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Abstract

In this paper we carry out boundary element computations of the Helmholtz equa-
tion in two dimensions, in the context of time-harmonic exterior acoustics. The purpose
is to demonstrate cost savings engendered through adaptivity for propagating solutions
at moderate wave numbers. The computations are performed on meshes of constant
boundary elements, and are adapted to the solution by locally changing element sizes
(h-version). Burton and Miller approach is employed to solve the exterior problems for all
wave numbers. Two error indicators obtained from the dual integral equations in conjuc-
tion with the exact error indicator are used for local error estimation, which are essential
ingredients for all adaptive mesh schemes in BEM. Computational experiments are per-
formed for the two-dimensional exterior acoustics problems. The three error tracking
curves are in good agreement with their shapes. Two examples show that the adaptive
mesh based on the error indicators converge faster than does uniform mesh discretization.
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1. INTRODUCTION

Numerical methods are always utilized

Obtaining a reliable error estimation is to
guarantee a certain level of accuracy for the

to solve problems especially when an exact
solution is not available. The discretiza-
tion process, which transforms a continuous
system into a discrete system using finite
number of degrees of freedom, results in er-
rors. The discretization error is defined as
a measure of difference between the exact
solution and the numerical approximation.

numerical results, and is a key factor of the
adaptive mesh procedure. Thus, estimation
of the discretization error in the numerical
method is the first step in adaptive mesh
generation.

The h-version, p-version and r-version
schemes [1] have been recently used to im-
prove numerical accuracy. In the h-version



scheme, the total number of elements in-
creases, but the order of the interpolation
function remains unchanged. Since the
global matrix must be reformulated after
mesh refinement, the computational cost
becomes very high. In this way, the efficient
remesh tactics is required when h-version
scheme is adopted. The adaptive tactics
for h-version are generally referred to as
the reference value method [1], in which
the element mesh is refined where the er-
ror is larger than the prescribed reference
value. This provides a criterion to deter-
mine where the elements should be divided
into more partitions by finding the residu-
als in the integral equation pointwisely.

A large number of studies on adaptive
BEM have been done by Kamiya et al. [2],
using sample point error estimation. How-
ever, the error stems not only from the
discretization procedure, but also from the
mismatch of the collocation points on the
boundary. Zarikian et al.[3] and Paulino
et al. [4] used pointwise error estimation
to study the convergency of the interior
problem by using the hypersingular resid-
uals. Both the singular integral equation
(UT) and hypersingular integral equation
(LM) in the dual BEM can independently
determine the unknown boundary data for
the problems without a degenerate bound-
ary. The residuals obtained from these two
equations can be used as indexes of error es-
timation. This provides a guide for remesh-
ing without the mismatch of the collocation
points on the boundary in the sample point
error method. By creating more divisions
in the boundary mesh where the estimated
error is large, the error curve will be re-
distributed. Therefore, Liang et al. [5] ap-
plied the hypersigular equation to find the
residual for error estimation in the Laplace
equation. Both interior and exterior prob-
lems were considered.

In studying the exterior acoustics
problems as shown in Fig.1(a), finite el-
ement method in conjunction with the
DtN (Dirichlet to Neumann) technique was
found to be competitive [11] in compari-
son with BEM. Later, adaptive FEM was
extended to solve the problems more effi-
ciently [11, 7]. For the practical engineers,
BEM is more attractive since the model cre-
ation takes a fewer time for one-dimension
reduction. The mesh of DtN FEM and the
BEM mesh are shown in Figs.1(b) and 1(c),
respectively. Although BEM results in fic-
titious frequency, it can be circumvented by
employing the Burton and Miller formula-
tion. Here, we will focus on the adaptive
BEM for exterior acoustics problems in two
dimensions.

In this paper, the Burton and Miller
formulation by combining the dual bound-
ary integral equations is utilized to solve
the exterior acoustics problems for all wave
numbers in order to avoid the problem of
fictitious frequency. Two residuals, de-
rived by the nonzero terms, which are cal-
culated by substituting the boundary data
obtained previously from the Burton and
Miller method and known boundary data
into the sigular and hypersingular integral
equations, are found. According to the
residuals by collocating the points along
the boundary, error tracking curves can be
constructed. Numerical examples are per-
formed for two-dimensional exterior acous-
tics problems to demonstrate the cost effec-
tiveness of adaptive scheme.

