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ABSTRACT 
In this study, the boundary value problem with 

circular inclusions is formulated by using the null-field 
integral equation. To fully capture circular geometries, 
separable expressions of fundamental solutions in the 
polar coordinate for field and source points and Fourier 
series for boundary densities are introduced to derive the 
formulation analytically. Intermediate advantages are 
obtained: (1) well-posed model, (2) singularity free, (3) 
boundary-layer effect free, (4) exponential convergence 
and (5) mesh free. The method is basically a numerical 
approach, and because of its semi-analytical nature, it 
possesses certain advantages over the conventional 
boundary element method. The null-field approach 
employing the degenerate kernel and Fourier expansion 
can be applied to solve boundary value problems which 
are governed by the Laplace, Helmholtz, biharmonic and 
biHelmholtz equations. Problems for the anti-plane 
elasticity as well as the in-plane electrostatic and 
anti-plane piezoelectricity study are revisited to 
demonstrate the validity of our method. 
Keywords: null-field approach, degenerate kernel, 
Fourier series, boundary value problem, boundary-layer 
effect, circular boundary. 

1. INTRODUCTION 
Engineering analysis can be formulated as 

mathematical models of boundary value problems. In 
order to solve the boundary value problems, researchers 
and engineers have paid more attention on the 
development of boundary integral equation method 
(BIEM), boundary element method (BEM) and meshless 
method than domain type methods, finite element 
method (FEM) and finite difference method (FDM). 
Among various numerical methods, BEM is one of the 
most popular numerical approaches for solving boundary 
value problems. Although BEM has been involved as an 
alternative numerical method for solving engineering 
problems, five critical issues are of concern. 
(1) Treatment of singularity and hypersingularity 

It is well known that BEM are based on the use of 
fundamental solutions to solve partial differential 

equations. These solutions are two-point functions which 
are singular as the source and field points coincide. Most 
of the efforts have been focused on the singular boundary 
integral equation for problems with ordinary boundaries. 
In some situations, the singular boundary integral 
equation is not sufficient, e.g. degenerate boundary, 
fictitious frequency and spurious eigenvalue. Therefore, 
the hypersingular equation is required. The role of 
hypersingularity in computational mechanics has been 
examined in the review article of Chen and Hong [4]. In 
the past, several regularizations for hypersingularity were 
offered to handle it in direct and indirect ways. 
(2) Boundary-layer effect 

Boundary-layer effect in BEM has received attention 
in the recent years. In real applications, data near the 
boundary can be smoothened since the maximum 
principle always exists for potential problems. 
Nevertheless, it also deserves study to know how to 
manipulate the nearly singular integrals in applied 
mathematics. 
(3) Convergence rate 

Undoubtedly, BEM is very popular for boundary 
value problems with general geometries since it requires 
discretization on the boundary only. Regarding to 
constant, linear and quadratic elements, the discretization 
scheme does not take the special geometry into 
consideration. It leads to the slow convergence rate. 
(4) Ill-posed model 

To avoid directly calculating the singular and 
hypersingular integrals by using null-field approach or 
fictitious BEM yields an ill-conditioned system. The 
influence matrix is not diagonally dominated and needs 
preconditioning. To approach the fictitious boundary to 
the real boundary or to move the null-field point to the 
real boundary can make the system well-posed. However, 
singularity appears in the meantime. 
(5) Mesh generation 

