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Abstract

In this paper, the eigensolutions for membranes with stringers are obtained by using the
developed meshless method in conjunction with the SVD technique in a single domain and
multi-domain technique in two sub-domains, respectively. The solution is represented by a distribution
of double layer potentials. The source points can locate on the real boundary by using the
desingularization technique to regularize the singularity and hypersingularity of the kernel functions
and the diagonal terms of influence matrices are obtained. The main difficulty of the coincidence of
the source and collocation points is disappeared. By adopting the SVD technique for rank revealing,
the nontrivial boundary mode are detected by the successive zero singular values which are not due to
the degeneracy of degenerate boundary. The boundary modes are obtained according to the right
unitary vectors with respect to the zero singular values in the SVD. Finally, the results are compared
with the dual boundary element method (DBEM) and it shows the accuracy and efficiency.
Keywords: meshless method, SVD, eigensolutions, membranes, multi-domain.
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1.Introduction

Over twenty years, the main applications were limited in BVPs without degenerate boundaries.
Since the degenerate boundary results in rank deficiency for the Meshless method and BEM, the
multi-domain BEM [2] was utilized to solve the nonunique solution by introducing an artificial
boundary. The drawback of the multi-domain approach is obvious in that the artificial boundary is
arbitrary, and thus not qualified as an automatic scheme. In addition, a larger system of equations is
required since the degrees of freedoms on the interface are put into the system. For half plane or
infinite problem, the artificial boundary is not finite. The three shortcomings encourage us to deal with
the degenerate boundary problem by using the single domain concept with SVD technique.
Up to the present, no literature has been published in international journal by using the meshless
method [3, 4] without the multi-domain approach to the authors' best knowledge. We may wonder is it
possible to find the eigensolution in a single domain with a degenerate boundary approach. Therefore,
we deal with the degenerate problem using the novel meshless method in conjunction with the SVD
technique in this paper. We solve the membrane eigenproblems with stringers using the novel meshless
method+SVD. By employing only the novel meshless method, the eigenvalue is detected in a single
domain by finding the successive zero singular values using the rank revealing technique of SVD. The
case with inclined stringer is solved.

2. Formulation
2-1 Formulation of novel meshless method
By employing the RBF technique, the acoustic pressure can be approximated in terms of the

strengths of the singularities (S’) as

u(x‘):ZN:A'(sj,x‘)aj, xe D' @
=
t(x‘):iB'(sj,x‘)a", xeD' (2)

where A'(s’,x') is the RBF in which the superscript, I, denotes the interior domain, al are

the unknown coefficients, N is the number of source points, s', and B' (s’ Xi):aA' (.x). The
' an,

coefficients {oz"}'_q are determined, such that BC is satisfied at the boundary points ({xi}iNﬂ). By

collocating N observation points, x', for the Dirichlet boundary and the Neumann boundary, we have
the following N x N linear systems in the form of

ai,l a1,2 aj_,N
—i &1 &y v By i | J. 3
{mh=fop=| 7 % 0 @)= [A ]{e), ®)
Ay, Ay, ay N
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by b, o by
Oh=fo-) % % T [ ;
by: by, by
where
a; =A'(s'x), i,j=12,---N ©
(6)

bi,j = BI (Sjlxi)! il J :1’2'“.' N

The chosen RBFs are the double layer potentials from the potential theory given as:

o ()
A(s),x) =_I7Zk Hl(l)(krij) N Yy ,
2 ;
B! (si,x‘)=—";k{k(Hgn(kru)—ykyr'?k”' — HO (kr,) Dy, ®

ij ij
where H{(kr,) is the Hankel function of the first kind and the second order.

2 2
I ZZ‘skj_XH' YN, :Z(Xik_ski)nk, n, is the k-th component of the outward normal vector at
k=1 k=1

source point s'; N, is the k-th component of the outward normal vector at field point x'. It is noted

that the double layer potentials in Eqgs.(7) and (8) have both singularity and hypersingularity at the
origin, which leads to troublesome singular kernels and controversial auxiliary boundary for the MFS.
The off-set distance between the off-set (auxiliary) boundary (B') and the real boundary (B) needs to
be chosen deliberately. To overcome this drawback, s’ is distributed on the real boundary by using
the following proposed regularized techniques. The rationale for choosing the double layer potential
instead of single layer potential as used in the proposed method for the form of RBFs is to take
advantage of the regularization of the subtracting and adding-back technique, so that no off-set
distance is needed when evaluating the diagonal coefficients of influence matrices as explaining in the
following section. The single layer potential cannot be chosen as the form of RBFs, because the
Egs.(13) and (14) in the following text of next section are not satisfied. If the single layer potential is
used, the regularized technique of subtracting and adding-back method will fail [5, 6].