2. STATEMENT FOR EXTERIOR
BOUNDARY-VALUE PROBLEMS
OF THE HELMHOLTZ EQUATION

Let D C D be an unbounded region,
where d is the number of space dimensions,
d can be 1, 2 or 3. The boundary of D, de-
noted by B, is internal and assumed piece-
wise smooth as shown in Fig.1. The out-
ward unit vector normal to B is denoted by
n. We assume that boundary, B, admits
the partition

B = B,UBy, (1)
¢ = B,NBy. (2)

We intend to study the effects of small dis-
trurbances to a given background flow in
such a region, under the usual assumptions
that led to the equations of acoustics. Har-
monic analysis leads to a boundary-value
problem for the Helmholtz equation (or re-
duced wave equation): Find u in the ex-
terior domain, the spatial component for
the acoustics pressure or velocity potential,
such that

—Lu=f in D, (3)
u=g on By, (4)
ou .
o ikh on By, (5)
1 ou
1. ,(dfl) e _
lim 72 (87“ iku) =0, (6)

where Lu := V?u + k%u is the Helmholtz
operator, V2 is the Laplace operator and
k > 0 is the wave number; an inferior
comma denotes partial differentiation, and,
in particular 7 := Vu - n is the normal
derivative and V is the gradient operator;
i? = —1; ris the distance from the origin;
and g and h are the prescribed boundary



data. In the linearized equations of motion,
velocity gradients produce a compression of
the acoustics medium and pressure gradi-
ents are related to acceleration. Thus, if
the dependent variable is, e.g., the acoustic
pressure, then the Neumann boundary con-
dition (5) represents a prescribed velocity
distribution on that portion of the wet sur-
face, where h is proportional to the velocity
and the presence of ik is a consequence of
differentiation with respect to time. Neu-
mann boundary conditions are therefore
very common in physical situations that en-
tail radiation, and in the model problems
and demonstrative examples that are sub-
sequently considered we emphasize bound-
ary conditions of this type. It should be
noted that the analysis is valid for any com-
bination of boundary conditions on the wet
surface for the boundary-value problem (3)-
(6), and by no means is it limited to Neu-
mann problems. For scattering problems,
a fixed rigid object is represented by a ho-
mogeneous Neumann boundary condition,
often referred to as a hard scatter. Con-
versely, the homogeneous Dirichlet boudary
condition, an appropriate representation of
a site of pressure release, is termed a soft
scatter. An impedance boundary condition
is a linear combination of the two.

3.BURTON AND MILLER FORMU-
LATION FOR EXTERIOR ACOUS-
TICS PROBLEMS USING DUAL
BEM

The governing equation for an exterior
acoustics problem is the Helmholtz equa-
tion shown in Eq.(3), where f in Eq.(3)
is zero (no sources). The boundary condi-
tions can be either the Neumann or Dirich-
let type. Based on the dual formulation,
the dual equations for the boundary points
are

mu(x) = C’.P.V/BT(s,x)u(s)dB(s)

_R.PV. /B U(s,2)i(s)dB(s), 2 € B (7)

xt(x) = HPV. /B M(s, z)u(s)dB(s)
_C.PV. / L(s,2)(s)dB(s), z € B (8)
B

where C.P.V., R.P.V. and H.P.V. denote
the Cauchy principal value, the Riemann

principal value and the Hadamard principafF £M

value, t(s) = 85‘75?), B denotes the boundary

enclosing D and the explicit forms of the

four kernels, U, T, L and M, can be found
in [10]. The linear algebraic equations dis-
cretized from the dual boundary integral
equations can be written as

[Tpgl{uqt = [Upgl{te} 9)

[Mpgl{uq} = [Lpgl{te}

where {u,} and {t,} are the boundary po-
tential and flux, and the subscripts p and
q correspond to the labels of the colloca-
tion element and integration element, re-
spectively. The influence coefficients of the
four square matrices [U],[T],[L] and [M]
can be represented as

(10)

Uy = R.PV. U(sq,zp)dB(sq)
Bq

(11)

T, = —wby,+C.PV. /B T(s4,2,)dB(s,) (12)
q
Ly = w6y + C.PV. /B L(sq,p)dB(sy) (13)
q
M,, = H.PV. /B M(sq, ) dB(sq), (14)
q

where B, denotes the ¢'* element and d,, =

1 if p = q; otherwise it is zero. In order to

avoid the problem of fictitious frequency,

the Burton and Miller formulation [8] is em-
ployed by combining the dual equations as
follows,

1 }
{[qu] + E[Mpq]}{uq} = {[qu] + E[qu]}{tq} (15)

For all wave numbers, Eq.(15) can work
well.

