2009 ¥ ARy 2 2 B €/ A fnp B L F I E SpH P EARYLLAEL - Lo p
2009 AASRC/CSCA Joint Conference Taipei, 12 December 2009

Scattering of flexural wave in a thin plate with multiple circular holes by using

the multipole Trefftz method
Lee, W. M.}, Chen, J. T.2, Zhu, Q. FX, Lin, Y. C.

! Department of Mechanical Engineering, China University of Since and Technology
2 Department of Harbor and River Engineering, National Taiwan Ocean University
2 Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University

Abstract

The scattering of flexural wave by multiple circular holes in an infinite thin plate is analytically solved by
using the multipole Trefftz method. The dynamic moment concentration factor (DMCF) along the edge of
circular holes is determined. Based on the addition theorem, the solution of the field represented by multiple
coordinate systems centered at each circle can be transformed into one coordinate system centered at one
circle, where the boundary conditions are given. In this way, a coupled infinite system of simultaneous linear
algebraic equations is derived as an analytical model for the scattering of flexural wave by multiple holes in
an infinite plate subject to the incident flexural wave. The formulation is general and is easily applicable to
dealing with the problem containing multiple circular holes. Although the number of hole is not limited in
our proposed method, the numerical results of an infinite plate with three circular holes are presented in the
truncated finite system. The effects of both incident wave number and the central distance among circular
holes on the DMCF are investigated. Numerical results show that the DMCF of three holes is larger than that
of one, when the space among holes is small and meanwhile the specified direction of incident wave is
subjected to the plate.
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1. Introduction ficantly reduce the load carrying capacity. The
deformation and corresponding stresses induced by
dynamic loading are propagated throughout the
structure by means of wave. At the irregular
interface of different media, flexural wave scattered

Thin plates with multiple circular holes are widely
used in engineering structures, e.g. missiles, aircraft,
etc. Geometric discontinuities due to these holes
result in the stress concentration, which signi-
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in all directions recursively interacts with the
incident wave. It turns out that the scattering of the
associated stress wave results in dynamic stress
concentrations which are larger than static ones at
certain wave frequencies [1].

Nishimura and Jimbo [2] were two pioneers for the
analytical study of the dynamic stress concentration
and they determined the stresses in the vicinity of a
spherical inclusion in the elastic solid under a
harmonic force. Pao [3] studied the scattering of
flexural waves and dynamic stress concentrations
around a circular hole, and proposed an analytical
solution. Since then, most research work has
focused on the scattering of elastic wave and the
resulted dynamic stress concentration and has led to
a rapid development of analytical or numerical
approach such as the method of wave function
expansion, the complex variable method, the
boundary integral equation method and the
boundary element method [1].

Kung [4] studied dynamic stress concentrations
resulting from the scattering of flexural waves on
the thin plate with one circular hole and gave the
calculations of moment and shear forces as a
function of frequency. By using the flux
conservation relation and optical theorem, Norris
and Vemula [5] considered the scattering of flexural
waves by circular inclusions with different plate
properties and obtained numerical results. Squire
and Dixon [6] applied the wave function expansion
method to study the scattering properties of a single
coated cylindrical anomaly located in a thin plate on
which flexural waves propagate. Hu et al. [7]
employed the wave function expansion and the
expanded mode coefficients to represent the
flexural wave scattered by a circular hole in a
semi-infinite thin plate subject to the incident wave.
According to the boundary conditions, these
coefficients are recessively determined, which will
become complicated and unmanageable as the
number of holes increases. Consequently in their
recent paper involving two circular holes [8], the
total scattering coefficients are used. However, the
proposed formulation is applicable to the case of
two holes and is not general. Recently Lee and
Chen [9] proposed a semi-analytical approach to
solve the flexural wave scattered by multiple holes
in an infinite plate by using the null field integral
equation method. In addition to the need of
integration, this collocation method [9] belongs to
point-matching approach instead of analytical
derivation. It also increases the effort of
computation since boundary nodes for collocation
are required.

