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Abstract 

In this paper, the Laplace problem with overspecified boundary conditions is 
investigated by using the Trefftz method. The main difficulty will appear an 
obvious divergent result when the boundary condition on an overspecified 
boundary contaminates artificial errors. The occurring mechanism of the 
unreasonable result originates from an ill-posed influence matrix. The 
accompanied ill-posed problem is remedied by using the Tikhonov regularization 
technique and the linear regularization method respectively, to reconstruct the 
influence matrix. The optimal parameters of the Tikhonov technique and linear 
regularization method are determined by adopting the adaptive error estimation 
technique. The numerical evidence of the Trefftz method is given to verify the 
accuracy of the solutions after comparison with the results of analytical solution 
and to demonstrate the validity and instructions of the proposed adaptive error 
estimation technique. The comparison of the Tikhonov regularization technique 
and the linear regularization method was also discussed in the example. 
Keywords: Trefftz method, adaptive error estimation, Cauchy problem, ill-posed 
problem, Tikhonov technique, linear regularization method, L-curve concept. 

1 Introduction 

In 1926, Trefftz [10] presented the Trefftz method for solving boundary value 
problems by superimposing the basis functions satisfying the governing 



equation, although various versions of the Trefftz method, e.g. direct 
formulations [8] and indirect formulations [7], have been developed. The 
unknown coefficients are determined by satisfying the boundary condition with 
the approximate solution. Many applications to the Helmholtz equation [4], the 
Navier equation [15, 17] and the biharmonic equation [6] had been done. Until 
recent years, the ill-posed nature in the method was noticed [8, 19] increasingly.  
     The ill-posed nature (behavior) may be one of the following inverse problems 
or their combinations: (1) lack the determination of the domain, its boundary, or 
an unknown inner boundary; (2) lack inference of the governing equation; 
(3) lack identification of boundary conditions and/or initial conditions (the 
Cauchy problem); (4) lack determination of the material properties involved; 
(5) lack determination of the forces or inputs acting in the domain [12]. The 
Cauchy problem is surveyed in this paper. 
     Sometimes, unreasonable results occur in the Cauchy problem subjected to 
the measured and contaminated errors on the overspecified boundary condition 
because of the ill-posed behavior in linear algebraic system [13, 16]. 
Mathematically speaking, the Cauchy problem is ill-posed since the solution is 
very sensitive to the given data. Such a divergent problem could be avoided by 
using regularization methods [1, 5, 14, 18], e.g., the Tikhonov regularization 
technique [1] and the linear regularization method [5]. The Tikhonov 
regularization technique and the linear regularization method had been 
successfully applied to overcome the ill-posed problem of the Laplace equation 
[3, 9] and to treat with the divergent problems, since the two methods can obtain 
the convergent solution more stably and reasonably. In this paper, the 
comparison of two regularization techniques is made to obtain a better method. 
     For the Cauchy problem, the influence matrix is often ill-posed such that the 
regularization technique which regularizes the influence matrix is necessary. 
Both the Tikhonov technique and the linear regularization method transform into 
well-posed ones by choosing appropriate parameters for λ  and *,λ  
respectively [2]. The optimal parameter can be determined according to a local 
minimal point at error curve (similarly with L-curve shape) by implementing the 
adaptive error estimation technique. The corner (local minimal point) of the L-
curve determines the optimal value of λ  which provides the least relative error. 
The proposed error estimation technique belongs to an adaptive technique and 
does not need to compare the results with analytical solution. It will be 
elaborated latterly.  
     The purpose of this paper is to deal with the Cauchy problem with ill-posed 
nature of numerical instability by implementing the Trefftz Method in 
conjunction with the Tikhonov technique, linear regularization method, and 
adaptive error estimation technique. The technique is employed to obtain the 
optimal parameter to remedy the ill-posed behavior. Finally, the results of the 
example contaminated with artificial noise on the overspecified boundary 
condition are given to illustrate the validity of the proposed technique. Good 
agreements are observed as comparing analytical solutions. Under no analytical 
solutions, the numerical examples also demonstrate the validity and instructions 
of the proposed adaptive error estimation technique. 



2 Formulation 

2.1 Governing equation and over-specified boundary condition 

We consider the inverse problem for Laplace equation with overspecified 
boundary condition as shown in Fig. 1, which satisfies: 

2 ( ) 0,   u x x D∇ = ∈                                         (1) 
subjected to the boundary condition on B1 as  

   1 1 1 1 1( ) ( ),   ( ) ( ),   u x u x t x t x x B= = ∈                           (2) 

where 2∇  is the Laplacian operator, D is the domain of interesting, 
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Figure 1: Sketch diagram of inverse problem with over-specified condition. 

