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Following the successful experiences of solving water wave scattering problems for multiple imperme-

able cylinders by the authors’ group, we extend the null-field integral formulation in conjunction with the

calculating the Cauchy and Hadamard principal values, thanks to the introduction of degenerate kernels

(or separable kernels) for fundamental solutions. This method is a semi-analytical approach, since errors

attribute from the truncation of the Fourier series. Not only a systematic approach is proposed but also the

effect on the near-trapped modes due to porous cylinders and disorder of layout is examined. Several

advantages such as mesh-free generation, well-posed model, principal value free, elimination of

boundary-layer effect and exponential convergence, over the conventional boundary element method

(BEM) are achieved. It is found that the disorder has more influence to suppress the occurrence of near-

trapped modes than the porosity. The free-surface elevation is consistent with the results of William and

Li and those using the conventional BEM. Besides, the numerical results of the force on the surface of

cylinders agree well with those of William and Li. Besides, the present method is a semi-analytical

approach for problems containing circular and elliptical shapes at the same time.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Taiwan is surrounded by sea. Marine recreation activity and the
exploitation of marine resources become important issues. In
offshore engineering, more and more structures are built such as
sheltered platform. The analysis of determining the wave loading
exerted upon platform legs is necessary, and how to design a safe
platform is a significant issue. Interaction of water wave impinging
an array of bottom mounted cylinders of a sea platform is our main
concern in this paper.

In the literature, an analytical solution for an incident water
wave impinging a circular cylinder was derived by MacCamy and
Fuchs (1954). By the similar way, an extension work for two
cylinders was presented by Spring and Monkmeyer (1974). A semi-
analytical solution using the wave function expansion was
obtained for the diffraction of linear waves by arrays of cylinders.
For more than one or two bodies, McIver and Evans (1984) used an
approximate method to estimate the wave forces for a group of two,
three and five cylinders. The method was developed by a large
spacing approximation, but good results were given even when the
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spacing is small. Later, Linton and Evans (1990) studied the
interaction of water waves with arrays of circular cylinders in a
similar way to Twersky approach (1952) which was developed by
employing the multipole wave expansion and the addition theo-
rem. Linton and Evans (1990) extended this approach to calculate
the force in a more neat form.

For general geometry case, we always resort to the numerical
methods. Au and Brebbia (1983) employed the boundary element
method (BEM) to calculate the resultant force using constant, linear
and quadratic elements. In their work, not only a circular case but also
a square and an elliptic one are implemented. Eatock Taylor and Hung
(1985) found that the force tend to the one on an isolated cylinder
multiplied by the square of the number of cylinders at low frequencies.
By descretizing the boundary in a more genius way, Zhu and Moule
(1996) obtained a more accurate result. However, in the previous
works, they are not discussed on the issue of near-trapped mode.

Near-trapped mode means a localized behavior that energy
is trapped in a truncated periodical structure. A trapped mode is
associated with a singularity that lies on the real axis. Water wave
diffraction and near-trapped mode by a multi-column structure
were studied by Evans and Porter (1997). The wave number to
excite the near-trapped modes for cases of four, five and six
cylinders was determined numerically by detecting the value of
ka, which results in the maximum force. As number of cylinders
increases, Maniar and Newman (1997) discovered the Dirichlet and
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Fig. 1. Problem statement of water waves with an array of vertical cylinders.
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Neumann trapped modes of large number of cylinders (1 0 0) in
an infinite domain. It was found that the peak loads approach
those of infinite number of cylinders when an array is large but
finite. For multiple cylinders in a channel, trapped modes were
also found by Evans and Porter (1999). Mathematically speaking,
the array-guided cylinders may result in non-trivial solutions
of the homogeneous problem at particular values of wave number.
It can be understood as eigenvectors corresponding to eigenvalues
of certain differential operators on unbounded domains even
though there is no characteristic length. A characteristic length
in the near-trapped mode means the length bounded by the array
of cylinders.

Duclos and Cl�ement (2004) extended to consider arrays of
unevenly spaced cylinders, displaced randomly from a regular array
according to a disorder parameter. They focused on two effects of this
spacing irregularity, reduction of peak forces associated to trapped
mode phenomena, and regularization of the transmission coefficient
for waves propagating through the arrays. However, Duclos and
Cl�ement (2004) only considered the impermeable cylinders. On the
other hand, Williams and Li (2000) calculated the free-surface
elevation and force for the porous cylinders. In the numerical
implementation, Chen (2004) used the BEM to obtain the free-
surface elevation for the porous cylinders. Nevertheless, they did not
consider the disorder effect. We may wonder what happens for the
near-trapped modes if we simultaneously consider the porous
cylinder with a disorder. The effect of porosity parameter on the
free-surface elevation, force and near-trapped modes will be exam-
ined. Also, the reduction of force in the case of near-trapped mode
due to disorder is also our interest.

