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ABSTRACT

In this paper, the Laplace problem with overspecified
boundary conditions is investigated by using the
regularized meshless method. The solution is represented
by a distribution of the kernel functions of double-layer
potentials. By using the desingularization technique of
adding-back and subtracting terms to regularize the
singularity and hypersingularity of the kernel functions,
the source points can be located on the real boundary and
the diagonal terms of influence matrices are determined.
The main difficulty of the coincidence of the source and
collocation points then disappears. The accompanied
ill-posed problem can be remedied by using Tikhonov
regularization technique, linear regularization method
and truncated singular value decomposition. The optimal
parameters of the Tikhonov technique and linear
regularization method and truncated singular value
decomposition are derived by adopting L-curve concept.
The numerical evidences of the regularized meshless
method are given to verify the accuracy of the solutions
after comparing with the results of analytical solution.
The comparison of Tikhonov regularization technique,
linear regularization method and truncated singular value
decomposition are also discussed in the example.
Keywords: regularized meshless method, Tikhonov

technique, linear regularization method, truncated
singular value decomposition, L-curve technique,
Cauchy problem.

1. INTRODUCTION

Inverse problems are presently becoming more
important in many fields of science and engineering
[15,20]. They may be one of the following problems or
their combinations. ( I) lack the determination of the
domain, its boundary, or an inner unknown boundary, (1)
lack inference of the governing equation, (II) lack
identification of boundary conditions and/or initial
conditions (Cauchy problem), (IV) lack determination of
the material properties involved, (V) lack determination
of the forces or inputs acting in the domain [18]. The
Cauchy problem is focused in this paper.

Sometimes, unreasonable results occur in the Cauchy
problem subjected to the measured and contaminated
errors on the overspecified boundary condition, because
of the ill-posed behavior in the linear algebraic system

[14,19]. Mathematically speaking, the Cauchy problem is
ill-posed since the solution is very sensitive to the given
data. Such a divergent problem could be avoided by
using regularization methods [15,20]. For examples,
truncated singular value decomposition (TSVD) [17],
Tikhonov regularization technique [2] and linear
regularization method [9] have been applied to treat with
the divergent problems. The three methods can obtain the
convergent solution more precisely and reasonably. The
TSVD, Tikhonov regularization technique and linear
regularization method, had been successfully applied to
overcome the ill-posed problem of the Laplace equation
[4,10]. In this paper, the comparison of three
regularization techniques is made to obtain a better
method.

For the Cauchy problem, the influence matrix is often
ill-posed such that the regularization technique which
regularizes the influence matrix is necessary. The TSVD
transform the ill-posed matrix into a well-posed one by
choosing an appropriate truncated number for i. Similarly,
the Tikhonov technique and linear regularization method
transform into a well-posed one by choosing an
appropriate parameter for A and A*H [3]. The
appropriate truncated number (or parameter) can be
determined according to a compromise point between
regularization errors (due to data smoothing) and
perturbation errors (due to noise disturbance) by
implementing the L-curve concept [11,16]. The corner of
the L-curve determines the optimal value of A (or i)
which will be employed to provide the compromise point
and will be elaborated on later.

During the last decade, scientific researchers have
paid attention to the meshless methods for solving
Cauchy problems in which the mesh or element is free
[5]. The method of fundamental solutions (MFS) which
is a kind of meshless methods has been extensively
applied to solve some engineering problems [1,8].
However, the location of source and observation point is
vital to the accuracy of the solution by implementing the
conventional MFS. But it still accompanies some
difficulties at the ill-posed problem. Consequently, a
novel meshless method - regularized meshless method
(RMM) [6,7,12,13] has been employed to solve the
potential problems based on the potential theory as well
as the desingularization of subtracting and adding-back
technique to regularize the singularity and
hypersingularity of the kernel functions. The proposed
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method distributes the observation and source points on
the coincident locations of the real boundary even using
the singular kernels (double-layer potentials) instead of
non-singular kernels and still maintains the spirit of the
MFS. The diagonal terms of the influence matrices can
be derived by using the proposed technique.

In this paper, we are going to employ the RMM in
conjunction with the TSVD, Tikhonov technique, linear
regularization method and L-curve concept to circumvent
the ill-posed problem. To obtain the optimal truncated
number or parameter, L-curve concept is employed.
Finally, the results of the example contaminated with
artificial noise on the overspecified boundary condition
are given to illustrate the validity of the proposed
technique. Good agreements are observed as comparing
analytical solutions.

