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ABSTRACT
    In this paper, the eigensolutions are derived by using seven determinants of the direct searching approach. Seven determinants include the complex-valued, real and imaginary parts of determinant using the complex-valued kernel as well as the determinant by using the real-part, and imaginary-part kernels as well as the multiple reciprocity method (MRM). It is found that spurious eigensolutions of the real-part BEM match well with those of the MRM for the one-dimensional case. The idea of the Combined Helmholtz Exterior integral Equation Formulation method (CHEEF) in conjunction with the singular value decomposition (SVD) technique can be applied to suppress the occurrence of spurious eigenvalues. Possible failure CHEEF points are also examined. Updating terms and updating documents are employed to extract out the true and spurious eigenvalues. Two and three dimensional cases are straight-forward to be extended. Their spurious eigenvalues are also explored.
INTRODUCTION
    The application of eigenanalysis is gradually increasing for vibration and acoustics. The demand for eigenanalysis calls for an efficient and reliable method of computation for eigenvalues and eigenmodes. Over the last three decades since 1974, several boundary element formulations have been employed to solve the eigenproblems [1], e.g., determinant searching method, internal cell method, dual reciprocity method, particular integral method and multiple reciprocity method. In this paper, we will focus on the determinant searching method with emphasis on spurious eigenvalues due to the real-part BEM and the MRM. 

   Spurious and fictitious solutions stem from non-uniqueness problems. They appear in different aspects in computational mechanics. First of all, hourglass modes in the finite element method (FEM) using the reduced integration occur due to rank deficiency [2]. Also, loss of divergence-free constraint for the incompressible elasticity also results in spurious modes. In the other side of numerical solution for the differential equation using the finite difference method (FDM), the spurious eigenvalue also appears due to discretization [3-5]. In the real-part BEM [6] or the MRM formulation [7-12], spurious eigensolutions occur in solving eigenproblems. Even though the complex-valued kernel is adopted, the spurious eigensolution also occurs for the multiply-connected problem [13] as well as the appearance of fictitious frequency for the exterior acoustics [14]. In this paper, a simple case of one-dimensional rod will be demonstrated to see how spurious eigensolutions occur and how they can be suppressed. Although the one-dimensional case is simple [15-19], it provides the insight to understand how the spurious eigenvalue behaves and how they can be suppressed from the education point of view.

   In the literature review, we can find seven alternatives to solve eigenproblems using the direct-searching scheme. Tai and Shaw [20] employed the determinant of complex-valued BEM. De Mey [21] revisited this problem in 1976. Later, De Mey [22] proposed a simplified approach by using only the real-part or imaginary-part kernel where he found that spurious solutions were imbedded as well as the ill-posed matrix appeared. In a similar way of using the real-part kernel, Hutchinson [23-24] solved the free vibration of plate. Also, Yasko [25] as well as Duran et al. [26] employed the real-part kernel approach. It is interesting to find that Kang et al. [27] proposed an imaginary-part kernel approach using the collocation approach as commented by Chen et al. [28]. Yeih et al. [9] found that the MRM is nothing but the real-part BEM. This is the reason why spurious eigenvalues are inherent in the two methods. The chronology list of the literature survey is shown in Table 1. All the indicators in the determinant searching method will be employed to solve a simple one-dimensional problem in this paper.

   In the recent years, the SVD technique has been applied to solve problems of continuum mechanics [29] and fictitious-frequency problems [14]. Two ideas, updating term and updating document [14], were successfully applied to extract the true and spurious solution, respectively. Also, the CHIEF [30] and CHEEF [31-32] methods were employed to suppress the occurrence of fictitious frequency and spurious eigenvalue, respectively. Based on these successful experiences, the CHEEF concept will be employed to study the spurious eigenvalue of the one-dimensional eigenproblem. 

   In this paper, eigenproblems of one-dimensional case will be explored by using seven indicators for the direct-searching scheme in details. Spurious modes in the real-part BEM formulation will be examined through the SVD technique and will be suppressed by using the CHEEF idea. Although a one-dimensional case is studied analytically, two and three dimensional cases can be straightforward extended by only changing the degenerate kernel.