In this paper, the hydrodynamics of porous cylinders is studied
using the null-field integral equation in conjunction with the
addition theorem and the Fourier series. The present approach based
on the null-field BIEM, while the singular integrals in bump contour
are transformed to series sum free of principal value sense. The main
difference between the present approach and the Linton–Evans
method is that we use the BIE instead of the wave function expansion.
It is noted that our null-field BIE is free of boundary-layer effect which
always appears in the conventional BEM. The meaning of the
boundary-layer effect for the boundary element method terminology
means larger error of calculated quantity near the boundary which
is fully different from the boundary-layer in fluid mechanics due
to viscosity. The unknown coefficient here is the Fourier coeffi-
cient on the boundary instead of weighting of wave expansion for the
domain. To the authors’ best knowledge, three possible cases may
be modeled by porous cylinder. One is the cylinder with a lot of tiny
holes on the cylinder surface. Another is the moon pool for the
cylinder structure. The other is porous and thin sidewalls on the
cylinder. The porosity parameter has been defined by Chwang (1983)
and Twu and Lin (1991). The porosity G in this model is only a non-
dimensional parameter which can be seen as a complex modulus due
to dissipation energy. By viewing the model as a black box, this
parameter G can be turned to match the experimental data by model
updating technique. The interface condition for the porous cylinder is
considered as a similar idea of complex spring in the structural
dynamics. Force as well as free-surface elevation were calculated and
compared with others to check the validity of our method. The
parameter study for the disorder and porosity on the effect of near-
trapped modes will be investigated.
2. Problem statement and integral formulation

2.1. Problem statement

Irrotational motion of the inviscid and incompressible fluid is
small-amplitude which is defined as velocity potential F(x,y,z,t)
based on the linearized water-wave theory. We assume that there
are N vertical circular cylinders mounted at z¼�h upward to the
free-surface as shown in Fig. 1. The governing equation of the water
wave problem is the Laplace equation

r
2Fðx,y,z,tÞ ¼ 0, ðx,y,zÞAD ð1Þ

wherer2 and D are the Laplacian operator and the domain of interest,
respectively. The linearized kinematical condition on the bottom is

@F
@z

� �
z ¼ �h

¼ 0 ð2Þ

and the linearized condition on the free-surface is

�
o2

g
Fþ

@F
@z

� �
z ¼ 0

¼ 0 ð3Þ

where g is the acceleration due to gravity, o denotes the angular
frequency and h is the water depth. The velocity potential must also
satisfy the kinematical conditions on the wetted surface of all
bodies

@F
@n
¼ 0, �hrzr0 ð4Þ

where n stands for the normal vector of anybody with respect to its
local circular coordinate system. Using separation of variables for
space and time, we have

Fðx,y,z,tÞ ¼ uðx,yÞf ðzÞe�iot ð5Þ

where

f ðzÞ ¼
�igA

o
cosh kðzþhÞ

cosh kh
¼
�igH

2o
cosh kðzþhÞ

cosh kh
ð6Þ

in which A is the amplitude of incident wave and equals to half of
the wave height H, g is the acceleration of gravity, k is the wave
number and i2¼�1. f(x,y,t) can be defined by

jðx,y,tÞ ¼ Zðx,yÞe�iot ð7Þ

where jðx,y,tÞ is the free-surface elevation, in which

Zðx,yÞ ¼ Auðx,yÞ ð8Þ

The potential of incident wave uinc(x,y) is shown below:

uincðx,yÞ ¼ eikðxcos yinc þysin yincÞ � eikr cosðf�yincÞ ð9Þ

where yinc is the angle of incident wave, r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
and f¼

arctanðy=xÞ. Substituting Eq. (2) into Eq. (1) and using Eq. (3), we
have

ðr
2
þk2Þuðx,yÞ ¼ 0, ðx,yÞAD ð10Þ

The boundary conditions are shown below:

@uO

@r
¼�

@uC
j

@r
¼ ikGðuC

j �uOÞ ð11Þ

where the superscripts O and C denote the regions of ocean and
cylinder, respectively, G is the dimensionless parameter of porosity
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and the dispersion relationship is

ktanhkh¼
o2

g
ð12Þ

The dynamic pressure can be obtained by

p¼�rf

@F
@t
¼�rf gA

cosh kðzþhÞ

cosh kh
uðx,yÞe�iot ð13Þ

whererf is the density of the fluid. The two components of the first-
order force Xj on the jth cylinder are given by integrating the
pressure over the circular boundary as shown below:

Xj ¼�
rgAaj

k
tanh kh

Z 2p

0
uðx,yÞ

cosyj

sinyj

( )
dyj ð14Þ

where aj denotes the radius of the jth cylinder.