2-2 Derivation of diagonal coefficients of influence matrices for arbitrary domain using a singular
meshless method

When the collocation point x' approaches to the source point s, Egs.(7) and (8) will be
approximated by:
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9
HQAWyx) AE(s),X') = kw . é&
lim BE (s',x)=BE(s',x) = (2'ykyln Al nknk) k®

X—)S

4

ij ij

by using the limiting form for small arguments and the identities from the generalized function as
shown below [1], where the superscript, E, denotes the exterior domain,

k (1)
. I 2 .
limH® (kr.) = L + —=j,
B0 (kry) 2 +7rkl‘ij
® T
g e ()=

The kernels in Egs.(9) and (10) have the same singularity strength as the Laplace equation [?].

Therefore, Egs.(1) and (2) for the eigenproblem need to be regularized by using special treatment such
as

ZN: A'(s! xYa! —ZN: AE(s!, x)a!

o (13)
ZA(s XN +ZA(S XN
[ZN:K (s™, x)-A'(s',x)]a', x' e B
t_(xi):O:ZN:B (s, x)a! igE(sj,x‘)a‘
:iB'(s’ Xi)aj+j;18'(sj,xi)aj (14)

ZN: mxNY-B'(s', x)]a', x' B

where AF(s’,x")and Bf(s’,x') are the double layer potentials of the exterior problem of
Laplace equation for the same boundary, in which

(15)

(16)

The original singular terms of A'(s’,x") and B'(s',x') in Egs.(1) and (2), have been
N
transformed into regular terms _[ZKE(sm,xi)_A' (s',x")] and _[ZNZEE(Sm,Xi)_B'(si,Xi)] in
m=1
Eqs.(13) and (14), respectively. In which the terms of ZN:;E(Sm,Xi)and iEE(sm,Xi) are the
m=1 m=1

adding-back terms and the terms of A'(s',x') and B'(s,x) are the subtracting terms in the two

4
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brackets for the special treatment technique. After using the regularized technique of subtracting and
adding-back method [5, 6], we are able to remove the singularity and hypersingularity of the kernel
functions. Therefore, the diagonal coefficients for the influence matrices can be extracted out as:

Z;émmfam &, Y
A g,m_a 2 N
(0} = 2 Tl (17)
Ay, ay , iéNm_aNN
Choh) b b
by OBty - by,
0f = o ' !
o | @) 18)
bN,l bN‘Z 7(iEN,m7bN‘N)

m=1

where a; =A'(s’,x'), @ =A"(s’,x), b;=B'(s’,x'), andb; =Bf(s’,x"). By collocating N
observation points on real boundary to match with the BCs from Dirichlet boundary condition and
Neumann boundary condition, we can get the final system of Egs. (17) and (18).

2-3 Treatment of degenerate boundary problems

(1). Multi-domain technique

For normal boundary problems, the proposed meshless method can be applied directly on them
without difficulty. But for degenerate boundary problem, it will encounter rank-deficient problem due
to the coincidence of boundary nodes on the degenerate boundary. The general technique to carry out
the degenerate boundary problem by the use of dual boundary element method (DBEM), multi-domain
BEM [2] is always applicable way to solve it. Here we combine the multi-domain technique and our
proposed meshless method to handle it.

According to the concept of multi-domain technique, it separates the domain into D" and D™,
which can be seen in Fig.1, and the labels of subdomains D" and D™ are given a and b as subscripts,
respectively. Thus the problems need two more constraints on the interface between two subdomains.
The additional two constraints of the continuity and equilibrium conditions on the interface are

¢, = ¢ andy, = -y, , where the supscript * denote the interface. After that, this concept combining

with the above mentioned meshless method can deal with this problem, and it can be implemented as
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(2) Singular value decomposition technique
(a) Direct-searching scheme in the novel meshless method
The eigenvalue k can be obtained by direct searching the rank versus k, such that
Rank([A' J)zN-l, for Dirichlet problem (20)
and
Rank([B'[)=N -1, for Neumann problem (21)

After determining the eigenvalues, the boundary mode can be obtained by setting a hormalized
value to be one in a boundary node for the nontrivial vector. By substituing the eigenvalue and
boundary mode into Egs.(1) and (2), the interior mode can be obtained.

(b) Novel meshless method +SVD

The aforementioned the multi-domain technique is well known for degenerate boundary
problems in the literature. Here, we propose a new approach to deal with the eigenproblem using the
novel meshless method in conjunction SVD technique. The sketch of distribution of source points on
the degenerate boundary was shown in Fig.2. The influence matrix [A'} and [B'] are rank

deficient due to two sources, the degeneracy of stringers and the nontrivial mode for the eigensolution.
Since Ny is the numbers of source points locate on the stringer, the matrix [A'] and [B'] result in

Nq zero singular values (o, =0, =--- =0, =0)
The next N¢" zero singular value O\, =0 originates from the nontrivial eigensolution. To

detect the eigenvalues, the Oy, Z€70 singular value versus k can be plotted to find the drop where

the eigenvalue occurs. Since the SVD technique is adopted for rank revealing, the decomposition is
reviewed as follow:

Given a matrix[ K ], SVD can decompose into

H
[K(k)]MxP = [q)]MxM [Z]MXP [‘P]PXP (22)
where [®] is a left unitary matrix constructed by the left singular vectors ({¢},i=1,2,---,M ),
and [X] isadiagonal matrix which has singular
valueso,,0,,---,0, allocated in a diagonal line as
oo 0
P (23)
[Z]MXP =10 Oy

0.0

MxP
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in which o, 20,,, 2--20;, and [‘P] is the complex conjugate transpose of a right

H
PxP

unitary matrix with dimension P x P constructed by the right singular vectors ({wi} i=12,---,P).