Mesh on the boundary is still necessary using BEM. 
In this paper, we develop a semi-analytical approach 

for boundary value problems with circular inclusions by 
using the null-field integral equation in conjunction with 
the degenerate kernel and Fourier series. The adaptive 
observer system is proposed to fully employ the property 
of degenerate kernel. All the boundary integrals are 
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analytically determined through the orthogonal property 
between the degenerate kernel and Fourier series. 
Therefore, improper integrals are transformed to series 
sums instead of the sense of principal values. A linear 
algebraic equation is formulated to determine the 
unknown Fourier coefficients after collocating the 
null-field point on the boundary and matching the 
boundary condition. For the calculation of potential 
gradient, the Hadamard principal value for 
hypersingularity is not required and can be easily 
calculated by using series sums and by adapting the 
vector decomposition technique for eccentric cases. In 
addition, the boundary-layer effect for stress calculations 
near the boundary and the convergence test with various 
terms of Fourier series are studied. Engineering 
applications containing multiple circular holes and/or 
inclusions are demonstrated to see the validity of present 
method. The extension to study on coupling effect of 
electrical and mechanical loadings for piezoelectricity 
problems is also done in this paper. 

2. A UNIFIED FORMULATION FOR 
EXTERIOR AND INTERIOR PROBLEMS 

2.1 Dual boundary integral equations and dual 
null-field integral equations 

Suppose there are N  randomly distributed circular 
inclusions bounded to the contours kB
( 0, 1, 2, ,k N ). We define 

0

N

k
k

B B . (1)

In mathematical physics, many engineering problems can 
be modeled by the governing equation, 

(x) 0, x ,DL (2)
where L  may be the Laplacian, Helmholtz, biharmonic 
or biHelmholtz operators, (x)  is the potential function 
and D  is the domain of interest. For the 
two-dimensional second-order operators of Laplacian 
and Helmholtz, the boundary integral equation for the 
domain point can be derived from the third Green’s 
identity [4], we have 

2 (x) (s, x) (s) (s)

(s, x) (s) (s), x ,
B

B

T dB

U dB D
(3)

x

(x)2 (s, x) (s) (s)
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B

B
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(4)

where s  and x  are the source and field points, 
respectively, s(s) (s) / n , B  is the boundary, 

xn  denotes the outward normal vector at the field point 
x  and the kernel function (s, x)U  is the fundamental 
solution which satisfies 

(s, x) 2 (x s),UL (5)
in which (x s)  denotes the Dirac-delta function. The 
other kernel functions, (s, x)T , (s, x)L  and (s, x)M ,
are defined by 

s x
2

s x

(s, x) (s, x)(s, x) , (s, x) ,
n n

(s, x)(s, x) ,
n n

U UT L

UM
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where sn  is the outward normal vector at the source 
point s . By moving the field point to the boundary, Eqs. 
(3) and (4) reduce to 

(x) . . . (s, x) (s) (s)

. . . (s, x) (s) (s), x ,
B

B

C PV T dB

R PV U dB B
(7)

x
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. . . (s, x) (s) (s), x ,

B

B

H PV M dB
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(8)

where . . .C PV , . . .R PV  and . . .H PV  denote the Cauchy 
principal value, Riemann principal value and Hadamard 
principal value, respectively. Once the field point x
locates outside the domain, the null-field integral 
equation of the direct method in Eqs. (7) and (8) yield 

0 (s, x) (s) (s)

(s, x) (s) (s), x ,
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c
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T dB
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c
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where cD  is the complementary domain. Note that the 
conventional null-field integral equations are not singular 
since s  and x  never coincide. If the kernel function in 
Eqs. (3), (4), (9) and (10) can be described as degenerate 
(separate) forms for the inside D  or outside cD
domain, we have 
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It is noted that the boundary integral equation for the 
domain point and the null-field integral equation for the 
null-field point can include the collocation point exactly 
on the real boundary since the appropriate kernel can be 
used as elaborated on later in the following section. 