2.2. Dual integral equations—the conventional version

The boundary integral equation for the domain point can be
derived from the Green’s third identity (Chen et al., 2003), we have

2puðxÞ ¼
Z

B
Tðs,xÞuðsÞdBðsÞ�

Z
B

Uðs,xÞtðsÞdBðsÞ, xAD, ð15Þ

2ptðxÞ ¼

Z
B

Mðs,xÞuðsÞdBðsÞ�

Z
B

Lðs,xÞtðsÞdBðsÞ, xAD ð16Þ

where s and x are the source and field points, respectively,
tðsÞ ¼ ð@uðsÞ=@nsÞ, B is the boundary, ns denotes the outward normal
vectors at the source point s. The kernel function U(s,x) is the
fundamental solution which satisfies

ðr2
þk2ÞUðs, xÞ ¼ 2pdðx�sÞ ð17Þ

in which d(x�s) denotes the Dirac–delta function. Then, we can
obtain the fundamental solution as follows

Uðs,xÞ ¼
�ipHð1Þ0 ðkrÞ

2
ð18Þ

where Hð1Þ0 ðkrÞ is the zeroth Hankel function of the first kind and
r�9s�x9. The other kernels functions, T(s,x), L(s,x), and M(s,x), are
defined by

Tðs,xÞ ¼
@Uðs,xÞ

@ns
, ð19Þ

Lðs,xÞ ¼
@Uðs,xÞ

@nx
, ð20Þ

Mðs,xÞ ¼
@2Uðs,xÞ

@ns@nx
ð21Þ

where nx denotes the unit outward normal vector at the field point
x. By moving the field point x to the boundary, the dual boundary
integral equations for the boundary point can be obtained as
follows:

puðxÞ ¼ C:P:V :

Z
B

Tðs,xÞuðsÞdBðsÞ�R:P:V :

Z
B

Uðs,xÞtðsÞdBðsÞ, xAB,

ð22Þ

ptðxÞ ¼H:P:V :

Z
B

Mðs,xÞuðsÞdBðsÞ�C:P:V :

Z
B

Lðs,xÞtðsÞdBðsÞ, xAB

ð23Þ

where R.P.V., C.P.V. and H.P.V. denote the Riemann principal value,
Cauchy principal value and Hadamard (or called Mangler) principal
value, respectively. By moving the field point to the complemen-
tary domain, the dual null-field integral equations are given below

0¼

Z
B

Tðs,xÞuðsÞdBðsÞ�

Z
B

Uðs,xÞtðsÞdBðsÞ, xADc , ð24Þ
0¼

Z
B

Mðs,xÞuðsÞdBðsÞ�

Z
B

Lðs,xÞtðsÞdBðsÞ, xADc ð25Þ

where Dc is the complementary domain. The region bounded by the
boundary for the field solution is called the ’’domain’’. However, the
region out of the domain is called the ’’complementary domain’’.
Mathematically speaking, D+Dc

¼full plane. When the collocation
point in the BIE is outside the domain, it results in a null response in
the left-hand side of the null-field BIE as shown in Eqs. (24) and (25)
Eqs. (15), (16), (24) and (25) are conventional formulations, where
the point cannot be located on the real boundary. Singularity occurs
and concept of principal values is required once Eqs. (22) and (23)
are considered.
2.3. Dual boundary integral formulation—the present version

By introducing the degenerate kernel, the collocation point can
be exactly located on the real boundary free of calculating singular
integrals in the sense of principal value. The degenerate kernel can
separate the field and source points for the closed-form funda-
mental solution. Therefore, the integral equations for the domain
point and null-field integral equations in the interior problem are
represented as