The Trefftz method was first presented by Trefftz
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[10]. On the boundary alone, this method was
proposed to construct the solution space using trial
complete functions which satisfy the given
differential equation [11]. Apparently, Trefftz
method is categorized as the boundary-type solution
such as the boundary element method (BEM) or
boundary integral equation method (BIEM) which
can reduce the dimension of the original problem by
one and thus the number of the unknowns is much
less than that of the domain type methods such as
finite difference method (FDM) or finite element
method (FEM). Moreover, the Trefftz formulation
is regular and free of calculating improper boundary
integrals. However, almost all the problems solved
by using Trefftz method are limited in the simply-
connected domain. An extension to problems with
multiple holes, i.e. multiply-connected domain, is
our concern in this paper.

The concept of multipole method to solve multiply-
connected domain problems was firstly devised by
Zaviska [12] and used for the interaction of waves
with arrays of circular cylinders by Linton and
Evans [13]. Recently, one monograph by Martin [14]
used these and other methods to solve problems of
the multiple scattering in acoustics, electromag-
netism, seismology and hydrodynamics. However,
the biHelmholtz problem with the fourth order
differential equation was not mentioned therein.
This paper proposed the multipole Trefftz method
to solve flexural waves scattered by multiple
circular holes in an analytical way. When
considering an infinite thin plate with multiple
circular holes, the transverse displacement field is
expressed as an infinite sum of multipoles at the
center of each circular hole. Based on the addition
theorem, it is transformed into the same coordinate
centered at the center of one circle, where the
boundary conditions are given. By matching the
known boundary conditions, a coupled infinite
system of simultaneous linear algebraic equations is
obtained and then the scattered field can be
determined according to the given incident flexural
wave. Once the total field is calculated as the sum
of the incident field and the scattered field, the
dynamic moment concentration factor along the
circular holes can be determined. Some numerical
results of an infinite thin plate with three circular
holes subject the incident flexural wave are
presented. The effects of both the space among
holes and the incident wave number on the DMCF
are examined in this paper.

2. Problem statement of scattering of
flexural wave
An infinite thin plate with H circular holes
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subjected to the incident flexural wave is shown in
Fig. 1, where H+/ observer coordinate systems are
used: (x;, x,) is a global plane Cartesian coordinate
system centered at O, (p,, ¢,) are H local plane

polar coordinates centered at O,, p=1,..., H. The
radius of the pth circular hole is denoted by R, and

holes

plate with multiple circular
subject to an incident flexural wave

For time-harmonic motion, the governing equation
of motion for the plate is

Vw(x)—k*w(x) =0, x€Q°, (1)
where x is the field point, @°¢ is the unbounded
exterior region occupied by the infinite plate, v* is
the biharmonic operator, k* = w?p,hy/ D, k is the
wave number, p, is the volume density, 4, is the

plate thickness, D =En;/12(1—4°) is the flexural
rigidity of the plate, F denotes the Young’s
modulus and g is the Poisson’s ratio.

The solution of Eq. (1) in the plane polar coor-
dinates can be represented as

0

w(p,4)= 2 W,(p)e", 2)

m=-ow

where i (p) is defined by

w,(p) =¢J, (kp)+&Y, (kp)+&d, (kp) 3
ek (ko)
in which ¢ (i=1-4) are the coefficients, J,, and Y,
are the mth order Bessel functions; and 7,, and K,
are the mth order modified Bessel functions. Based
on the characteristics of functions at p=0 and
p — oo, the appropriate Bessel function and the
modified Bessel function are chosen to represent
the transverse displacement field for the infinite
plate.
An incident flexural wave with an incident angle «
with respect to the x; axis is represented by
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i ik ,—Q
w00, ¢,)=wye, O p=tH, ()

ik (x{ cosar+xf sinar)

where ¢, =e is a phase factor

associated with the pth circular hole [13] of which
the coordinates of the center are (x/, x§). From the

