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Abstract 

In this paper, a null-field equation approach is proposed to deal with boundary 
value problems containing circular boundaries. The mathematical tools, 
degenerate kernels and Fourier series, are utilized in the null-field integral 
formulation. Although we employ the null field equations, we can exactly 
collocate the point on the real boundary. Thus, the singularity is novelly avoided 
since the kernel is expressed in a degenerate form. Five gains of well-posed 
model, singularity free, boundary layer effect free, exponential convergence and 
mesh-free approach are achieved. To demonstrate the validity of the present 
formulation, some applications are considered: (1) torsion problem, (2) bending 
problem, (3) SH wave impinging successive canyons. It is found that previous 
results by other investigators are not consistent with ours. After comparing with 
other independent solutions, the accuracy and efficiency of our approach is 
acceptable. 
Keywords:  null-field integral equation, degenerate kernel, Fourier series. 

1 Introduction 

Engineering problems can be formulated as mathematical models. In order to 
solve the boundary value problems, researchers and engineers have paid more 
attention on the development of boundary integral equation method (BIEM), 
boundary element method (BEM) and meshless method than domain type 
methods, finite element method (FEM) and finite difference method (FDM). 
Among various numerical methods, BEM is one of the most popular numerical 
approaches for solving boundary value problems. Although BEM has been 



involved as an alternative numerical method for solving engineering problems, 
five critical issues are of concern. 
(1) Treatment of singularity and hypersingularity.  It is well known that BEM 

are based on the use of fundamental solutions to solve partial differential 
equations. These solutions are two-point functions which are singular as the 
source and field points coincide. Several regularizations for 
hypersingularity were offered to handle it in direct and indirect ways. In the 
present approach, we employed the degenerate kernel to represent the 
fundamental solution for problems with circular boundaries. The singularity 
and hypersingularity disappeared in the boundary integral equation after 
describing the potential into two parts. 

(2) Boundary-layer effect.  Boundary-layer effect in BEM has received 
attention in the recent years. In real applications, data near boundary can be 
smoothened since maximum principle exists for potential problems. 
Nevertheless, it also deserves study to know how to manipulate the nearly 
singular integrals in applied mathematics. How to eliminate the boundary-
layer effect in BEM is vital for researchers. 

(3) Convergence rate.  Regarding to constant, linear and quadratic elements, the 
discretization scheme does not take the special geometry into consideration. 
It leads to the slow convergence rate. For example, Fourier series is suitable 
for boundary densities on circular boundaries. Although previous 
researchers have employed the Fourier series expansion, no one has ever 
introduced the degenerate kernel in boundary integral equations to tackle 
their problems. Mathematicians have proved that the exponential 
convergence instead of the algebraic convergence in the BEM can be 
achieved by using the degenerate kernel and Fourier expansion.  

(4) Ill-posed model.  Null-field approach or fictitious BEM free of calculating 
the singular and hypersingular integrals yields an ill-conditioned system. To 
approach the fictitious boundary to the real boundary or to move the null-
field point to the real boundary can make the system well-posed. However, 
singularity appears in the meantime. We may wonder is it possible to push 
the null-field point on the real boundary but free of facing the singular and 
hypersingular integrals. The answer is yes and can be found in this paper. 

(5) Mesh on boundary is still necessary. 
     The five issues, singularity free, the suppression of boundary-layer effect, 
exponential convergence, well-posed model and mesh-free will be examined in 
this paper. 
     Engineering problems with circular boundaries are often encountered, e.g. 
missiles, aircraft, naval architecture, etc., either to reduce the weight of the whole 
structure or to increase the range of inspection as well as piping purposes. 
Analytical approach using bi-polar coordinate [1] was developed for two-hole 
problems. Complex variable techniques were also employed for the annular case. 
For a problem with several holes, many numerical methods, e.g. finite element 
method (FEM) and boundary element method (BEM) were resorted to solve. To 
develop a systematic approach for engineering problems with circular boundaries 
is not trivial. 