   The rest of this paper is organized as follows. In Section 2, we propose a dual formulation for the eigenproblem of a rod. In Section 3, Seven indicators for the direct-searching scheme are employed to solve eigenproblems. The occurrence of spurious eigenvalues are suppressed by using the SVD technique in conjunction with the CHEEF idea in Section 4. Updating terms and updating documents is in Section 5. Section 6 extends the one-dimensional case to two and three dimensional cases. Finally, a conclusion is made. 
DUAL FORMULATION FOR ONE-DIMENSIONAL EIGENPROBLEM
   Consider the eigenproblems of free vibration for a rod subject to boundary conditions as shown in Fig. 1 with the following governing equation
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where 
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The case of the mixed-type is considered in Fig. 1 as shown below.
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Figure 1 A rod subject to the mixed-type boundary condition.
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where 
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 is the Dirac-delta function, 
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 is the field point, and 
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 is a complex-valued fundamental solution as
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and can be expressed in terms of degenerate kernel
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By employing the Green’s third identity and integration by parts, we can derive the boundary integral equations as

Table 1 Literature review for eigenproblems using the direct searching scheme in BEM.
	
	1974
	1976
	1977
	1985
	1997
	1999
	2000
	2001
	Present

	Indicator 1
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Then we exchange x with s to each other of Eq. (5), and obtain
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where 
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Conventionally, by collocating the field point x close to the boundary 
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 for Eq. (6), we have
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By assembling two Eqs. (7) and (8) into a matrix form, we have
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Substituting the kernel functions into Eq. (9), we have
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For the case of mixed-type with B.C. u(0)=0 and t(L)=0, Eq. (10) simplifies to
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Owing to the introduction of degenerate kernels of Eq. (4), BIE for the domain point can be expressed as
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and the null-field BIE is
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where U and T kernels must be represented in a correct form by using the expression of degenerate kernels of Eq. (4). The collocation point can locate on the real boundary for two Eqs. (12)-(13). Mathematically speaking, the domain of Eqs. (12)-(13) is a closed set instead of an open set in the conventional BEM formulation of Eq. (6) using the closed-form fundamental solution.

DIRECT SEARCHING SCHEME FOR THE EIGENVALUES USING SEVEN INDICATORS
According to Eq. (11), we use seven determinants to obtain the eigenvalue. Seven indicators to find the eigenvalue by using determinants in the direct searching scheme are shown below:

Indicator 1. Complex determinant using the complex-valued kernel BEM

Indicator 2. Absolute value of determinant using the complex-valued kernel BEM

Indicator 3. Imaginary-part of determinant using the complex-valued kernel BEM

Indicator 4. Real-part of determinant using the complex-valued kernel BEM

Indicator 5. Determinant using the imaginary-part kernel BEM

Indicator 6. Determinant using the real-part kernel BEM

Indicator 7. Determinant using the MRM[7]

Based on the seven indicators, the true and spurious eigensolutions and the corresponding boundary eigenvectors are shown in Table 2. The first column in the Table 2 denotes the Indicator for the direct-searching determinant. The second column shows the rank of the influence matrix for the true and spurious cases. True and spurious eigenvalues are found in the third and sixth columns and their corresponding boundary eigenvectors are listed in the fourth and seventh columns, respectively. Then their analytical solutions are listed in the fifth (true) and eighth (spurious) columns. The last column shows the treatment for the spurious eigenvalue.

According to the Table 2, we find that the Indicators 4 to 7 also results in spurious eigenvalues. Since the MRM is nothing but the real-part BEM [7-12], Indicators 6 and 7 result in the same spurious eigenvalue as shown in Table 2. We employ the CHEEF concept to suppress the occurrence of spurious eigenvalues as elaborated on later in the next section. 
FILTERING OUT SPURIOUS EIGENVALUES IN THE REAL-PART BEM BY USING THE CHEEF CONCEPT
Because the real-part BEM lacks for the constraining condition of imaginary-part information, spurious eigenvalues appear in the case of mixed-type by using the Indicator 6 in Table 2. In order to filter out spurious eigenvalues, we employ the CHEEF concept. A point, c, in the complementary domain, which is called a CHEEF point as shown in Fig. 2 and 3 is selected to provide a constraint. Therefore we have the null-field equation by using the Indicator 6. The constraints of UT equation for the CHEEF point are
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where UR(0,c) and TR(L,c) are the real-parts of U(0,c) and T(L,c) respectively. By assembling Eqs. (11) and (14) into

the matrix form, and by selecting a right (c>L) CHEEF point, we have the UT equation: 