2. Formulation

2.1 Governing equation and over-specified
boundary condition

To consider the inverse problem for Laplace equation
with overspecified boundary condition as shown in Fig. 1
satisfies:

V2g(x)=0, xeD (1)

subjected to the boundary condition on B, as

g =9, y(x)=y, XeB, @)
where V7 is the Laplacian operator, D is the domain

of interesting, w(X)= in which ny is the normal

94(X)
3

X

vector at X, B is the whole boundary which consists of
boundary (B;), and the

the known unknown

boundary (B, ).
2.2 Method of solution

2.2.1 Method of fundamental solutions

By employing the radial basis functions (RBFs)
concept [6], the representation of the solution for interior
problem can be approximated in terms of the strengths

alof the singularities s as

. N+M . . . .
p(x')= > AV(s) xHal, 3)
=
. N+M . i i
y(xH)= > BY(s) x)al, (4)
=
where A®(s!, x") is RBF in which the superscript (i)

denotes the interior domain oAV (s, X) alis

on

> B(i)(Sj,Xi)
the j th unknown coefficient (strength of the singularity),

st is j th source point (singularity), X' is i th observation
point, and N is number of the boundary points on B; and
M is number of the boundary points on B, . Boundary

condition is satisfied at the boundary points, {x'}NM
so that the coefficients {o}}4" can be determined.

The chosen RBFs of Eqs. (3) and (4) in this paper are
the double-layer potentials in the potential theory as

A(I)(S X) nkyk (5)
ru
B0 (1) =2 YN My ©)
I’|J Iij

where rj; =‘si_x‘ , N is the kth component of the

is the kth
component of the outward normal vector at X' and
Vi =Xk —S¢-

outward normal vector at s!' ; n,

2.2.1 Regularized meshless method

It is noted that the double layer potentials have both
singularity and hypersingularity when the source point
and the observation point are coincided, which lead to
troublesome singular kernels and controversially
auxiliary boundary in the conventional MFS. The off-set
distance between the off-set (auxiliary) boundary (B')
and the real boundary (B) defined by d as shown in Fig.
2 (a) and (b) needs to be chosen deliberately. To
overcome the abovementioned drawback, s! is
distributed on the real boundary as shown in Fig. 2 (c)
and (d) by using the proposed regularization technique.

When the collocation point X' approaches to the
source point s, Egs. (3) and (4) become singular. Egs.
(3) and (4) for the interior problems need to be
regularized by using subtracting and adding-back
technique [6] as follows :

) N+M | ) A ) N+M . . .
p(x)= > AV xhal - Y A® (T xa!

i=1 j=1
N+M

i1
=Y AV xDal + Y AD(sT xNa @)

j=1 j=i+l

N+M . i i . i i
-{ZA(')(sm,x')—A(')(s',x'):‘a', x' eB

m=1

iy M0 e iy VR @) e iy
w(x") = ZB !, xHa —ZB !, xHa

B
_ZB(I)(S X +ZB(I)(S X! (®)

j=i+l

N+M . . . i . i
—[ > BUGEM,x) - B(')(s',x')}a', x' eB
m=1

in which

N+M . i .

> A®sI xhy=0,x'eB )
j=1

N+M . . .

> B®(s) x)=0,x'eB (10)

i=1
The detailed derivations of Eqs. (9) and (10) are
given in reference [6]. The superscript () of A®(si x')
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and B®(sl,x") denotes the exterior domain, the term of
N+M . N+M .

> AD(s™ x) and S gi(sm xiy are the adding-back
m=1 m=1

terms and the terms of AV (s'x") and BY(s',x') are

the subtracting terms in two brackets for the special
treatment technique.

2.2.3 Derivation of diagonal coefficients of
influence matrices
We can obtain the following linear algebraic system

after collocating N +M observation points, {x'}NM

to the real boundary in Eq. (7) as :

{¢1}le B [A1]N><(N+M)
= () (nempa (11)
B ima) | [PoIvanimy
where
9131 P
{P1hna = :2 v APt = ¢N;+2 (12)
;N Pnim
[AINxNmy =
[N+M
Dam—ay a, Az o aN o ANeM
! N+M
2 Daym =ty ay N TN |
m=1
Coam : :
a ay» ENE aym—a RN
| N1 N2 N3 mZ::l N,m N,N N,N+M (13)
[Az]Mx(N+M)=
M N+M
Ay a2 Anas zaN+1.m_aN+1.N+1 Ang,NeM
m=l
: : : T oNem .
Al Anemz Anams AN MNA : ZaN+M,m_aN+M,N+M
m=l
a,
@
{a}(N+M)xl =31aN 5 (14)
AN+
AN+M

in which a; = AV(s1,x") and i,j=12,..,N+M.
In a similar way, Eq. (8) yields
v [Bilnwen+
{{V/l}le}_{ HNx(N+M) }{a}(Nu\Am (15)

Watma)  [[Balvxvem)
where

al YN+l
— v VN2

Vs =
Wina =1, " 1o Waltma : (16)

72N Y N+M
[B\]NX(N+M):
[ [N:m
—[me—b]_,:‘ by, by - by < binim

m=1
N+M
by, *[ sz.m*bz.zj‘ U by n s bynewm |
m=1
: Lo Nom ’ ’
by by 2 bys .. 7[ZbNAm7bN.N} < by
: " 17
[B2Imxqnem) = ( )
[ N+M
byt Bz Buais = D Banm P | DN em
m=1
N+M :
buimi Puemz Buams o LINEVR {memm*bmmw-rw
m=1

(18)

{a}(N+M)xl = 10N >

AN+

AN+M
in which b; =B"(s’,x") and i,j=12,....N+M.