2puðxÞ ¼

Z
B

TIðs,xÞuðsÞdBðsÞ�

Z
B

UIðs,xÞtðsÞdBðsÞ, xAD [ B, ð26Þ

2ptðxÞ ¼
Z

B
MIðs,xÞuðsÞdBðsÞ�

Z
B

LIðs,xÞtðsÞdBðsÞ, sAD [ B, ð27Þ

and

0¼

Z
B

TEðs,xÞuðsÞdBðsÞ�

Z
B

UEðs,xÞtðsÞdBðsÞ, xADc [ B, ð28Þ

0¼

Z
B

MEðs,xÞuðsÞdBðsÞ�
Z

B
LEðs,xÞtðsÞdBðsÞ, xADc [ B ð29Þ

where the superscripts I and E denote interior and exterior
degenerate kernels for fundamental solutions respectively. For
the exterior problem, the domain of interest is in the external
region of the circular boundary and the complementary domain is
in the internal region of the circle. Therefore, the null-field integral
equations are represented as

2puðxÞ ¼

Z
B

TEðs,xÞuðsÞdBðsÞ�

Z
B

UEðs,xÞtðsÞdBðsÞ, xAD [ B, ð30Þ

2ptðxÞ ¼

Z
B

MEðs,xÞuðsÞdBðsÞ�

Z
B

LEðs,xÞtðsÞdBðsÞ, xAD [ B ð31Þ

and

0¼

Z
B

TIðs,xÞuðsÞdBðsÞ�

Z
B

UIðs,xÞtðsÞdBðsÞ, xADc [ B, ð32Þ

0¼

Z
B

MIðs,xÞuðsÞdBðsÞ�
Z

B
LIðs,xÞtðsÞdBðsÞ, xADc [ B ð33Þ

In Fig. 2, decomposition and superposition techniques are
employed to solve the porous cylinder problems. The solution of
each cylinder part in Fig. 2(c) is derived from Eq. (28) by moving the
point in the fluid domain to boundary. The exterior problem as
shown in Fig. 2(e) is solved using Eq. (32) after moving the point x in
the cylinder to boundary. After obtaining the boundary unknowns,
Eq. (30) is used for the radiation field by collocating the point in the
fluid domain. By combining with the incident wave, we can obtain
the total field.



Fig. 2. (a) A water wave problem with multiple circular cylinders, (b) an infinite domain with multiple cylinders subject to incident water wave, (c) an interior Helmholtz

problem for each circular cylinder, (d) an infinite domain subject to the incident water wave, and (e) an exterior Helmholtz problem in an infinite domain.
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2.4. Expansions of fundamental solution and boundary density

Based on the separable property, the kernel function U(s,x)can
be expanded into degenerate form by separating the source point
and field point in the polar coordinates. Since degenerate kernels
can describe the fundamental solutions in two regions (interior and
exterior domains), the BIE for the domain point in Eqs. (26) and (27)
and Eqs. (30) and (31) and the null-field BIE in Eqs. (28) and (29) and
Eqs. (32) and (33), can be directly employed for the real boundary
point. By using the polar coordinates, we can express x¼(r, f) and
s¼(R, y). The four kernels U, T, L and M can be expressed in terms of
separable kernels (Chen et al., 2009) as shown below:

Uðs,xÞ ¼

UIðR,y;r,fÞ ¼
�pi

2

X1
m ¼ 0

emJmðkrÞHð1Þm ðkRÞcosðmðy�fÞÞ, RZr,

UEðR,y;r,fÞ ¼
�pi

2

X1
m ¼ 0

emHð1Þm ðkrÞJmðkRÞcosðmðy�fÞÞ, Ror,

8>>>><
>>>>:

ð34Þ
Tðs,xÞ ¼

TIðR,y;r,fÞ ¼
�pki

2

X1
m ¼ 0

em JmðkrÞHu
ð1Þ

m ðkRÞcosðmðy�fÞÞ, R4r,

TEðR,y;r,fÞ ¼
�pki

2

X1
m ¼ 0

emHð1Þm ðkrÞJmu ðkRÞcosðmðy�fÞÞ, Ror,

8>>>><
>>>>:

ð35Þ

Lðs,xÞ ¼

LIðR,y;r,fÞ ¼
�pki

2

X1
m ¼ 0

emJmu ðkrÞHð1Þm ðkRÞcosðmðy�fÞÞ, R4r,

LEðR,y;r,fÞ ¼
�pki

2

X1
m ¼ 0

emHu
ð1Þ

m ðkrÞJmðkRÞcosðmðy�fÞÞ, Ror,

8>>>><
>>>>:

ð36Þ

Mðs,xÞ ¼

MIðR,y;r,fÞ ¼
�pk2i

2

X1
m ¼ 0

em Jmu Hu
ð1Þ

m ðkRÞcosðmðy�fÞÞ, RZr,

MEðR,y;r,fÞ ¼
�pk2i

2

X1
m ¼ 0

emHu
ð1Þ

m ðkrÞJmu ðkRÞcosðmðy�fÞÞ, Ror

8>>>><
>>>>:

ð37Þ
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where em is the Neumann factor

em ¼
1, m¼ 0,

2, m¼ 1, 2, � � � ,1

(
ð38Þ

Mathematically speaking, the expressions of fundamental solu-
tions in Eqs. (34)–(37) are termed separable kernels which can
expand the kernel to sums of products of function of the field point
x alone and functions of the source point s alone,. If the finite sum of
series is considered, the degenerate kernel is finite rank. As we shall
see in the later sections, the theory of boundary integral equations
with degenerate kernel is nothing more than the linear algebra.
Since the potentials resulted from T(s,x) and L(s,x) are discontin-
uous across the boundary, the potentials of T(s,x) and L(s,x) for
R-r+ and R-r� are different. This is the reason why R¼r is not
included in the expression for the degenerate kernels of T(s,x) and
L(s,x) in Eqs. (35) and (36). The degenerate kernels simply serve as
the means to evaluate regular integrals analytically and take the
limits analytically. The reason is that integral equation for the
domain point of Eq. (26) and the null-field integral equation of
Eq. (28) yield the same algebraic equation when the limit is taken
from the inside or from the outside of the region. Both limits
represent the same algebraic equation that is an approximate
counterpart of the boundary integral equation, that for the case of a
smooth boundary has in the left-hand side term pu(x) or pt(x)
rather than 2pu(x) or 2pt(x) for the domain point or 0 for the point
outside the domain. Besides, the limiting case to the boundary is
also addressed. The continuous and jump behavior across the
boundary is well captured by the Wronskian property of the Bessel
function Jm and Ym bases

WðJmðkRÞ, YmðkRÞÞ ¼ Ymu ðkRÞJmðkRÞ�YmðkRÞJmu ðkRÞ ¼
2

pkR
ð39Þ

as shown below

Z 2p

0
ðTIðs,xÞ�TEðs,xÞÞcosðmyÞRdy¼ 2pcosðmfÞ, xAB, ð40Þ

Z 2p

0
ðTIðs,xÞ�TEðs,xÞÞsinðmyÞRdy¼ 2psinðmfÞ, xAB ð41Þ

After employing Eqs. (40) and (41), Eqs. (30) and (32) yield the
same linear algebraic equation when x is exactly located the
boundary from the domain or the complementary domain. A proof
for the Laplace case can be found by Chen et al. (2006).

In order to fully utilize the geometry of circular boundary, the
boundary potential u(s) and its normal flux t(s) can be approxi-
mated by employing the Fourier series. Therefore, we obtain

uðsÞ ¼ a0þ
X1
n ¼ 1

ðan cosnyþbn sinnyÞ, sAB, ð42Þ
Boundary point

Fig. 3. An adaptive observer system (a) bo
tðsÞ ¼ p0þ
X1
n ¼ 1

ðpn cosnyþqn sinnyÞ, sAB ð43Þ

where a0, an, bn, p0, pn and qn are the Fourier coefficients and y is the
polar angle which is equally discretized. Eqs. (32) and (33) can be
easily calculated by employing the orthogonal property of the
Fourier series. In the real computation, only the finite M terms are
used in the summation of Eqs. (42) and (43).

2.5. Adaptive observer system

To avoid using the addition theorem for translating the Bessel
function, the adaptive observer system is adopted for pursuing the
analytical boundary integrals. Since the boundary integral equa-
tions are frame indifferent, i.e., rule of objectivity is obeyed.
Adaptive observer system is chosen to fully employ the property
of degenerate kernels. The ’’adaptive observer system’’ is one kind
of the concept of ’’local coordinate’’. Fig. 3(a) shows the boundary
integration for the circular boundaries. It is worthy of noting that
the origin of the observer system can be adaptively located on the
center of the corresponding circle under integration to fully utilize
the geometry of circular boundary and orthogonal relations of the
Fourier bases. Therefore, the origin of the observer system is not
fixed to the circle under integration, but is adaptively changed
according to the corresponding contour integration. We called this
’’adaptive observer system’’. The dummy variable in the integration
on the circular boundary is just the angle (y) instead of the radial
coordinate (R). By using the adaptive observer system, all the
boundary integrals can be determined analytically free of
principal value.