Jacobi’s expansion [15], Eq. (4) can be expanded in
a series form

W(i)(pp, ¢p): z a,(,f)(kpp)eim%’ p=1...H, (5)

where o (kp,)=wyc,i"J, (kp, Ye ™

Based on the displacement field, the normal
bending moment, tangential bending moment and
effective shear force can be derived by applying the
following operators with respect to the field point,

K, (-)=—D[w2(-)+(1—ﬂ) Zp()} 6)
K, (~)=—D{v2<-)+(y—1) ‘Zp(’} @

K,()=
0 1Yol oa(1a0) (8)
ookl 59

3. Analytical derivations for flexural wave
scattered by multiple circular holes in a
thin plate

Assume that a time harmonic incident flexural wave

impinges on an infinite thin plate containing H

circular holes as shown in Figure 1. The problem of

flexural wave scattered by H circular holes is to
solve Eqg. (1) subject to the free traction along each
circular edge and a radiation condition at infinity,

i.e. the scattered field equaling to zero when

p —oo. Based on Eg. (2), we can express the

scattered field as an infinite sum of multipoles at

the center of each hole as follows:

WX P Bpseves Pus Bur)

H ©
= Z|: Z a)an”(f)(kpk)ei)”% +b,/:1Km (kpk)eim;/),\ :|,

k=1

©)

where (po,, ¢,) ..., (py, ¢,;) are the polar coor-

dinates of the field point x with respect to each
center of holes. The Hankel function (J+iY) and the
modified Bessel function K are chosen to represent
the infinite plate due to their values being finite as

p—>0. The coefficients of a' and b', k=1,...,

H; m=0, £1, £2, ..., are determined by matching the
boundary condition on each circle. To satisfy the
specified boundary conditions, the total field is
required and defined by



2000 ¢ EAFIL < S HE/F FA s F S F i 6

2009 AASRC/CSCA Joint Conference

w(X) = w (x)+w* (X). (10)
By combining Eq.(5) and Eq.(9), the total
displacement field is explicitly represented by

w(X; o1y By oy i)

=3 a0lkp, )™ +

(11)

2.

H
k=1

|: Z ar];Hn(11) (kpk )eim¢)]‘ + br]r{sz (kpk )eim‘b]‘ j|'

m=—w0

p=L1.. H.

In the following, we are mainly concerned with the
free traction condition for each circular edge. The
bending moment and shear force along each hole,
p=1,..., H, can be obtained by substituting Eq. (11)

into Egs. (6) and (8). The unknown coefficients of

a’ and b' can be determined through the

m

following boundary conditions, 0<¢, <27, p,=
Rp, p=1..,H,
mn(pp’¢p) :0’ (12)

v(p,.4,)=0. (13)
But it is difficult to determine the unknown
coefficients by using the procedure mentioned
above. This question can be answered by using the
addition theorem [15] which will be described in
the following.
Based on the Graf's addition theorem for the Bessel
functions, we can express the theorem in the
following form,

I (kp )™ =" T, (ke "% T (kp, e, (14)

n=-o0

L(kp)e™ =3 1, (kn, "% 1 (kp )", (15)
> HP (ki " T (kp, )" p, <1,
HY (kp,)e" =1 "~
k = i(m=n)8y, 77(1) ing, (16)
> Tk, e HP(kp,)e"™ , p, >,

3K, (kB (kp, )™ L p, <1y,
K, (kp,)e™ =4 "

S n i(m-m)6, in 17
3 G K (ke p, 5, (L)

where (p,,¢,) and (p,,4¢,) as shown in Figure 1

are the polar coordinates of the field point x with
respect to O, and Oy, respectively, which are the
origins of two polar coordinate systems and
(7,, 0,) are the polar coordinates of O, with

respect to Oy
By substituting the addition theorem for the Bessel

functions H (kp,) and K, (kp,) into Eq. (11),
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the displacement field near the circular boundary B,
for the case of p, <7, isgivenby

w(x;p,.4,)= > " {al (kp,)

m=—o0

+HY (kp,)al + K, (kp,)b)