Rearrange the influence matrices of Egs. (11) and (15)
together into the linearly algebraic solver system as

{al}le LA Insenm)
vibwa o 19
{{Wl}le} |:[BI]N><(N+M) {2 (N (19)

The linear equations in Eq. (19) can be generally
written as

[Alix} = {b} (20)

where [A]:[[AI]NAMM)} {X}={a}(N+M)x1 and

[By Inx(nm)
{m:f@mﬂ}
Wit
For the Cauchy problem of the Laplace equation, the

influence matrix [A] is often ill-posed such that the

regularization technique in section 2.2.4 which
regularizes the influence matrix is necessary.

2.2.4 Regularization techniques for Cauchy
problem

2.2.4.1 Truncated singular value decomposition
In the singular value decomposition (SVD), the
matrix [A] is decomposed into

[Al=[u] [=] VT @D
where[U]=[u;,u, -+ ,uy Jand [V ]=[v; v, - v, Jare column
orthonormal matrices, with column vectors called left
and right singular vectors, respectively, T denotes the
matrix transposition, and [g]=diag(c,,0,,,0,) is @
diagonal matrix with nonnegative diagonal elements in
nonincreasing order, which are the singular values of

[A]-
A convenient measure of the conditioning of the
matrix [A] is the condition number Cond defined as

Cond =21 , (22)
Gm
where o is the maximum singular value and o, is

the minimum singular value i.e. the ratio between the
largest singular value and the smallest singular value. By

means of the SVD, the solution a® can be written as
K T

2=y U0y, 23)
i=1 i

where Kk is the rank of [A], u; is the element of the left

singular vector and V; is the element of the right

singular vector. For an ill-conditioned matrix equation,
there are small singular values, therefore the solution is
dominated by contributions from small singular values
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when noise is present in the data. One simple remedy to
the difficulty is to leave out contributions from small

singular values, i.e. taking aP as an approximate
solution, where aP is defined as:

T
apzzulbvi’ (24)

i-1 Oi

where p < Kk is the regularization parameter, which
determines when one starts to leave out small singular
values. Note that if p=Kk, the approximate solution is
exactly the least squares solution. This method is known
as TSVD in the inverse problem community [4].

2.2.4.2 Tikhonov technique

Tikhonov proposed a method to transform this
ill-posed problem into a well-posed one. Instead of
solving [A]{x} ={b} directly, the procedures of

Tikhonov technique are written as follows:

(1). Minimize |[x|* subjectto [Ax—b|* <& (25)
where ¢ is the prescribed error tolerance.

(II). The proposed problem in Eq. (25) is equivalent to
[10]

minimize ||Ax—b||2 subject to HXH2 <e*, (26)
and the Euler-Lagrange equation obtained from reference
[10] can be written as

(ATA+Al)x=A"Db (27)
Where A is the regularization parameter (Lagrange
parameter).

2.2.4.3 Linear regularization method

The single central idea in inverse theory is the
prescription [9] ,
minimize: P[x]+ AQ[x] (28)
where P[x]>0 and Q[x]>0 are two positive functions
of Xx.

Then, using equation X2 [9] , the minimization
principle Eq.28 is

minimize: P[x]+AQ[x]=|A-x-b 24 AX-H X (29)

in vector notation,

(ATA+AH)x=ATb (30)
where
[H ]MxM = [BT]M x(M-1) '[B](M -1)xM
1100 -0 0 0 0
12 <10 -0 0 0 0
0 -1 2 -1 0 0 0 0
| : : G31)
000 0 0 « -1 2 -10
00 0 0 « 0 -1 2 -1
00 0 0 - 0 0 -1 1
in which

-1 100 00 00O
0 -110 - 00 00
[BlM—l)xM = : (32)
06 000 -0-110
06 00000 -11

and T denotes matrix transposition.

2.2.5 The L-curve and its applications

The L-curve concept is proposed to aid us in selecting
the optimal parameter A (or i, truncated number). Two
indices are frequently used, one represents the sensitivity
of the influence matrix on the solution and the other
represents the degree of distortion to the original system.