Table 2 Eigensolutions for the case of mixed-type:u(0)=0 and t(L)=0 using seven approaches.
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＊Indicators 4,5,6 and 7 result in spurious eigensolutions.
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If the CHEEF point c is selected in the left side (c<0). We have the UT equation:
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It is interesting to find that the left 
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 CHEEF points yield the same row but negative to each other due to the CHEEF point as shown in Eqs. (15) and (16). Based on the SVD decomposition, we have
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where 
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Figure 2 A CHEEF point , c, in the right side. 
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Figure 3 A CHEEF point , c, in the left side.
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in which 
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, since the CHEEF constraint is trivial which can not filter out spurious eigenvalues. True and spurious modes by using the UT equation are shown in Figs. 5 and 6. It indicates that a true eigenvalue results in a true mode in the domain and null field in the complementary domain, while the spurious case has a nontrivial field in the complementary domain. The location of zero response in the complementary domain happens to be that of the failure CHEEF point.

UPDATING TERMS AND UPDATING DOCUMENTS TO EXTRACT OUT TRUE AND SPURIOUS EIGENVALUES

Now we differentiate Eq. (6) with respect to the field
[image: image105.wmf]p

€€

€

€

2

p

3

p

€€€€

€€

€

€

2

2

p

5

p

€€€€

€€

€

€

2

k

2.2

2.4

2.6

2.8

3

c


Figure 4 Zero contour plot of the minimum singular value   versus (k,c) by using the UT equation. (zero nodal line only).
point x, the hypersingular integral equation (LM equation) is
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where 
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By assembling two Eqs. (20) and (21) into a matrix form and substituting the kernel functions, we have the LM equation
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Figure 5 True mode of case 3 by using the UT equation (kT=1.5π, L=3).
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Figure 6 Spurious mode of case 3 by using the UT equation (kS=5π/3, L=3).

Now we arrange Eqs. (10) and (22) by using the indicator 6, we have
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By employing SVD for 
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respectively, the minimum singular values versus k can be obtained. The figures of minimum singular values versus k are shown in Figs. 6 and 7 for the unit length rod. The k value at drops in Figs 7 and 8 shows the true and spurious eigenvalues, respectively.
EXTENSIONS TO 2-D AND 3-D EIGENPROBLEMS

    Following the simple example of one-dimensional rod, it is straight forward to extend two and three dimensional cases as shown in Figs. 9 and 10. The eigenequations by using the Indicators 5 and 6 for the two and three dimensional cases are shown in Tables 3 and 4. By changing the degenerate kernels in Eq. (4) to the two-dimensional circular case, we have
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Figure 7 Extraction of true eigenvalues using SVD updating terms.
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Figure 8 Extraction of spurious eigenvalues using SVD updating terms.
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Figure 9 Two-dimensional case (circle membrane).
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Figure 10 Three-dimensional case (spherical cavity).
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Table 3 Occurring mechanism of 2-D true and spurious eigenequations by using the real-part and 
imaginary-part BEM.
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Table 4 Occurring mechanism of 3-D true and spurious eigenequations by using the real-part and
 imaginary-part BEM.
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where 
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, and the equations inside { } and [ ] denote the true and spurious eigenequations, respectively.

For the three-dimensional spherical case, we have
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where 
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 are the nth order spherical Bessel function of the first kind and the nth order spherical Hankel function of the second kind, respectively, and 
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 appear for the two and three dimensional cases of Tables 3(a) and (b), once the real and imaginary-part BEM are employed. [33-34]
CONCLUSION
A simple example of one dimensional eigenproblem was demonstrated to show that seven indicators of determinant by using the direct searching scheme can obtain the possible solution. Spurious eigensolutions in the real-part BEM were studied analytically and were compared with those of MRM. The CHEEF idea was applied to filter out spurious eigenvalues. Possible failure points were also examined. SVD updating term and document were employed to extract out true and spurious eigenvalues, respectively. Extensions to two and three dimensional cases were also made. The sequence of one-dimensional example gives an insight to understand the mechanism of spurious eigensolutions.
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