(18)
H o0
+ Z Z A (k,op)aflc +B (kp, )b }},
e
where
A’l:m (kpp) :H’S:I;)m(k}/;{p)ei(n—m)&ﬁ’]m (kpp), (19)

B (kp,)=(-1)"e"™% K, (kr,)I,(kp,). (20)

By substituting Eqg. (18) into Eg. (6), the normal
bending moment, m,(x), near the circular boundary
B, (p=1,..., H) is given by

mn(x;pp’ ¢p) = Z eim¢p{cr(yf) (kpp)

m=—o0

+a, (kp,)al +a, (kp, )b

(22)
H o0
; z{ S " (kp,Ya + DL, (kp, )bt }},
where
Ct (kp,)=H® (kn, )" "% ol (kp,), (22)

D} (kp,)= (1" " K, (kn, e (kp,), (23)
e (kp, )=cpi'”a; (kp, e ™. (24)

The moment operator o from Eq. (6) is defined
as follows:

a;, (kp)
' nﬁ ) 25
:D{(l_y)m_[(l—y)—2$k }Xm(kp)}, (25)
p p

where the upper (lower) signs referto X=J, Y, H, (I,
K), respectively. The second order differential
equations for these functions have been used to
simplify a (kp).

Similarly, the effective shear operator g derived
from Eqg. (8) can be expressed as

By (kp)

ol sy 4 e i) €9

and the field of effective shear, v(x), near the
circular boundary B, (p=1,..., H) is given by
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Wxip,. 4) = 3 a0 (kp,)
+, (kp,)ay, + B, (kp,)b; (27)

+ Z[ B (kp, )a + 2 (kp, )bt }},

k=1
k#p

n=—0n

where E, (kp,), F,,(kp,) and d¥(kp,) are
obtained by replacing « (kp,) in Egs. (22)-(24)
with S, (kp,), respectively.

According to the traction-free conditions of Egs.
(12) and (13), applying the orthogonal property of
{e™" } to Egs.(21) and (27), respectively, and
setting p, to R, give

al (kR,)a;, + ak (kR,)b;,

H 0
+ z{ > Cy (kR ))ay + D), (kR, )bf} =—c(kR,)

k=1
k#p

B, (kR,)a; + B, (kR,)b;

n=-w

(28)

H 0

+3] 3 et LR -0 ),

=

for m=0, £1, £2, ..., n=0, £1, £2, ...,and p =1, ...,
H. Equation (28) is a coupled infinite system of
simultaneous linear algebraic equations which is the
analytical model for the flexural scattering of an
infinite plate containing multiple holes. In order to
evaluate the numerical results in the following
section, the infinite system of Eq. (28) is truncated
to a (2H)x(2M+1) system of equations for (2H) x
(2M+1) unknown coefficients, i.e. m=0, £/, £2, ....,

+M. Once the coefficients «' and b (k=1,..., H;

m

m=0, £1, £2,..., £M) are determined, the total field
of displacement, the bending moment and the shear
force can be obtained by substituting them into Egs.
(11), (21) and (27).
In the polar coordinates, the normal bending
moment, tangential bending moment and effective
shear force induced by the incident wave can be
determined by substituting Eq. (4) into Eqgs. (6)-(8).
By setting the amplitude of incident wave to be one
(w, =1), the amplitude of normal bending moment
produced by the incident wave is
M, =Dk’ (29)
The dynamic moment concentration factor (DMCF)
at any field point x is defined as
DMCF(x) =m,(x)/ M,, (30)
where the tangential bending moment m,(X) is

n=—ow
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determined by substituting Eq. (18) into Eq.(7) with
respective to the field point as follows:

m(xip, 4,) = X &0 kp,)

+ 7 (kp,)an +7, (kp, )b, (31)
H )
k=1 [_n=—0
k#p

where Gy, (kp,), Hy,(kp,) and f9(kp,) are
obtained by replacing arf(kpp) in Egs. (22)-(24)
with »* (kp,) , respectively, and the tangential

bending moment operator y (kp) derived from
Eq. (7) is given by
¥ (kp) =

D{(u—l))“’f)"m{(#—l)ﬁzwkﬂxm(kp)} (32)