U'UeH={J.:

u is the numerical result and U, is the analytical result,

Usually, the norm error is ‘

2
U-U,| dx} , Where

is chosen as the index of sensitivity and A (or i) is chosen
as the index of degree of distortion. A sketch diagram for
the TSVD method - Tikhonov technique and Linear
regularization method combined with the L-curve
concept is illustrated in Fig. 3. One can find that when
the regularization parameter, A or i, is small, ||u-ue||

tends to very large even though A (or i) is small. It is
shown that the regularization parameter is too small such
that not much improvement of ill-posed remedy in the
influence matrix is done. On the other hand, when the
regularization parameter, A (or i), is large, A (or i) tends to

be very large even though ||u - ue" tends to small value

which shows that the regularization parameter is too
large such that the original system is distorted too much.

Therefore, the compromised results of ||u - ue” and A (or

i) lead us to choose the corresponding value in the corner
of the L-shape curve as the optimal regularization
parameter.

3. Numerical example

To illustrate application of the TSVD, Tikhonov
technique, linear regularization method and L-curve for
the Laplace equation with overspecified B.C.s. A circle
domain, R = 1, is chosen as a representation example.
Three kinds of treatments in the problem is considered:
TSVD, Tikhonov technique and Linear regularization
method all for the inverse problem with noise.

The present model of the inverse problem with noise
can be described as shown in Fig. 4. By using random
data simulation, we can obtain 1% random errors
contaminating the input data, as shown in Fig.5. If
regularization techniques are not employed, the results
are unreasonable as shown in Fig. 6 .

When the TSVD, Tikhonov technique and linear
regularization method are applied in the analysis for the
case, we can obtain solutions with many values of A (or i),
as shown in Fig. 7(a), 7(b), 7(c). Therefore, we can find
the relationship between the norm error and the value of
A (or i); i.e., the L-curve, as shown in Fig. 8(a), 8(b), 8(c),
can be constructed. As expected from the mathematical
point of view, a corner is present in the L-curve. If the
corner of the L-curve is chosen as an optimal point, the
appropriate value is 104 for TSVD, 0.000042 for
Tikhonov technique and 0.21 for linear regularization
method, respectively. Therefore, the deconvolution
results will be regularized to approximate the analytical
solution, as shown in Fig. 9(a), 9(b), 9(c). We can find
that the appropriate solutions obtained by using the
regularization techniques look more reasonable in
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comparison with the analytical solution than do the
results obtained without using regularization. Although
some differences still occur among TSVD, Tikhonov
technique and linear regularization method. Therefore,
we can find the differences among the L-curves of three
treatments, as shown in Fig. 10. The results of three
treatments are compared with the analytical solution, as
shown in Fig. 11. Then we can figure out the norm error
of the L-curve by linear regularization method is much
lower than others, also the result after regularized by
Linear regularization method is agree the analytical
solution better than others.

4. CONCLUSION

In this paper, we used the RMM to solve the Laplace
equation with overspecified boundary condition. Only
the boundary nodes on the real boundary are required.
The major difficulty of the coincidence of the source and
collocation points in the conventional MFS is then
circumvented. Besides, the regularization techniques
using the TSVD, Tikhonov technique and linear
regularization method, together with the L-curve, plays a
role in determining the optimal parameter A (or i) which
can maintain the system characteristic and can make the
system insensitive to contaminating noise. Furthermore,
the numerical results obtained by using the linear
regularization method for the case are in very close
agreements with the analytical solutions and is superior
to other regularization techniques.
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Figure 1 Sketch diagram of the inverse problem
with overspecified boundary condition.
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s'(r,0)

Byand B,
(Physical boundary)

Figure 2 (d).

Figure 2 The source point and observation point
distributions and definitions of 1,8, p,@ by using
the conventional MFS and the regularized meshless
method for the interior and exterior problems: (a)
interior problem (MFS), (b) exterior problem
(MFS), (c) interior problem (proposed method), (d)

exterior problem (proposed method).
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The optimal
parameter
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Figure 4 Problem sketch.
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Figure 6 The boundary potential without
regularization techniques.
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Figure 7 The boundary potential with different Fig#r? 8 L—(i_urve by I(a)' T.SVD' (rk]J)dTikhonov
values of A (or i) by using (a) TSVD, (b) Tikhonov technique, (c) linear regularization method.

technique, (c) linear regularization method.
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Figure 9 The boundary potential with the optimal
value of A (or i) by (a) TSVD, (b) Tikhonov
technique, (c) linear regularization method.
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Figure 10 L-curve by TSVD, lehonov technique
and Linear regularization method.
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Figure 11 The boundary potential by TSVD,
Tikhonov technique and Linear regularization
method with optimal values.
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