2.2 Expansions of fundamental solution and 
boundary density

Now, we adopt the mathematical tools, degenerate 
kernels and Fourier series, for the purpose of analytical 
study. The combination of degenerate kernels and 
Fourier series plays the major role in handling problems 
with circular boundaries. Instead of directly calculating 
the . . .C PV , . . .R PV  and . . .H PV  in Eqs. (7) and (8), 
we obtain the linear algebraic system from the null-field 
integral equation of Eqs. (13) and (14) through the kernel 
expansion by “exactly” collocating the point on the real 
boundary. Based on the separable property, the kernel 
function (s, x)U  can be expanded into the separable 
form by dividing the source and field points: 

(s, x) (s) (x), s x
(s, x) ,

(s, x) (x) (s), x s

i
j j

j

e
j j

j

U A B
U

U A B
(15)

where the bases of ( )A  and ( )B  can be found for the 
Laplacian, Helmholtz, biharmonic and biHelmholtz 
operators and the superscripts “ i ” and “ e ” denote the 
interior ( s x ) and exterior ( x s ) cases, 
respectively. For the degenerate form of T , L  and M
kernels, they can be derived according to their definitions 
in Eq. (6). Regarding the multiply-connected domain 
problems, the interior “ i ” and exterior “ e ” expansions 
for the kernel should be taken with care. Although the 
mathematical tools of degenerate kernels, are suitable for 
the Laplacian, Helmholtz, biharmonic and biHelmholtz 
operators in one, two and three dimensional problems, 
we focus on the two-dimensional Laplace problems in 
this papr. Based on the separable property, the kernel 
function (s, x) lnU r , ( x sr ), is expanded into 
the degenerate form by separating the source point and 
field point in the polar coordinate [3]: 

1

1

( , ; , ) ln
1 ( ) cos ( ),

(s, x) ,
( , ; , ) ln

1 ( ) cos ( ),

i

m

m
e

m

m
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U
U R

R m R
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(16)

where the superscripts “ i ” and “ e ” denote the interior 
( R ) and exterior ( R ) cases, respectively. The 
origin of the observer system for the degenerate kernel is 

( 0,0 ). It is noted that the leading term and numerator 
term in Eq. (16) involve the larger argument to ensure the 
log singularity and series convergence, respectively. 

For problems with circular boundaries, we apply the 
Fourier series expansions to approximate the potential 

 and its normal derivative  on the boundary kB
as

0
1

(s ) ( cos sin ),

s , 0, 1, 2, , ,

L
k k k

k n k n k
n
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where s(s ) (s ) / nk k , k
na , k

nb , k
np  and k

nq
( 0, 1, 2, ,n L ) are the Fourier coefficients and k  is 
the polar angle. In the real computation, only 2 1L
finite terms are considered where L  indicates the 
truncated terms of Fourier series. 

2.3 Adaptive observer system
By using the collocation method, the null-field 

integral equation becomes a set of algebraic equations for 
the Fourier coefficients. To ensure the stability of 
algebraic equations, one has to choose collocation points 
throughout all the circular boundaries. Since the 
boundary integral equation is derived from the reciprocal 
theorem of energy concept, the boundary integral 
equation is frame indifferent due to the objectivity rule. 
This is the reason why the observer system is adaptively 
selected to locate the origin at the center of circle in the 
boundary integration. The adaptive observer system is 
chosen to fully employ the property of degenerate kernels. 
Figures 1 (a) and 1 (b) show the boundary integration for 
the circular boundary in the adaptive observer system. It 
is worth noting that the origin of the observer system is 
located on the center of the corresponding circle under 
integration to entirely utilize the geometry of circular 
boundary for the expansion of degenerate kernels and 
boundary densities. The dummy variable in the circular 
integration is the angle ( ) instead of the radial 
coordinate ( R ). 

