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Abstract 
In this paper, we employ the regularized meshless method (RMM) to solve antiplane shear problem 

with multiple inclusions. The solution is represented by a distribution of double layer potentials. The 
troublesome singularity in the MFS is avoided and the diagonal terms of influence matrices are 
determined. The coupled problem considerably reduces to two problems. One is the exterior problem 
for matrix with hole subject to a far-displacement field, the other is the interior problem for inclusion. 
The two boundary data between matrix and inclusion satisfy the continuous conditions in the interface 
between the inclusion and antiplane matrix. The linear algebraic system is obtained by matching 
boundary conditions and continuity conditions. Finally, the numerical results demonstrate the accuracy 
of the solutions after compared with analytical solutions and the Laurent series expansion method. 
Good agreements are obtained. 

Keywords: antiplane shear, inclusion, regularized meshless method, MFS, shear stress. 

摘要 

本文係利用正規化無網格法求解反平面含多夾雜問題，其解是由雙層勢能表示。傳

統的基本解法是利用避開奇異行為去決定影響矩陣的對角線項，正規化無網格法是利用

奇異扣除奇異的方法去正規化奇異行為及決定影響矩陣的對角線項。本問題可以拆解成

兩個邊界值問題，一個是材料含空洞的外域問題受到無窮遠的位移場作用，另一個是夾

雜的內域問題。而介於材料與夾雜間的接合面則須滿足連續條件。配合邊界條件與連續

條件之後就可以決定線性代數系統。最後，我們將數值結果與 Laurent 級數展開法比較，

驗證其正確性，我們將獲得正確的結果。 
關鍵字: 反平面剪力，夾雜，正規化無網格法，基本解法，剪應力。 

 

1. Introduction 

It is known that most engineering materials contain some defects in the form of cracks, inclusions, 
or second-phase particles. In 1992, Honein [1] derived the solution for double circular cylindrical 
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elastic inclusions perfectly bonded to an elastic matrix of infinite extent, under anti-plane shear. The 
solution was obtained via iterations of Möbius transformations. Later, Gong [2] derived the general 
solution for multiple circular inclusions under antiplane shear in 1995. The general solutions are 
obtained by using antiplane complex potentials and the Laurent series expansion method [2]. In this 
study, we implement a systematic method for multiple inclusions under anti-plane shear. 

The method of fundamental solutions (MFS) [3] is one of the meshless methods [4] and belongs to a 
boundary method of boundary value problems [5], which can be viewed as a discrete type of indirect 
boundary element method [6, 7]. In the MFS, the solution is approximated by a set of fundamental 
solutions of the governing equations which are expressed in terms of sources located outside the 
physical domain. The unknown coefficients in the linear combination of the fundamental solutions are 
determined by matching the boundary condition. The method is relatively easy to implement. It is 
adaptive in the sense that it can take into account sharp changes in the solution and in the geometry of 
the domain and can easily incorporate complex boundary conditions. A survey of the MFS and related 
method over the last thirty years has been found [3]. However, the MFS is still not a popular method 
because of the debatable artificial boundary distance of source location in numerical implementation 
especially for a complicated geometry. The diagonal coefficients of influence matrices are divergent in 
conventional case when the fictitious boundary approaches the physical boundary. In spite of its gain 
of singularity free, the influence matrices become ill-posed when the fictitious boundary is far away 
from the physical boundary. It results in an ill-posed problem since the condition number for the 
influence matrix becomes very large. 

Recently, we developed a modified MFS, namely regularized meshless method (RMM), to 
overcome the drawback of MFS for solving the simply and multiply-connected Laplace problem [8, 9]. 
The method eliminates the well-known drawback of equivocal artificial boundary. The subtracting and 
adding-back technique [8] can regularize the singularity and hypersingularity of the kernel functions. 
This method can simultaneously distribute the observation and source points on the physical boundary 
even using the singular kernels instead of non-singular kernels. The diagonal terms of the influence 
matrices can be extracted out by using the proposed technique. 

In this paper, the RMM is provided to solve the antiplane shear problem with multiple inclusions. 
A general-purpose program is developed to solve the antiplane shear problems for arbitrary number of 
inclusions. The results are compared with analytical solutions and the Laurent series expansion 
method [2]. Furthermore, the stress concentration for different shear modulus ratio will be studied 
through several examples to show the validity of our method. 
 

2. Governing equation and boundary conditions  

Consider inclusions embedded in another matrix of infinitely domain as shown in Fig. 2. The 
inclusions and the matrix have different elastic properties. The matrix is subject to a remote antiplane 



中華民國第八屆結構工程研討會，2006 年 9 月 1~3 日 

 

3 

shear, ∞= τσ zy . The displacement field of the antiplane deformation is defined as: 

0== vu , ),( yxww = , (1)

where w  is a function of x  and y . For a linear elastic body, the stress components are 

x
w
∂
∂

== μσσ 3113 , (2)

y
w
∂
∂

== μσσ 3223 , (3)

where μ  is the shear modulus. The equilibrium equation can be simplified to 
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The continuity conditions across the matrix-inclusion interface is written as 

im ww = ,  (6)
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where the superscripts i and m denote inclusion and material. 
 