2.6. Linear algebraic equation

After locating the null-field point xk exactly on the kth circular
boundary in Eq. (32) as shown in Fig. 3(a), we have

0¼
XN

k ¼ 0

Z
Bk

TIðs,xÞuðsÞdBðsÞ�
XN

k ¼ 0

Z
Bk

UIðs,xÞtðsÞdBðsÞ, xADc [ B

ð44Þ

where N is the number of circular cylinders and B0 denotes the
outer boundary for the bounded domain. In case of the infinite
problem, B0 becomes BN. The origin of observer system is
adaptively chosen at the center of circular boundary under
integration. The dummy variable in the circular integration is
angle (y) instead of radial coordinate (R). In the real computation,
we select the collocation point on the real boundary and the
integration path is counterclockwise for the outer circle. Otherwise,
it is clockwise. For the integration path Bk, the kernels of U(s,x)and
T(s,x) are respectively expressed in terms of degenerate kernels of
Eqs. (34) and (35) with respect to the observer origin at the center of
Domain point

undary point, and (b) domain point.
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the corresponding path. The boundary densities of u(s) and t(s) are
substituted by using the Fourier series of Eqs. (42) and (43),
respectively. In the Bk integration, we set the origin of the observer
system to collocate at the center ck of Bk to fully utilize the
degenerate kernel and the Fourier series. By moving the null-field
point exactly on the real boundary Bk from outside of the domain Dc

in the numerical implementation, a linear algebraic system is
obtained.

For the exterior problem of infinite domain, we have

½UI
�ftO�tincg ¼ ½TI

�fuO�uincg ð45Þ

For the interior problem of each cylinder, we have

½UE
�ftCg ¼ ½TE

�fuCg ð46Þ

[UI], [TI], [UE] and [TE] are the influence matrices with a
dimension of N� (2M+1) by N� (2M+1), {tO}, {tinc}, {uO}, {uinc},
{tC} and {uC} denote the column vectors of the Fourier coefficients
with a dimension of N� (2M+1) by 1 in which those are defined as
follows:

½UI
jk� ¼

UI
00 UI

01 � � � UI
0N

UI
10 UI

11 � � � UI
1N

^ ^ & ^

UI
N0 UI

N1 � � � UI
NN

2
66664

3
77775, ð47Þ

½TI
jk� ¼

TI
00 TI

01 � � � TI
0N

TI
10 TI

11 � � � TI
1N

^ ^ & ^

TI
N0 TI

N1 � � � TI
NN

2
66664

3
77775, ð48Þ

½UE
jk� ¼

UE
00 0 � � � 0

0 UE
11 � � � 0

^ ^ & ^

0 0 � � � UE
NN

2
66664

3
77775, ð49Þ

½TE
jk� ¼

TE
00 0 � � � 0

0 TE
11 � � � 0

^ ^ & ^

0 0 � � � TE
NN

2
66664

3
77775, ð50Þ

fuOg ¼

uO
0

uO
1

^

uO
N

8>>>><
>>>>:

9>>>>=
>>>>;

, fuincg ¼

uinc
0

uinc
1

^

uinc
N

8>>>><
>>>>:

9>>>>=
>>>>;

, ftOg ¼

tO
0

tO
1

^

tO
N

8>>>><
>>>>:

9>>>>=
>>>>;

, ftincg ¼

tinc
0

tinc
1

^

tinc
N

8>>>><
>>>>:

9>>>>=
>>>>;

,

ð51Þ

fuIg ¼

uC
0

uC
1

^

uC
N

8>>>><
>>>>:

9>>>>=
>>>>;

, ftIg ¼

tC
0

tC
1

^

tC
N

8>>>><
>>>>:

9>>>>=
>>>>;

ð52Þ

the first subscript j (j¼0, 1, 2, y, N) in [UE], [TE], [UI] and [TI]
denotes the index of the jth circular boundary, where the colloca-
tion point is located and the second subscript k (k¼0, 1, 2, y, N )
denotes the index of the kth circular boundary when integrating on
each boundary data ftO�tincg, fuO�uincg in Fig. 2(e), {tC} and {uC}in
Fig. 2(c), N is the number of circular cylinders in the domain and the
number M indicates the truncated terms of the Fourier series. It is
noted that {uinc} and {tinc} in Fig. 2(d) are the potential and flux due
to the incident wave. The coefficient matrix of the linear algebraic
system is partitioned into blocks, and each off-diagonal block
corresponds to the influence matrices between two different
circular boundaries. The diagonal blocks are the influence matrices
due to itself in each individual circle. After uniformly collocating
the point along the kth circular boundary, the submatrix can be
written as

