the
conventional MFS no longer exists. Although it results in the singularity and hypersingularity due to
the use of double layer potential, the finite values of the diagonal terms for the influence matrices have
been extracted out by employing the regularization technique. The numerical results by applying the
developed program agreed very well with the Laurent series expansion method.
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Fig. 1 (b) Regularized meshless method.
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Fig. 2 Problem sketch for multiple inclusions Fig. 3 Decomposition of the problem.
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Fig. 4 Decomposition of the problem of Fig. 3 Fig. 5 Problem sketch of three inclusions under
@. antiplane shear.
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Fig. 6 Stress concentration factor o, /7 along the boundaries of both the left inclusion and matrix
for various different shear modulus ratios.
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