2.4 Linear algebraic equation
By moving the null-field point xm  to the kth

circular boundary in the limit sense for Eq. (13) in Fig. 1 
(a), we have 

0

0

0 (s , x ) (s )

(s , x ) (s ) , x ,

k

k

N

k m k kBk
N

c
k m k k mBk

T dB

U dB D B
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where N  is the number of circular inclusions and 0B
denotes the outer boundary for the bounded domain. In 
case of the infinite problem, 0B  becomes B .  Note 
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that the kernels (s, x)U  and (s, x)T  are shown in the 
degenerate form and the boundary densities  and 
are expressed in terms of the Fourier series expansion 
forms as mention above. Then, the integrals multiplied 
by separate expansion coefficients in Eq. (19) are 
non-singular and the limit of the null-field point to the 
boundary is easily implemented by using appropriate 
forms of degenerate kernels. Through such an idea, all 
the singular and hypersingular integrals are well captured. 
Thus, the collocation point xm  in the discretized Eq. 
(19) can be considered on the boundary kB , as well as 
the null-field point. Along each circular boundary, 
2 1L  collocation points are required to match 2 1L
terms of Fourier series for constructing a square 
influence matrix with the dimension of 2 1L  by 
2 1L . In contrast to the standard discretized boundary 
integral equation formulation with nodal unknowns of 
the physical boundary densities  and , now the 
degrees of freedom are transformed to Fourier 
coefficients  employed  in  expansion  of  boundary 

Figure 1 (a) Sketch of the null-field integral 
equation for a null-field point in conjunction with 

the adaptive observer system ( x , x kD B )

Figure 1 (b) Sketch of the boundary integral 
equation for a domain point in conjunction with the 

adaptive observer system ( x , x kD B )

densities. It is found that the compatible relationship of 
the boundary unknowns is equivalent by moving either 
the null-field point or the domain point to the boundary 
in different directions using various degenerate kernels as 
shown in Figs. 1 (a) and 1 (b). Both approaches yield the 
same linear algebraic equation due to the Wronskian 
property [14]. In the kB  integration, we set the origin of 
the observer system to collocate at the center kc  to fully 
utilize the degenerate kernels and Fourier series. By 
collocating the null-field point on the boundary, the 
linear algebraic system is obtained 

,U T (20)
where U  and T  are the influence matrices with a 
dimension of ( 1)(2 1)N L  by ( 1)(2 1)N L ,

 and  denote the column vectors of Fourier 
coefficients with a dimension of ( 1)(2 1)N L  by 1
in which those are defined as follows: 
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where k  and k  are in the form of Fourier 
coefficients given by Eqs. (17) and (18), respectively; the 
first subscript “ j ” ( 0, 1, 2, ,j N ) in jkU  and 

jkT  denotes the index of the jth  circle where the 
collocation point is located and the second subscript “ k ”
( 0, 1, 2, ,k N ) denotes the index of the kth  circle 
when integrating on each boundary data k  and 

k , N  is the number of circular inclusions in the 
domain and the number L  indicates the truncated terms 
of Fourier series. The coefficient matrix of the linear 
algebraic system is partitioned into blocks, and each 
off-diagonal block corresponds to the influence matrices 
between two different circular boundaries. The diagonal 
blocks are the influence matrices due to themselves in 
each individual circle. Instead of using nodal values for 
boundary densities in the BEM, the Fourier coefficients 
become the new unknown degrees of freedom in the 
formulation. 

Regarding the circular inclusion problems in the 
infinite domain, it can be decomposed to one exterior and 
several interior Laplace problems with circular 
boundaries after taking free body along the interface of 
matrix and each inclusion. Two kinds of problems can be 
formulated in a unified manner as shown in Eq. (20) after 
superimposing remote loadings: 
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(1) One bounded problem of the circular domain 
becomes the interior problem for each inclusion as 
the only boundary 0B  in Fig. 1 (a) exists. 

(2) The other is unbounded, i.e. the outer boundary 0B
in Fig. 1 (a) is B . It is the exterior problem for the 
matrix. 

The direction of contour integration should be taken care,
i.e. counterclockwise and clockwise directions are for the 
interior and exterior problems, respectively. To match the 
interface condition between the matrix and each 
inclusion, additional constraints are provided. Then the 
unknown Fourier coefficients can be obtained from the 
resulted linear algebraic system. In order to determine 
the field of potential gradient, the normal and tangential 
derivatives should be calculated with care. For the 
nonconcentric cases, special treatment, vector 
decomposition technique, for the potential gradient 
should be considered as the source point and field point 
locate on different circular boundaries. 