½Ujk� ¼

U0c
jk ðf1Þ U1c

jk ðf1Þ U1s
jk ðf1Þ � � � UMc

jk ðf1Þ UMs
jk ðf1Þ

U0c
jk ðf2Þ U1c

jk ðf2Þ U1s
jk ðf2Þ � � � UMc

jk ðf2Þ UMs
jk ðf2Þ

U0c
jk ðf3Þ U1c

jk ðf3Þ U1s
jk ðf3Þ � � � UMc

jk ðf3Þ UMs
jk ðf3Þ

^ ^ ^ ^ ^

U0c
jk ðf2MÞ U1c

jk ðf2MÞ U1s
jk ðf2MÞ � � � UMc

jk ðf2MÞ UMs
jk ðf2MÞ

U0c
jk ðf2Mþ1Þ U1c

jk ðf2Mþ1Þ U1s
jk ðf2Mþ1Þ � � � UMc

jk ðf2Mþ1Þ UMs
jk ðf2Mþ1Þ

2
666666666664

3
777777777775

,

ð53Þ

½Tjk� ¼

T0c
jk ðf1Þ T1c

jk ðf1Þ T1s
jk ðf1Þ � � � TMc

jk ðf1Þ TMs
jk ðf1Þ

T0c
jk ðf2Þ T1c

jk ðf2Þ T1s
jk ðf2Þ � � � TMc

jk ðf2Þ TMs
jk ðf2Þ

T0c
jk ðf3Þ T1c

jk ðf3Þ T1s
jk ðf3Þ � � � TLc

jk ðf3Þ TMs
jk ðf3Þ

^ ^ ^ & ^ ^

T0c
jk ðf2MÞ T1c

jk ðf2MÞ T1s
jk ðf2MÞ � � � TMc

jk ðf2MÞ TMs
jk ðf2MÞ

T0c
jk ðf2Mþ1Þ T1c

jk ðf2Mþ1Þ T1s
jk ðf2Mþ1Þ � � � TMc

jk ðf2Mþ1Þ TMs
jk ðf2Mþ1Þ

2
666666666664

3
777777777775

ð54Þ

It is noted that the superscript 0s in Eq. (53) disappears since
sin(0y)¼0, and the element of [Ujk] and [Tjk] are defined as

Unc
jk ¼

Z
Bk

Uðsk,xmÞcosðnykÞRkdyk ð55Þ

Uns
jk ¼

Z
Bk

Uðsk,xmÞsinðnykÞRkdyk ð56Þ

Tnc
jk ¼

Z
Bk

Tðsk,xmÞcosðnykÞRkdyk ð57Þ

Tns
jk ¼

Z
Bk

Tðsk,xmÞsinðnykÞRkdyk ð58Þ

where n¼1,2,y,M, fm(m¼1,2,y,2M+1) is the polar angle of the
collocating point xm along the boundary. By assembling matrices in
Eqs. (11), (45) and (46), we have

TI
�UI 0 0

0 0 TE
�UE

0 þI 0 �I

ikG 0 �ikG I

2
66664

3
77775

uO

tO

uC

tC

8>>><
>>>:

9>>>=
>>>;
¼

Winc

0

0

0

2
6664

3
7775 ð59Þ

where the matrix [I] is an identity matrix and Winc ¼ ½T
I
�fuincg�

½UI
�ftincg is the forcing term. After obtaining the unknown Fourier

coefficients, the origin of observer system is set at cj in the Bj

integration as shown in Fig. 3(b) to obtain the interior potential by
employing Eq. (32).
2.7. Perturbation of ordered cylinder arrangements

An arrangement of four and sixteen cylinders according to a
regular three-rows disposition is shown in Fig. 4(a) and (b). For the
purpose of disturbing the regular arrangement, a perturbation of
disposition is given. The displacement of each cylinder center apart
from its original periodical position is defined as follows

Dxj ¼ gjptcosð2pgjÞ,

Dyj ¼ gjptsinð2pgjÞ ð60Þ

where gj is a random variable in the range of [0,1], the maximum
permissible displacement p is equal to d–a and t is a global disorder
parameter. The distance between the two centers of identical
cylinders is 2b where the radii of cylinders are a.
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Fig. 4. Configuration of (a) four cylinders and (b) sixteen cylinders.
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Fig. 5. Contour plots of free-surface elevation of the four impermeable cylinders. (G¼0.0, yinc¼451, h/a¼5, d/a¼2 and ka¼p/2).
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3. Illustrative examples