4. ERROR INDICATORS USING
THE DUAL BEM

Based on the Burton and Miller formu-
lation, the exterior acoustics problems can
be solved for all wave numbers. By sub-
stituting the solved boundary unknowns in
Eq.(15) into Eg.(7) and Eq.(8), we have the
two residuals for error indicators,

eur = *7TU(£L’)+C.P.V./T(S,.%)U(S)dB(S)

B

- R.P.V./ U(s,z)t(s)dB(s), © € B(16)
B

_ri(z) + H.PV. /B M(s, )u(s)dB(s)

C.P.v./ L(s,2)t(s)dB(s), = € B (17)
B



Theoretically, eyr and er) in Eqgs.(16)
and (17) are both zeros if no numerical er-
ror is involved. In real calculations, the
two residuals are not zeros when collocating
points along the boundary as shown below

{evr} [Tpgl{ugt — [Upgl{tq} (18)

[Mpgl{ug} — [Lpgl{te},(19)

The two values are the important informa-
tion for the error indicators. If the exact
solution is available, the third error indica-
tor along the boundary can be defined as

{eLm}

(20)

Eex :| U — Ue |)

and
(21)

for the Neumann and Dirichlet problems,
respectively.

Eex =| t — te |

5. ADAPTIVE SCHEME IN DUAL
BEM

The role of the adaptive tactical pro-
cedure is to determine the region where the
elements should be refined. This algorithm
is very strongly dependent on error estima-
tion and the mesh refinement scheme. The
reference value, error convergency and equi-
librium criterion methods have been pop-
ular adaptive tactics for the h-refinement
scheme. In the case of the reference value
method, elements are refined when their er-
rors are larger than the prescribed reference
value. Denoting the error at the ith element
by &;, the reference value £ may be defined
as

€ = Averageof ¢; (22)
or
g = nxmazx(e) (0<n<1). (23)

In this paper, the former value in Eq.(22) is
chosen because it is difficult to specify the
value of 1 in Eq.(23) adequately.

Since the error estimator and adap-
tive tactics can be obtained, the self adap-
tive mesh refinement process can be imple-
mented. The flowchart of the self adaptive
mesh refinement is shown in Fig.2. Fig.2
provides a simple illustration of how adap-
tive BEM works; all adaptive computations
fit mor or less into this general framework.
The flowchart shows how the various com-
ponents of adaptivity works together to put
the efficient elements in the meshes. Then a
posteriori error estimator takes the Burton
and Miller boundary solution as input and

computes an estimate of the solution error
by using the dual BEM. According to the
estimated error distribution, a new, more
efficient mesh can be constructed. The
mesh generator then creates the adaptive
mesh with the requested size distribution,
and the process repeats until a stopping
criterion is satisfied. The coarse mesh is
initiated in the beginning, and drive the
adaptive refinement through the selection
of smaller and smaller error tolerance in
the iteration. Usually, three or four iter-
ations are sufficient. Efficiency is attained
by placing more elements in areas where
errors are large. In doing so, the adap-
tive strategy attemps to compute a distri-
bution of element size such that the error
is equidistributed among the elements in
the mesh. Based on the reference value
method for the self adaptive technique, the
minimum number of elements can be ob-
tained under the requirement of error tol-
erance. Thus, the measure of error must
be specified. Although many measures of
error have been used, e.g., (a). Point-
wise error, (b). Max norm: |u — u| =
mazq<g<p |u(z) — ue(x)|, (c). Lo norm:
Ju—ue | = {f? lu—ue[*de}, and (d). Energy

. _ g d due 1
norm: [u—wue| = {3 30 1G5 — G|}z,
the Ly norm along the boundary in the en-
ergy sense has been adopted in this paper.

6. NUMERICAL EXAMPLES

Case 1: Nonuniform radiation problem by
a cylinder (Neumann boundary condition)

The problem was chosen because the
exact solution is known [11]. It is therefore
a good model problem to test the effective-
ness of the error estimator and adaptive
strategy since the solution is directional
and effect of adaptivity may be significant.
The example with the Neumann boundary
condition is shown in Fig.3. The analytical
solution is