4. Numerical results and discussions

To demonstrate the validity of the proposed method,
the FORTRAN code was implemented to solve the
flexural wave scattered by three circular holes
shown in Fig 2, where L denotes the central
distances between holes. The coordinates of three
holes are (/3L/2,0), (0,L/2) and (0,—L/2),
respectively. The DMCF around the circular hole is
determined since it is important to the structure
design such as fatigue failure evaluation. In all
cases, all edges of holes are subjected to the
traction-free boundary conditions and the thickness
of plate is 0.002m. To obtain the more accurate
results, numerical experiments show that the
required number of M truncated in the finite system
mainly depends on the minimum dimensionless
central distance L/a to be considered. Through the
numerical experiments, it is found that the required
number of M can be taken from 20 to 8 for the
minimum separation distance L/a ranged from 2.1
to 10.0. Only when does the value of L/a become
large such as 4.0 or 10.0, the required number of M
is related to the incident wave number. In other
words, the required number of M to the conver-
gence increase as the incident wave number
becomes larger.

Figures 3-6 show the distribution of DMCF on the
first and the second circular boundary B; and B,,
respectively, when three different incident dimen-
sionless wave numbers (ka=0.5, 1.0 and 3.0) and
three different dimensionless central distance
(L/a=2.1, 2.5 and 4.0) are considered. The
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distribution of DMCF on the third circular
boundary B; is equal to that on the second one due
to the symmetry of the x;-axis, so that it is not
presented here. It can be observed that the dis-
tribution of DMCF of three circular holes is
different from that of one, where the maximum of
DMCF occurs at ¢=7/2 and —x/2 when the

incident wave number is small and the incident
angle equals to zero.

In addition to the incident wave number, the
distribution of DMCF apparently depends on two
factors. One is the geometry and the other is the
angle of the incident wave. Since the first circular
hole is located near the other circular holes at
¢=5716 and —57/6 where the separated space

is very small and meanwhile the incident wave is
from the negative of the x; axis, the maximum of
DMCF on the boundary of the first hole occurs at
¢=nl2, 5zl/6, —5x/6, and —x/2 as shown

in Fig. 3. As the value of ka increases, the factor of
geometry is obviously amplified but that of incident
angle is attenuated a little. Figure 4 shows that the
maximum of DMCF on the boundary of the second
hole occurs at ¢ =—x/2 and —z/6. The maxi-

mum of DMCF at ¢ =—7/6 is similar to those of

the first hole. But the maximum of DMCF
at ¢ =—n/2 is the largest of all considered so far

because two factors simultaneously occur at this
point: the narrow space and the incident flexural
wave with « =0.

As the dimensionless central distance L/a increases
to 2.5 and 4.0 as shown in Figs.5-6, the DMCF
gradually decreases since the geometry factor is
attenuating. Meanwhile the shadow on the first hole
coming from the other holes gradually decreases so
that the more incident wave impinges on the first
holes. According, the magnitude of DMCF of the
first hole at ¢=x/2 and —z/2 becomes large

instead of decreasing as shown in Figs. 3, 5 and 6.
Figures 7-8 show DMCF on the first and the second
circular boundaries at ¢ =—x/2 as a function of

the dimensionless incident wave number at four
different dimensionless central distances, dotted
line for L/a = 2.1, dashed line for L/a = 2.5,
dot-dashed line for L/a = 4.0 and solid line for L/a =
10.0. It can be seen from Fig.7 that the DMCF on
the first circular boundary at ¢=-—x/2 is

apparently related to the space between holes when
the incident wave number is small. Because of the
shadow effect, the smaller the central distance is ;
the smaller the DMCF is. This effect is gradually
replaced by that of the multiple scattering as the
incident wave number ka increases. Instead of the
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incident wave number, the geometry factor
dominates the DMCF on the second circular
boundary at ¢=-—x/2 as shown in Fig. 10. It

can be seen that when space is large enough such as
L/a=10.0 and ka approaches zero, the value of
DMCF approaches 1.85 which agrees with the
analytical solution of an infinite plate with one hole
[1]. As the value of ka increases, the magnitude of
DMFC becomes more fluctuated especially for the
case of the large value of L/a.