3.1. Case 1: Four cylinders

For the 451 of incident wave to impermeable cylinders as shown
in Fig. 4(a), the null-field BIEM is employed to calculate the free-
surface elevation as shown in Fig. 5. To consider the porous effect
(G¼1), the contour plot of the free-surface elevation is shown in
Fig. 6. After comparing Fig. 6 with Fig. 5, it is found that the
elevation of free-surface becomes smaller when the porous effect
(G¼1) is considered. In Williams and Li’s article, the elevation of
free-surface is shown in the form of 3D plot, but our result shows
in the form of contour plot. We could not compare our results and
their ones directly. In Chen’s thesis (2004), his results were
compared well with those of Williams and Li. Chen also plotted
the contour of free-surface elevation. After comparing with Chen’s
result, good agreements are made.
35
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3.2. Case 2: Sixteen cylinders

For the sixteen cylinders composed by five sets, contour plots of
the free-surface elevation are our main concern.
5
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(a)
-5

Fig. 7. Near-trapped mode for the ordered pile array at ka¼4.08482 (a/d¼0.8,

G¼0.0, M¼20, and t¼0.0).
Without disorder and porosity:
A trapped mode also appears for the same wave number of
k¼4.08482 by Chen et al. (2009) as the case of sixteen cylinders
in Fig. 7 using our approach and compared well with those of
Duclos and Cl�ement’s method (2004). The maximum wave
amplitude is predicted to be about 150 times by using both
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Fig. 6. Contour plots of free-surface elevation of the four porous cyl
approaches. Fig. 8 shows the force experienced by cylinder No.
3 of the linear array in Fig. 4(b) and cylinder 1 (see Fig. 4(a)) of
the circular cylinders by using our approach and is compared
well with the result of Duclos and Cl�ement’s method (2004).
(b)
 Effect of disorder (impermeable case):
As shown in Fig. 7, original state without disorder and porous
effect is considered. Here, the effect of disorder is considered.
Following the definition of disorder parameter t, two random
cases of t¼0.1 were reported by Duclos and Cl�ement (2004).
0.5 1 1.5

inders (G¼1.0, yinc¼451, h/a¼5, d/a¼2 and ka¼p/2).
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Fig. 9. Suppression of near-trapped modes by using disorder. (a/d¼0.8 and M¼20).

-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70

Fig. 10. Contour plot of the maximum free-surface elevation amplitude for porous

cylinders (a/d¼0.8, G¼1.0, t¼0, and M¼20).
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Fig. 11. Contour plot of the maximum free-surface elevation amplitude for the

disorder and porous cylinders (a/d¼0.8, G¼1.0, t¼0.1, and M¼20).
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The appearance of the trapped mode is dramatically sup-
pressed. To test the accuracy of our approach for the disorder
effect, Fig. 9 shows that the contour plot of the trapped mode is
effectively suppressed for t¼0.1.
(c)
 Effect of porosity

To verify the effect of porous parameter on the trapped mode
of sixteen cylinders, Figs. 7 and 10 show the contour plot of
free-surface elevation. The maximum value of 150 reduces to
75 due to the porous parameter of G¼1.0. This result agrees
with Chwang’s result that the resultant force decreases as the
G value becomes larger.
(d)
 Effect of porous parameter and disorder together

To verify both the effects of disorder and porosity, a sixteen
cylinders example is demonstrated here. Fig. 7 shows the
contour of the free-surface elevation without disorder and
porosity. By considering the perturbation parameter t¼0.1, the
maximum value of free-surface elevation reduces dramati-
cally to 3.90 from the original value of 150 in Fig. 9. By only
considering the porous cylinder without disorder, the max-
imum value is deduced to half as shown in Fig. 10 in
comparison with 150 in Fig. 7. If the perturbation parameter
and porosity are simultaneously considered, the maximum
value of free-surface elevation reduces to 2.70 in Fig. 11. It
indicates that disorder dominates the maximum free-surface
elevation.
4. Conclusions

In this paper, not only a systematic approach was employed to
investigate the water wave interaction with arrays of surface-
piercing porous cylinders, but also the effect of porous parameter
and disorder on the force in case of trapped modes was also
examined. The case of impermeable cylinder case can be treated as
a special case with G¼0. The addition theorem or so-called the
degenerate kernel is adopted in the null-field integral formulation.
Therefore, the singular integrals using bump integrals for principal
values can be avoided. Numerical results including the free-surface
elevation and resultant forces on each cylinder have been pre-
sented to illustrate the effect of porous and disorder parameter on
the force in case of trapped modes. It is found that the disorder has
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more influence to suppress the occurrence of near-trapped modes
than the porosity. Good agreements are observed after comparing
with the results obtained in the literature.
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