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Abstract 
In this paper, the eigensolutions for membranes with stringers are obtained by using the 

developed meshless method in conjunction with the SVD technique in a single domain and 
multi-domain technique in two sub-domains, respectively. The solution is represented by a distribution 
of double layer potentials. The source points can locate on the real boundary by using the 
desingularization technique to regularize the singularity and hypersingularity of the kernel functions 
and the diagonal terms of influence matrices are obtained. The main difficulty of the coincidence of 
the source and collocation points is disappeared. By adopting the SVD technique for rank revealing, 
the nontrivial boundary mode are detected by the successive zero singular values which are not due to 
the degeneracy of degenerate boundary. The boundary modes are obtained according to the right 
unitary vectors with respect to the zero singular values in the SVD. Finally, the results are compared 
with the dual boundary element method (DBEM) and it shows the accuracy and efficiency. 

Keywords: meshless method, SVD, eigensolutions, membranes, multi-domain. 

摘要 
本文中，使用新發展型無網格法並配合奇異值分解法或多重領域分割的技巧，來解含問題

具束制條(退化邊界)之薄膜振動問題的特徵值及特徵向量。使用勢能理論的雙層勢能法可將解表

現出來。藉由本研究所提出的去奇異技術可將核函數的奇異性與超強奇異性正規化，使得場點

與源點可分佈於同一邊界上，因此可解得影響係數矩陣的主對角線上的值。對一含對退化邊界

之特徵問題使用無網格法配合奇異值分解法的技巧將可同時省去人工邊界的切割，由奇異值分

解法之技巧可得到矩陣的秩降數，藉由考慮不因退化邊界所造成的零奇異值，而可對應到一非

無聊解的邊界模態。此邊界模態可依據奇異值分解法中零奇異值所對應的右酋向量。最後本法

所得之結果與對偶邊界元素法作比較後，驗證了此新型無網格法的精準度與效率。 

關鍵字: 無網格法，奇異值分解法，特徵解，薄膜，多重領域。 
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1.Introduction 
Over twenty years, the main applications were limited in BVPs without degenerate boundaries. 

Since the degenerate boundary results in rank deficiency for the Meshless method and BEM, the 
multi-domain BEM [2] was utilized to solve the nonunique solution by introducing an artificial 
boundary. The drawback of the multi-domain approach is obvious in that the artificial boundary is 
arbitrary, and thus not qualified as an automatic scheme. In addition, a larger system of equations is 
required since the degrees of freedoms on the interface are put into the system. For half plane or 
infinite problem, the artificial boundary is not finite. The three shortcomings encourage us to deal with 
the degenerate boundary problem by using the single domain concept with SVD technique. 
Up to the present, no literature has been published in international journal by using the meshless 
method [3, 4] without the multi-domain approach to the authors' best knowledge. We may wonder is it 
possible to find the eigensolution in a single domain with a degenerate boundary approach. Therefore, 
we deal with the degenerate problem using the novel meshless method in conjunction with the SVD 
technique in this paper. We solve the membrane eigenproblems with stringers using the novel meshless 
method+SVD. By employing only the novel meshless method, the eigenvalue is detected in a single 
domain by finding the successive zero singular values using the rank revealing technique of SVD. The 
case with inclined stringer is solved. 

2. Formulation 
2-1 Formulation of novel meshless method 

By employing the RBF technique, the acoustic pressure can be approximated in terms of the 

strengths of the singularities ( js ) as 
 (1)

 (2)
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where  
 (5)
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The chosen RBFs are the double layer potentials from the potential theory given as: 
   (7)

      (8)

where (1)
2 ( )ijH kr  is the Hankel function of the first kind and the second order. 
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= −∑ , kn  is the k-th component of the outward normal vector at 

source point sj; kn  is the k-th component of the outward normal vector at field point xi. It is noted 

that the double layer potentials in Eqs.(7) and (8) have both singularity and hypersingularity at the 
origin, which leads to troublesome singular kernels and controversial auxiliary boundary for the MFS. 
The off-set distance between the off-set (auxiliary) boundary (B') and the real boundary (B) needs to 

be chosen deliberately. To overcome this drawback, js  is distributed on the real boundary by using 
the following proposed regularized techniques. The rationale for choosing the double layer potential 
instead of single layer potential as used in the proposed method for the form of RBFs is to take 
advantage of the regularization of the subtracting and adding-back technique, so that no off-set 
distance is needed when evaluating the diagonal coefficients of influence matrices as explaining in the 
following section. The single layer potential cannot be chosen as the form of RBFs, because the 
Eqs.(13) and (14) in the following text of next section are not satisfied. If the single layer potential is 
used, the regularized technique of subtracting and adding-back method will fail [5, 6].  
 