3. ILLUSTRATIVE EXAMPLES 
In order to verify the efficiency and accuracy of the 

present method, anti-plane elasticity, in-plane 
electrostatic and anti-plane piezoelectricity problems are 
solved. For the purpose of comparison, the applied 
loadings and material properties of the matrix and 
inclusions are assumed as the same of Steif [12], Chao 
and Young [2], Emets and Onofrichuk [10], Pak [11] and 
Chao and Chang [1]. The problem statements for the 
three problems governed by the Laplace equation can be 
found in the authors’ previous works [7, 8, 14]. 

Anti-plane elasticity problem 
Figure 2 (a) shows the geometry of two equal-sized 

holes in the infinite medium under the remote shear 
zy . The stress concentration of the problem is 

illustrated in Fig. 2 (b). It indicates that the present result 
agrees well with the analytical solution of Steif [12] and 
those obtained by Chao and Young [2] even though the 
two holes approach each other. Figure 2 (c) shows that 
only few terms of Fourier series can obtain good results. 
However, more nodes are required by using the 
conventional BEM to achieve convergence. Our 
formulation is free of boundary-layer effect instead of 
appearance by using the conventional BEM when the 

Figure 2 (a) Two equal-sized holes with centers on 
the x  axis 
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Figure 2 (b) Stress concentration of the problem 
containing two equal-sized holes 
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Figure 2 (c) Convergence test of the two equal-sized 
holes problem ( 1.0d )

Figure 2 (d) Tangential stress in the matrix near the 
boundary ( 1.0d )
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Table 1 Stress concentration factors and errors for various distances between two holes using 
the present approach and BEM 

1/d r 0.01 0.2 0.4 0.6 0.8 1.0 

Analytical solution [12] 14.2247 3.5349 2.7667 2.4758 2.3274 2.2400 

10L 10.5096 
(26.12%) 

3.5306 
(0.12%) 

2.7664 
(0.01%) 

2.4758 
(0.00%) 

2.3274 
(0.00%) 

2.2400 
(0.00%) Present 

method 20L 13.3275 
(6.31%) 

3.5349 
(0.00%) 

2.7667 
(0.00%) 

2.4758 
(0.00%) 

2.3274 
(0.00%) 

2.2400 
(0.00%) 

21node 7.2500 
(49.03%) 

3.4532 
(2.31%) 

2.738 
(1.04%) 

2.4639 
(0.48%) 

2.3168 
(0.46%) 

2.2366 
(0.15%) 

St
re

ss
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on
ce

nt
ra

tio
n 

fa
ct

or
 

BEM

BEPO2D 41node 10.2008 
(28.29%) 

3.5188 
(0.46%) 

2.7619 
(0.17%) 

2.4747 
(0.04%) 

2.3312 
(0.16%) 

2.2398 
(0.01%) 

stress z  near the boundary as shown in Fig. 2 (d). 
Stress concentration factors and errors for various 
distances between two holes by using the present method 
and the conventional BEM are listed in Table 1. These 
results show that the present method is more accurate and 
efficient than those of the conventional BEM. Under the 
same error tolerance, the CPU time of the present method 
is fewer than that of the conventional BEM. Besides, it is 
noted that more terms of Fourier series are required to 
capture the singular behavior when the two holes 
approach each other. 