2 X —1 sin(na) H,(ll)(k:r)
U(’/‘, 9) = ; Z ?

cos(nb).
n HY (ka)

n=0

3

where ¢ is the Neumann factor. The con-
tour plots for the real-part solutions are

shown in Fig.4 for the case of @ = §. It

indicates that numerical results agree well
with the analytical solution. Also, it is in-
teresting to find that the irregular frequen-
cies in Fig.5 occurs as predicted theoreti-
cally by Chen and Kuo [9]. This confirms
the conclusion in [9] that the irregular fre-
quencies depend on the integral formulation
(UT or LM method) instead of the types



of boundary conditions (Dirichlet or Neu-
mann). For the case of ka = 1, we can
construct the three error tracking curves in
Fig.6(a) for the initial mesh. Burton and
Miller method can work well for all wave
numbers and the UT and LM results agree
well except at the irregular wave numbers
as shown in Fig.5. It is found that irregular
values occur at J)*, the mth zeros of J, (ka)
for the UT formulation, while the LM for-
mulation has the irregular values of J™,
the mth zeros of J/(ka) = 0. According
to the adaptive scheme, meshes of twelve,
twenty and twenty-eight elements are suc-
cessively created in Fig.7. The high density
of mesh near the boundary with discontin-
uous potential is found in a consistent way
of engineering judgement. The successive
error tracking curves are also constructed
in Figs.6(b), (c) and (d). The convergence
rate using the adaptive mesh is faster than
the uniform meshes does as shown in Fig.8.

Case 2: Scattering problem by a square rod
(Neumann boundary condition)

Having demonstrated the adaptive technol-
ogy on the infinite circular cylinder, we pro-
ceed to a problem in which exact solution is
not available [7]. Due to nonsmooth bound-
ary of four corners in the square, the scat-
tering by the infinite square rod of area
4m? is more directional and thus leads itself
more to adaptivity. According to the adap-
tive scheme, meshes of twelve, twenty and
twenty-eight elements are successively cre-
ated in Fig.9. Solution contours of Re(u)
for ka = 4w are shown in Fig.10. In Fig.11,
the real and imaginary components of u on
the radius r = 545z is plotted for compar-
ison with DtN FEM results. Solutions of
the initial mesh and the successive meshes
are compared. The convergence rate using
daptive mesh is faster than that using the
uniform mesh.

7. CONCLUSIONS

In this paper, we demonstrated bound-
ary element solution — adaptive acoustics
methodologies on model time-harmonic ex-
terior acoustics problems in two dimen-
sions. The results indicate that adaptiv-
ity can provide an increase in mesh effi-
ciency for the Helmholtz problems at mod-
erate wave numbers. The adaptive com-
putations involved the Burton and Miller
formulation and the dual BEM. Three er-
ror tracking curves were constructed and
behaved consistently. According to the er-
ror tracking curves, adaptive strategy can
be implemented. Based on the posterior
pointwise error distribution, adaptive mesh

was generated to speed up the convergence
rate in comparison with uniform mesh.
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Fig1(a) An unbounded domain with
a smooth internal boundary.

Figl(b) DtN FEM mesh.
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Dual Boundary

Element Method
&

Burton and Miller
Method

Adaptive
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Error Indicator
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Fig.2 Flowchart of adaptive
mesh generation.
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Fig.4 The contour plot for the real-part
solutions (analytical solution:
ij_ask)md line, numerical result: solid
ine).

Figl(c) BEM mesh.

Fl\ilg.S The onuniform radiation problem
(Neumann condition) for a cylinder.

—-— UT method
. a -------= LM method

——— Burton & Miller method
0.8 — Analytical solution

Fig.5 The positions of irregular
values using different methods.



Fig.6(a) Error tracking curve
9 elements?.

T 7

Fig.6(c) Error tracking curves
(20 elements?'.

Fi1g.7(a) Adaptive mesh
9.7@) 9 (Elements).

Fig.6(c) Adaptive mesh
9.0(¢) (20pelements).

norm |

Element Number

Fig.8 Convergence rate using
uniform mesh and
adaptive mesh.
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Fi1g.6(b) Error tracking curve
(12 elements).

A

Fi1g.6(d) Error tracking curves
(28 elements).

Fi1g.7(b) Adaptive mesh
9.70) (12pelements).

Fig.7(d) Adaptive mesh
9.1d) (28pelements).



Fig.9(a) Adaptive meshes
(8 elements).

Fig.9(c) Adaptive meshes
(20 elements).

Fig.10(a) The contour plot for the
real-part solutions (8
elements).
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Fig.10(c) The contour plot for the
real-part solutions (20
elements).
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Fi1g.9(b) Adaptive meshes
(12 elements).

Fig.9(d) Adaptive meshes
(28 elements).

Fi1g.10(b) The contour plot for the
real-part solutions (12
elements).

- - "
Fig.10(d) The contour plot for the
real-part solutions (28
elements).
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Fig.11(a) Plane scattering by an infinite
square rod, 4z, imaginary part
of solution at =1/0.425 {(only
the top of the boundary is
plotted).

Fig.11(b) Plane scattering by an infinite
square rod, 4z, real part of
solution at »=1/0.425 (onl¥ the
top of the boundary is plotted).