2-2 Derivation of diagonal coefficients of influence matrices for arbitrary domain using a singular 
meshless method 
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            (9)
(10)

by using the limiting form for small arguments and the identities from the generalized function as 
shown below [1], where the superscript, E, denotes the exterior domain,  

    (11)

      (12)

The kernels in Eqs.(9) and (10) have the same singularity strength as the Laplace equation [?]. 
Therefore, Eqs.(1) and (2) for the eigenproblem need to be regularized by using special treatment such 
as 
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brackets for the special treatment technique. After using the regularized technique of subtracting and 
adding-back method [5, 6], we are able to remove the singularity and hypersingularity of the kernel 
functions. Therefore, the diagonal coefficients for the influence matrices can be extracted out as:  

     
 
 
 
 
 

 
 
 

(17)

 
 
 
 
 

 
 

(18)

where ( , ),   ( , ),   ( , ),   and ( , ).  I j i E j i I j i E j i
ij ij ij ija A s x a A s x b B s x b B s x= = = = By collocating N 

observation points on real boundary to match with the BCs from Dirichlet boundary condition and 
Neumann boundary condition, we can get the final system of Eqs. (17) and (18).  

 

2-3 Treatment of degenerate boundary problems 
(1). Multi-domain technique 
For normal boundary problems, the proposed meshless method can be applied directly on them 

without difficulty. But for degenerate boundary problem, it will encounter rank-deficient problem due 
to the coincidence of boundary nodes on the degenerate boundary. The general technique to carry out 
the degenerate boundary problem by the use of dual boundary element method (DBEM), multi-domain 
BEM [2] is always applicable way to solve it. Here we combine the multi-domain technique and our 
proposed meshless method to handle it. 
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(19)

(2) Singular value decomposition technique 

(a) Direct-searching scheme in the novel meshless method  
The eigenvalue k can be obtained by direct searching the rank versus k, such that 

   ( )=N-1,        for Dirichlet problemIRank A⎡ ⎤⎣ ⎦                             (20) 

and 

            ( ) 1,        for Neumann problemIRank B N⎡ ⎤ = −⎣ ⎦                         (21) 

After determining the eigenvalues, the boundary mode can be obtained by setting a normalized 
value to be one in a boundary node for the nontrivial vector. By substituing the eigenvalue and 
boundary mode into Eqs.(1) and (2), the interior mode can be obtained. 

 

(b) Novel meshless method +SVD 
The aforementioned the multi-domain technique is well known for degenerate boundary 

problems in the literature. Here, we propose a new approach to deal with the eigenproblem using the 
novel meshless method in conjunction SVD technique. The sketch of distribution of source points on 
the degenerate boundary was shown in Fig.2. The influence matrix IA⎡ ⎤⎣ ⎦  and IB⎡ ⎤⎣ ⎦  are rank 

deficient due to two sources, the degeneracy of stringers and the nontrivial mode for the eigensolution. 
Since Nd is the numbers of source points locate on the stringer, the matrix IA⎡ ⎤⎣ ⎦  and IB⎡ ⎤⎣ ⎦  result in 

Nd zero singular values ( 1 2 0
dNσ σ σ= = = =L ) 

The next Nd
th zero singular value 1 0

dNσ + =  originates from the nontrivial eigensolution. To 

detect the eigenvalues, the 1dNσ +  zero singular value versus k can be plotted to find the drop where 
the eigenvalue occurs. Since the SVD technique is adopted for rank revealing, the decomposition is 
reviewed as follow:  
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in which 1 1P Pσ σ σ+≥ ≥ ≥L  and [ ]
P P

H

×
Ψ  is the complex conjugate transpose of a right 

unitary matrix with dimension P P×  constructed by the right singular vectors ({ } , 1, 2, ,i i Pψ = L ). 
As we can see in Eq.(36), there exist at most P nonzero singular values. By employing the SVD 
technique to determine the eigenvalue, we can obtain the boundary mode at the same time by 
extracting the right singular vector { }ψ  in the right unitary matrix [ ]

P P×
Ψ of SVD with respect to 

the near zero or zero singular value by using 
[ ]{ } { } ,   1, 2, , .i i iK i Pψ σ φ= = L                             (24) 

If the qth singular value, qσ , is zero, in Eq.(24) we have 

[ ]{ } { }0 0,   .q qK q Pψ φ= = ≤                                (25) 

According to Eq.(25), the nontrivial boundary mode is found to be the right singular vector, 
{ }qψ , in the right unitary matrix. Therefore, the step to determine nontrivial boundary mode in the 

multi-domain technique is avoided by setting a reference value. Here, Novel meshless method+SVD 
employed the influence IA⎡ ⎤⎣ ⎦  or IB⎡ ⎤⎣ ⎦  for [ ]K  in Eq.(17) for Dirichlet eigenproblem and Eq.(18) 

for Neumann eigenproblem.  
 