In-plane electrostatic problem
Figure 3 (a) shows that two dielectric circular 

inclusions with radii of 2 10.8r r  imbedded in an 
infinite dielectric medium are in various uniform electric 
fields xE E  and ( , ) ( cos45 ,x yE E E

sin 45 )E  applied at infinity, respectively. The 
distance between two inclusions is 10.1d r  and 
dielectric constants for matrix and each inclusion are 

0 3 , 1 9  and 2 5 . Illustrations of the patterns 
of the electric field are shown in Figs. 3 (b) and 3 (c) for 
different loadings. From these patterns of the electric 
field, it is observed that the electric field is continuous 
across the interface between the matrix and inclusions 
and agrees well with those of Emets and Onofrichuk 
[10]. 

Figure 3 (a) The dielectric system of two inclusions 
in the applied electric field 

Anti-plane piezoelectricity problem 
We consider two piezoelectric circular inclusions of 

radii 2 12r r  perfectly bonded to a piezoelectric matrix 
which is subjected to the remote anti-plane 
shear zy  and in-plane electric field yE E
as shown in Fig. 4 (a). In order to examine the accuracy 
of the present formulation, the stress concentration factor 

/z  in the matrix at 0  under the remote 
shear and the various magnitude of electric field is 
plotted in Fig. 4 (b) as a function of the ratio of 
piezoelectric constants 15 15/M Ie e , where the two circular 
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Figure 4 (a) Two piezoelectric circular inclusions 
embedded in a piezoelectric matrix under remote 

shear and electric loadings 

inclusions are arrayed parallel to the applied loadings and 
the distance between two circular inclusions 1/ 10d r .
It is found that the results displayed in Fig. 4 (b) agree 
very well with Chao and Chang’s results [1] and 
approach the Pak’s solution of a single inclusion [11]. 
The electric field concentration /E E  in the matrix at 

0  with the remote electric field and the various 
magnitude of shear is plotted in Fig. 4 (c) as a function of 
the ratio of piezoelectric constants. It is also found that 
the results in Fig. 4 (c) leads to the Pak’s solution of a 
single inclusion [11] since the two inclusions displace far 
away ( 1/ 10d r ). The electric field concentration 

/E E  occurring at 0  is plotted in Fig. 4 (d) as a 
function of the ratio of dielectric constants 11 11/M I

while 44 44
M Ic c  and 15 15

M Ie e . It is shown that the 
electric field concentration approaches two for a large 
value of 11 11/M I  as 1/ 10d r  which is consistent 
with Chao and Chang’s results [1] and reduces to the 
Pak’s solution of a single inclusion [11]. 

4. CONCLUSION 
For boundary value problems with circular inclusions, 

the null-field approach by using the null-field integral 
equation, degenerate kernels and Fourier series in the 
adaptive observer system was proposed. The singularity 
and hypersingularity were avoided after introducing the 
concept of degenerate kernels for interior and exterior 
regions. Besides, the boundary-layer effect for the 
potential gradient calculation was eliminated since the 
degenerate kernel can describe the jump behavior for 
interior and exterior domains, respectively. Only a few 
terms of Fourier series can yield acceptable results 
because the use of degenerate kernels for fundamental 
solutions and Fourier expansions for boundary densities 
leads to the exponential convergence. The influence 
matrix in the linear algebraic system using the present 
formulation is well-posed since the jump behavior of 
potential distribution was separately described in

Figure 4 (b) Stress concentrations as a function of 
the ratio of piezoelectric constants 

Figure 4 (c) Electric field concentrations as a 
function of the ratio of piezoelectric constants 
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Figure 4 (d) Electric field concentrations as a 
function of the ratio of dielectric constants 
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different regions by using the degenerate kernels for the 
representation of fundamental solutions. Moreover, the 
present method here can be applied to Laplace problems 
with circular boundaries, e.g. piezoelectricity, 
electrostatic, magnetic, torsion, elasticity, heat 
conduction and hydrodynamic problems. Besides, 
extensions to the Helmholtz, biharmonic and 
biHelmholtz operators as well as 3-D problems are 
straightforward once the corresponding degenerate 
kernels and bases for boundary densities can be found. In 
this paper, our main demonstration is limited on the 
Laplace problem. 
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