3. Conventional method of fundamental solutions  

By employing the RBF technique [7], the representation of the solution in Eq. (5) for multiple 
inclusions problem as shown in Fig. 2, can be approximated in terms of the strengths jα  of the 

singularities at js  as 
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where ),( ij xsT  is RBF, ix  and js  represent ith observation point and jth source point, 

respectively, jα  are the jth unknown coefficients (strength of the singularity), mNNN ,,, 21 L  are 
the numbers of source points on m  numbers of boundaries of inclusions, respectively, while N  is 

the total numbers of source points )( 21 mNNNN +++= L  and 
ix

ij
ij n

xsT
xsM

∂
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),( . The 

coefficients { }N
jj 1=

α  are determined so that BCs are satisfied at the boundary points. The distributions 

of source points and observation points are shown in Fig. 1 (a) for the MFS. The chosen bases are the 
double layer potentials [7] as 

2
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where (,) is the inner product of two vectors, ijr  is ij xs − , jn  is the normal vector at js , and 

in  is the normal vector at ix . 
It is noted that the double layer potentials have both singularity and hypersingularity when source 

and field points coincide, which lead to difficulty in the conventional MFS. The fictitious distance 
between the fictitious (auxiliary) boundary ( B′ ) and the physical boundary ( B ), d , shown in Fig. 1 
(a) needs to be chosen deliberately. To overcome the abovementioned shortcoming, js  is distributed 
on the physical boundary as shown in Fig. 1 (b), by using the proposed regularized technique as 
written in next Section. 

 
4. Regularized meshless method 

The antiplane shear problem with multiple inclusions is decomposed into two problems as 
shown in Figs. 3 and 4. One is the exterior problem for matrix with hole subject to a 
far-displacement field, the other is the interior problem for inclusions. The two boundary data 
between matrix and inclusion satisfy the continuous conditions in Eqs.(6) and (7). 
Furthermore, the exterior problem for the matrix can be decomposed into two problems as 
shown in Fig. 4. One is the matrix with no hole subject to a far-displacement field, the other is 
the matrix with hole. The representations of the two solutions for interior problem ( )( I

i
xw ) 

and exterior problem ( )( O
i

xw ) are formulated by using the RMM as follows: 
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(1) Interior problem (Inclusions) 
When the collocation point ix  approaches the source point js , the kernels in Eqs. (8) and (9) 

become singular. Eqs. (8) and (9) for the multiply-inclusions problem as plotted in Fig. 2(b) need to be 
regularized by using the regularization of subtracting and adding-back technique [8] as follows: 
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where I
ix  is located on the boundaries pB  ( mp ,,3,2,1 L= ), and 
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Similarly, the boundary flux is obtained as 
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Therefore, we obtain 
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(2) Exterior problem (Matrix) 
When the observation point O

ix  locates on the boundaries pB  ( mp ,,3,2,1 L= ), Eq. (12) 
becomes 

LL
L

L

+++= ∑∑
++

+++== −

p

P

NN

NNj
j

O
i

O
j

N

j
j

O
i

O
j

O
i xsTxsTxw

1

11

1

11
),(),()( αα  

∑∑
+++=

++

+++= −

−

−

++
N

NNj
j

O
i

O
j

NN

NNj
j

O
i

O
j

m

m

m

xsTxsT
11 11

11

21

),(),(
L

L

L

αα  

∑
++

+++= −

−
p

P

NN

NNj
i

I
i

I
j xsT

L

L

1

11 1
),( α , p

IorO
i Bx ∈ , mp ,,3,2,1 L= . 

(18)

Where O
ix  is also located on the boundaries pB  ( mp ,,3,2,1 L= ) and  
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Similarly, the boundary flux is obtained as 
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The detailed derivations of Eqs. (13), (16), (19) and (22) are given in the reference [8]. 
 

5. Construction of influence matrices for inclusion problems under antiplane shear 

By superimposing the original system to two systems and matching continuity conditions as 
shown in Figs. 3-5, the linear algebraic system for antiplane shear problems can be obtained as: 
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where ∞w  denotes the out-of-plane elastic displacement at infinity. Following Eq. (24), the 
unknown densities ({ }iα  and { }mα ) are obtained and the field solution can be solved by using Eq. 
(8) 

 
6. Numerical example 

Fig. 5 shows the matrix imbedded three inclusions under antiplane shear. The geometry conditions 
is 12rd = . It is interesting to note that a uniform stress field results when the shear modulus is the 
same for the inclusion and the matrix. Therefore, the stress concentrations θσ Z  in the matrix around 
the interface of the first inclusion are shown in Figs. 6 (a)~(d), respectively. From Fig. 6 (a), it is 
obvious that the case of holes ( 0.0/// 030201 === μμμμμμ ) leads to the maximum stress 

concentration at o0=θ . Because of the interaction effects, it is larger than 2  of a single hole [1]. 
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The stress component θσ Z  vanishes in the case of approximate to rigid inclusions 
( 0.5/// 030201 === μμμμμμ ). The agreement result compared with the Laurent series expansion 
method. 

7. Conclusions 

In this study, we employed the RMM approach to solve for antiplane shear problems with multiple 
inclusions. Only the boundary nodes on the physical boundary are required. The major difficulty of the 
coincidence of the source and collocation points in the conventional MFS is then circumvented. 
Therefore, the controversy of the fictitious boundary outside the physical domain by using the 
conventional MFS no longer exists. Although it results in the singularity and hypersingularity due to 
the use of double layer potential, the finite values of the diagonal terms for the influence matrices have 
been extracted out by employing the regularization technique. The numerical results by applying the 
developed program agreed very well with the Laurent series expansion method. 
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Fig. 1 (a) Conventional MFS. Fig. 1 (b) Regularized meshless method. 

 

 

Fig. 2 Problem sketch for multiple inclusions 
problem under remote shear. 

Fig. 3 Decomposition of the problem. 
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Fig. 4 Decomposition of the problem of Fig. 3 
(a). 

Fig. 5 Problem sketch of three inclusions under 
antiplane shear. 

 

  

  

Fig. 6 Stress concentration factor τσ θ /m
z  along the boundaries of both the left inclusion and matrix 

for various different shear modulus ratios. 

 

(a) (b) 

(c) (d) 