As we can see in EQ.(36), there exist at most P nonzero singular values. By employing the SVD
technique to determine the eigenvalue, we can obtain the boundary mode at the same time by

extracting the right singular vector {y} in the right unitary matrix [W] of SVD with respect to

the near zero or zero singular value by using

[K{wi}=0:{¢}, i=12,-,P. (24)
If the g™ singular value, o, is zero, in Eq.(24) we have
[K){wa}=0{di}=0. a<P. 25)

According to Eq.(25), the nontrivial boundary mode is found to be the right singular vector,
{y/q}, in the right unitary matrix. Therefore, the step to determine nontrivial boundary mode in the
multi-domain technique is avoided by setting a reference value. Here, Novel meshless method+SVD
employed the influence [A'] or [B'] for [K] in Eq.(17) for Dirichlet eigenproblem and Eq.(18)

for Neumann eigenproblem.

3. Abenchmark test

The problem are illustrated in Fig.3(a). A square membrane is given with a length a. For
simplicity, we set I=1 m. In this paper, the novel meshless method in conjunction with SVD is
employed. In order to check the validity, the results of our proposed meshless method + SVD are
compared with DBEM The distribution of source point for the case is shown in Fig.3(b). Using the

proposed method in conjunction with SVD, the (UNd+l )th zero singular value obtained by using

Eq.(25) for [A'] matrix, ([K]= [K] :[A' ]) is plotted versus the wave number in Fig.4(a). The

curve drops at the eigenvalues. Direct searching scheme to extract out true and spurious eigenvalues
resulted from degenerate boundary and nontrivial solution is employed in the present paper. For the
generalized algebraic eigenproblem, some effective schemes have been proposed, e.g. William-Wellie
algorithm. Since this is not our main focus, the efficient algorithm is not discussed here. By using the
dual BEM, the determinants versus the wave number are also shown in Fig.4(b) Good agreements for
the former eigenvalues are made. For this case, the number of boundary nodes, N, , on the degenerate

boundary is 10. Since the (N, +1)th zero singular value, (UNd+1 )th, originates from the nontrivial

boundary mode, Fig.5(a) shows the W, along the boundary for the solved unknown densities

corresponding to the former four eigenvalues. For the former four eigenvalues, the first right singular
vectory; corresponding to the first zero singular value (o, =0 along the boundary in Fig.5(b), also
indicate that they, is trivial except on the degenerate boundary. Since the former N, zero singular
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values (o-l:o-l---:o-,\,d =0) originate from the degenerate boundary, the corresponding right

singular vectors (y, ~ ‘//Nd) are found to be trivial except on the degenerate boundary as shown in
Fig.6, for the case of k=4.6. In other words, Fig.6 reveals that the former ten zero singular values stem
from the degeneracy due to stringer. The former four modes are compared well with those of DBEM
as shown in Fig.7(a) and (b).

4. Conclusions

Instead of using the conventional meshless method in conjunction with multi-domain technique,
the novel meshless method was successfully utilized to solve the degenerate boundary eigenproblem
in conjunction with the SVD technique. Not only the drawback of conventional MFS can be avoided
but also a single domain is required. By detecting the successive zero singular values, the eigenvalues
were found and the boundary eigenmodes were obtained according to the corresponding right unitary
vectors. Good agreement between the results of present method and the dual BEM was obtained. The
goal to solve the eigenproblem using the singular formulation in a single domain was achieved. In
addition, the boundary mode and eigenvalue can be obtained at the same time once the influence
matrix was decomposed by using the SVD.
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Figure 1 (a) Sketch of degenerate boundary
problem (b) the scheme of multi-domain
technique.

Figure 2 Sketch for the distribution of
source points on the degenerate boundary.
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Figure 3 The benchmark case of (a) Sketch
of degenerate boundary problem, (b) The
distribution of source point.
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Fig. 4 (a) The ((7Nd+1 )th zero singular value

versus the wave number
meshless method+SVD. (b) The determinant
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(1-10, degenerate boundary, 11-100, normal Figure 6 The right singular vectors
boundary) for the former four eigenvalues. (v, ~ v, ) corresponding the former ten zero

singular values for the case of model(k=248.92
7 Hz).
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