3. A benchmark test  
The problem are illustrated in Fig.3(a). A square membrane is given with a length a. For 

simplicity, we set l=1 m. In this paper, the novel meshless method in conjunction with SVD is 
employed. In order to check the validity, the results of our proposed meshless method + SVD are 
compared with DBEM The distribution of source point for the case is shown in Fig.3(b). Using the 

proposed method in conjunction with SVD, the ( 1dNσ +  )th zero singular value obtained by using 

Eq.(25) for IA⎡ ⎤⎣ ⎦  matrix, ([K]= [ ] IK A⎡ ⎤= ⎣ ⎦ ) is plotted versus the wave number in Fig.4(a). The 

curve drops at the eigenvalues. Direct searching scheme to extract out true and spurious eigenvalues 
resulted from degenerate boundary and nontrivial solution is employed in the present paper. For the 
generalized algebraic eigenproblem, some effective schemes have been proposed, e.g. William-Wellie 
algorithm. Since this is not our main focus, the efficient algorithm is not discussed here. By using the 
dual BEM, the determinants versus the wave number are also shown in Fig.4(b) Good agreements for 
the former eigenvalues are made. For this case, the number of boundary nodes, dN , on the degenerate 

boundary is 10. Since the ( 1)th
dN +  zero singular value, ( 1dNσ +  )th, originates from the nontrivial 

boundary mode, Fig.5(a) shows the 1dNψ +  along the boundary for the solved unknown densities 

corresponding to the former four eigenvalues. For the former four eigenvalues, the first right singular 
vector 1ψ  corresponding to the first zero singular value ( 1 0σ = ) along the boundary in Fig.5(b), also 
indicate that the 1ψ  is trivial except on the degenerate boundary. Since the former dN  zero singular 
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values ( 1 1 0
dNσ σ σ= = =L ) originate from the degenerate boundary, the corresponding right 

singular vectors ( 1 ~
dNψ ψ ) are found to be trivial except on the degenerate boundary as shown in 

Fig.6, for the case of k=4.6. In other words, Fig.6 reveals that the former ten zero singular values stem 
from the degeneracy due to stringer. The former four modes are compared well with those of DBEM 
as shown in Fig.7(a) and (b).  

 

4. Conclusions 
Instead of using the conventional meshless method in conjunction with multi-domain technique, 

the novel meshless method was successfully utilized to solve the degenerate boundary eigenproblem 
in conjunction with the SVD technique. Not only the drawback of conventional MFS can be avoided 
but also a single domain is required. By detecting the successive zero singular values, the eigenvalues 
were found and the boundary eigenmodes were obtained according to the corresponding right unitary 
vectors. Good agreement between the results of present method and the dual BEM was obtained. The 
goal to solve the eigenproblem using the singular formulation in a single domain was achieved. In 
addition, the boundary mode and eigenvalue can be obtained at the same time once the influence 
matrix was decomposed by using the SVD. 
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Figures 

 
 

 

 

Figure 1 (a)    Figure 1 (b) 

Figure 1 (a) Sketch of degenerate boundary 
problem (b) the scheme of multi-domain 

technique. 
 
 
 
 
Figure 2 Sketch for the distribution of 

source points on the degenerate boundary. 
 
 
 
  
 
 Figure 3 (a)         Figure 3 (b) 
Figure 3 The benchmark case of (a) Sketch 

of degenerate boundary problem, (b) The 
distribution of source point. 

 
 
 
 
 
 
 
 
 
 

Fig. 4 (a) The ( 1dNσ +  )th zero singular value 

versus the wave number using the novel 
meshless method+SVD. (b) The determinant 
versus the wave number using the dual BEM. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fiure 5 (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fiure 5 (b) 
Fiure 5 (a) The solved unknown densities, 

1 11,dNψ ψ+ =  along the boundary (1–10, 
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for the former four eigenvalues. (b) The 
boundary eigensolution 1ψ  along the boundary 
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(1–10, degenerate boundary, 11–100, normal 
boundary) for the former four eigenvalues. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 The right singular vectors 
( 1 10~ψ ψ ) corresponding the former ten zero 

singular values for the case of mode1(k=248.92 
Hz).  
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Figure 7 The former four modes, (a) The 
proposed meshless method + SVD, (b) DBEM 
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