     Null-field integral equation approach is used widely for obtaining the 
numerical solutions of engineering problems. Various names, e.g. T-matrix 
method [2] and extended boundary condition method (EBCM) [3], have been 
coined. A crucial advantage of this method consists in the fact that the influence 
matrix can be computed easily. Although many works for acoustic and water 
wave problems have been done, we focus on the solid mechanics here. 
     In this paper, we review the recent development of the null-field integral 
equation approach [4-9] for boundary value problems (BVPs) with circular 
boundaries. The key idea is the expansion of kernel functions and boundary 
densities in the null-field integral equations. Vector decomposition technique 
using the adaptive observer system is required for nonfocal cases. Applications 
to the Laplace and Helmholtz problems are addressed. Several examples were 
demonstrated to see the validity of the new formulation. 

2 Null-field integral equation approach for boundary value 
problems 

Suppose there are N randomly distributed circular boundaries bounded to the 
domain D and enclosed with the boundary, Bk ( Nk ,,2,1,0 "= ) as shown in 
Figure 1. We define 
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In mathematical physics, boundary value problems can be modelled by the 
governing equation, 

( ) 0u x =L , x D∈ , (2)

where L may be the Laplace, Helmholtz, biharmonic or biHelmholtz operator, 
u(x) is the potential function and D is the domain of interest. For the 2-D Laplace 
and Helmholtz problems, the integral equation for the domain point can be 
derived from the third Green’s identity, we have 
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where s and x are the source and field points, respectively, nt u= ∂ ∂ , B is the 
boundary, xn  denotes the outward normal vector at the field point x and the 
kernel function U(s,x), is the fundamental solution, and the other kernel 
functions, T(s,x), L(s,x) and M(s,x), are defined in the dual boundary integral 
method (BIEM) [9]. It is noted that more potentials are needed in eqns (3) and 
(4) for biharmonic and biHelmholtz cases. By moving the field point to the 
boundary, the eqns (3) and (4) reduce to 
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where C.P.V., R.P.V. and H.P.V. denote the Cauchy principal value, Riemann 
principal value and Hadamard principal value, respectively. By collocating the 
field point x outside the domain (including the boundary), the null-field integral 
equations yield 
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by choosing appropriate forms of degenerate kernels, where cD  is the 
complementary domain. 
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Figure 1: Sketch of null-field and domain points in conjunction with the 
adaptive observer system (left: collocation on the boundary point, 
right: collocation on the interior point). 

3 Expansions of the fundamental solution and boundary         
density 

Instead of directly calculating the C.P.V., R.P.V. and H.P.V. in eqns (5) and (6), 
we obtain the linear algebraic system from the null-field integral equations of 
eqns (7) and (8) through the kernel expansion. 
     Based on the separable property, the kernel function U(s,x) can be expanded 
into the separable form by dividing the source and field points: 



1

1

(s,x) (s) (x), s x ,
(s,x)

(s,x) (x) (s), x s ,

i
j j

j

e
j j

j

U A B
U

U A B

∞

=

∞

=


= ≥

= 
 = ≥


∑

∑
 (9)

where the A(x) and B(x) can be found for the Laplace [4–8], Helmholtz [9], 
biharmonic [5] and biHelmholtz operators and the superscripts “ i ” and “ e ” 
denote the interior ( s x≥ ) and exterior ( s x< ) cases, respectively. To 
classify the interior and exterior regions, Figure 2 shows for one-, two- and 
three-dimensional cases. For the degenerate forms of T, L and M kernels, they 
can be derived according to their definitions. We apply the Fourier series 
expansions to approximate the potential u and its normal derivative t on the Bk 
circular boundary 
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where k
na , k

nb , k
np  and k

nq  ( Nk ,,2,1,0 "= ) are the Fourier coefficients and 

kθ  is the polar angle measured with respect to the x-direction. 
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Figure 2: The degenerate kernel for the one-, two- and three-dimensional 
problems. 