Figures 9-10 show DMCF on the first and the
second circular boundaries at ¢=—-7/2 as a

function of the dimensionless central distance at
three different dimensionless incident wave
numbers, dotted line for ka = 0.5, dashed line for ka
= 1.0 and solid line for ka = 3.0. It can be seen from
Fig. 9 that the shadow effect at the low incident
wave number is rapidly released as the separation
distance increases. Comparing Figs 9 and 10, even
though two plots varied in the different way, these
variations will converge to the same level as the
value of L/a approaches to infinite. It can be seen
from Figs. 9-10 that for the high incident wave
number the DMCF shows obvious oscillation as the
space among holes varies. Actually, this oscillation
exits in all cases of the incident wave number and
the detail can be seen in the recent paper of [9].

5. Concluding remarks

The flexural wave scattered by multiple circular
holes in a thin plate has been theoretically solved by
using the multipole Trefftz method with the aid of
the addition theorem. By using the addition theorem,
the Trefftz method can be extended to deal with
multiply-connected domain problems. The proposed
algorithm is general and easily applicable to
problems with multiple holes which are not easily
solved by using the traditional analytical method.
By matching boundary conditions, the analytical
model for the multiple scattering of the plate
problem can be derived as a coupled infinite system
of simultaneous equations. An example of an
infinite plate containing three holes in a truncated
system is presented and the effects of the central
distance and the incident wave number on the
dynamic moment concentration factor (DMCF) are
investigated in this paper. The distribution of
DMCEF of three holes is significantly different that
of one. The geometry factor mainly affects the
DMCF especially under the specified direction of
incident wave.
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Figure 2 An infinite thin plate with three circular holes
subject to an incident flexural wave

Figure 3 Distribution of DMCF on the B; at three

different dimensionless wave numbers, solid
line for ka = 0.5, dashed line for ka = 1.0 and
dotted line for ka = 3.0 (L/a = 2.1)
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Figure 4 Distribution of DMCF on the B, at three

different dimensionless wave numbers, solid
line for ka = 0.5, dashed line for ka = 1.0 and
dotted line for ka = 3.0 (L/a = 2.1)
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Figure 5 Distribution of DMCF on the B, at three
different dimensionless wave numbers, solid
line for ka = 0.5, dashed line for ka = 1.0 and
dotted line for ka = 3.0 (L/a = 2.5)
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Figure 6 Distribution of DMCF on B; at three different
dimensionless wave numbers, solid line for ka
= 0.5, dashed line for ka = 1.0 and dotted line

for ka =3.0 (L/a = 4.0)
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Figure 8 DMCF on the B, (¢=-x/2) versus the
dimensionless wave number at four different
dimensionless central distances, dotted line for
L/a = 2.1, dashed line for L/a = 2.5, dot-dashed
line for L/a = 4.0 and solid line for L/a = 10.0
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Figure 9 DMCF on the B; (¢=-x/2) versus the
dimensionless central distance at three different
dimensionless wave numbers, dotted line for ka
= 0.5, dashed line for ka = 1.0 and solid line for
ka=3.0
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Figure 7 DMCF on the B, (¢=-x/2) versus the
dimensionless wave number at four different
dimensionless central distances, dotted line for
L/a = 2.1, dashed line for L/a = 2.5, dot-dashed
line for L/a = 4.0 and solid line for L/a = 10.0
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Figure 10 DMCF on the B, (¢=-x/2) versus the

dimensionless central distance at three
different dimensionless wave numbers, dotted
line for ka = 0.5, dashed line for ka = 1.0 and
solid line for ka = 3.0