     After collocating the null-field points in the null-field integral equation of 
eqn (7), the boundary integrals through all the circular contours are required. It is 
worth noting that the origin of the observer system is located on the center of the 



corresponding circle under integration to entirely utilize the geometry of circular 
boundary for the expansion of degenerate kernels and boundary densities. 
Figure 1 shows the boundary integration for the circular boundaries in the 
adaptive observer system. By collocating the null-field point xk exactly on the kth 
circular boundary for eqn (7) in Figure 1, we have 

[ ]{ } [ ]{ }uTtU =  (13)
where [U] and [T] are the influence matrices with a dimension of (N+1)(2m+1) 
by (N+1)(2m+1), {u} and {t} denote the column vectors of Fourier coefficients 
with a dimension of (N+1)(2m+1)  by 1 in which m indicates the truncated terms 
of Fourier series. For the circular-inclusion problem, multi-domain approach by 
taking the free body of each interface between the matrix and inclusions should 
be introduced. Therefore, an exterior problem for the matrix and several interior 
problems for each inclusion are needed to be solved by employing the null-field 
approach. The continuity of displacement and equilibrium of traction should be 
considered on the interface between the matrix and inclusions [8, 9]. Then, the 
resulted linear algebraic system is obtained. After the boundary unknowns are 
obtained, the field potential can be easily obtained according to eqn (3). 

4 Illustrative examples 

Case 1: A circular bar with multiple circular holes under torsion (Laplace 
equation) 

A circular bar with multiple equal circular holes removed is under torque at the 
end [10, 11]. Table 1 shows the comparison of the torsional rigidities G of three 
cases with different geometries of circular holes. The present solutions show 
improvement over Ling’s results [10] in every case. The discrepancy in the 
second example in Table 1 may ascribe to the Ling’s lengthy calculation in error 
as pointed out by Caulk [11]. 

Table 1:  Torsional rigidity in Ling’s examples [11]. 

Case

0 0/ 2 / 7, / 3 / 7a a b a 0 0

0

/ 1/ 5, / 1/ 5,
/ 3 / 5
c a a a
b a 0 0

0

/ 1/ 5, / 1/ 5,
/ 3 / 5
c a a a
b a

Caulk  [11] 0.8713 0.8732 0.7261 
Ling’s results [10] 0.8809 0.8093 0.7305 

Present method 
( 10m ) 0.8712 0.8732 0.7244 

a0

b
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Figure 3: Stress concentration versus b  for 0.12a = , 1.0R =  and three 
different values of / 8θ π= , / 4θ π=  and 3 /8θ π= . (a) Sc at the 
point B (present method); (b) Sc at the point B (Naghdi’s result 
[12]). 

Case 2: A circular beam with four circular holes under bending (Laplace 
equation) 

Naghdi [12] and Bird and Steele [13] both calculated the stress concentration for 
the four equal-sized circular holes problem under bending. Bird and Steele [13] 
stated that the deviation by the Naghdi’s data is 11%. The grounds for this 
discrepancy were not identified in their paper. Our numerical results agree well 
with the Naghdi’s data as shown in Figure 3.  
 

Case 3: Two canyons subject to the incident SH-wave (Helmholtz equation-a 
half plane problem) 

Tsaur et al. [14] and Fang [15] both calculated the response of two canyons 
subject to the incident SH-wave. Tsaur et al. [14] pointed out that the error of 
Fang [15] is due to wrong use of orthogonal properties. Good agreement is made 
after comparing with the results of Tsaur et al. [14] as shown in Figure 4. 

5 Conclusions 

A semi-analytical approach was proposed for solving BVPs with circular 
boundaries. Some recent results were reviewed. The key idea is that we can 
collocate on the real boundary although we employ the concept of null field 
equations. Not only the singularity is transformed to the series sum but also the 
boundary-layer effect is eliminated. In order to verify the formulation, 
applications to the Laplace and Helmholtz problems were done. Five gains of 
well-posed model, singularity free, boundary layer effect free, exponential 
convergence and mesh-free approach were achieved.  
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(b) 30γ = D  
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(c) 60γ = D  
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(d) 90γ = D  

Figure 4: Surface displacements of two canyons problem ( 8/ 10I Mµ µ −=  
and 2η = ). 
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