2.2 Methodology 

2.2.1 The Trefftz method  
In the Trefftz method, the field solution ( )u x  is superimposed by the T-complete 

functions, ( )jA x , as follows:  
2

1
( ) ( )

N

j j
j

u x w A x
=

= ∑                                            (3) 

where 2N+1 is the number of T-complete functions, jw  is the unknown 

coefficient, ( )jA x  is the T-complementary set which satisfies the Laplace 

equation. For the interior problem, we choose 1, sin( )n nρ θ  and cos( )n nρ θ  
( n N∈ ), to be the bases of the complementary set in two-dimensional problem. 
Therefore, the eqn (3) can be expressed by  
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where ( , ) cos( )n
nF nρ θ ρ θ=  and ( , ) sin( )n

nG nρ θ ρ θ= . And the 

normal differential of the field solution u(x)= ( , )u ρ θ , is written as below:  
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     In order to obtain the unknown coefficients jw = 0a , na and nb , N 
boundary points on the over-specified boundary 

1 1 2 2 1(( , ),  ( , ), , ( , ))N N Bρ θ ρ θ ρ θ ∈ are collocated. Eqn (4) and (6) match 
the boundary condition on the boundary points to obtain the following linear 
algebraic system 
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so that the coefficients jw = 0a , na  and nb of numerical solutions can be 
determined by using linear algebraic system solver.  

2.2.2 Regularization techniques for the Cauchy problem 
 
2.2.2.1 Tikhonov technique    Tikhonov [1] proposed a method to transform this 
ill-posed problem into a well-posed one. Instead of solving }{}]{[ bxA =  
directly, the procedures of the Tikhonov technique are written as follows: 

(I). Minimize 
2x , subject to 

2Ax b ε− ≤                   (12) 

where ε  is the prescribed error tolerance. 
     (II). The proposed problem in eqn (12) is equivalent[9] described as below: 

  minimize 
2x , subject to 2 *,Ax b ε− ≤                       (13) 

and the Euler-Lagrange equation obtained from reference [9] can be written as 
(T)( )T TA A I x A bλ+ =                                  (14) 

where T denotes matrix transposition, (T)λ  is the regularization parameter 
(Lagrange parameter), in which the subscript (T) denotes the Tikhonov 
technique. 
 



2.2.2.2 Linear regularization method  The single central idea in the inverse 
theory is the prescription [5], 

 minimize: [ ] [ ](L)P x Q xλ+                                     (15) 

where (L)λ  is the regularization parameter, in which the subscript (L) denotes 
the Linear regularization method, 2[ ]= 0P x A x b⋅ − >  and 

[ ]= 0Q x x H x⋅ ⋅ >  are two positive functions of x , 
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Then, using equation 2x  [5] , the minimization principle of eqn (15) is 

minimize: [ ] [ ] 2(L) (L)P x Q x Ax b x H xλ λ+ = − + ⋅ ⋅                (18) 
in vector notation, 

(L)( H)T TA A x A bλ+ =                                     (19) 

2.2.3 The adaptive error estimation  
To obtain the optimal λ  without exact solution, the role of the adaptive tactical 
procedure is important to handle the inverse problem for Laplace equation with 
overspecified boundary condition. The method of the proposed adaptive error 
estimation is described as follows:  
     According to the ill-posed problem with the artificial contamination subjected 
to 1 1( ),    u x x B∈  and 1 1( ),    t x x B∈  as shown in Fig.2, remedied by the 

regularization method, we can obtain the result 2 2( ),    u x x B∈ . Then the new 



specified boundary condition is 2 2( ),    u x x B∈  and the original boundary 

condition, 1 1( ),   t x x B∈  , in which 2 ( )u x  is obtained before. The new 
problem (well-posed) becomes the mixed-type problem as shown in Fig. 3. 
Furthermore, the result 1 1( ),    u x x B∈  is calculated again by using the Trefftz 

method, and compare it with the original boundary condition 1 1( ),    u x x B∈ . 
Usually, the norm error can be defined as { }2

1 1 1 1 1du u u u B− = −∫ , which is 

chosen as the index of sensitivity and 1λ  is chosen as the index of degree of 
distortion.  
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Figure 2: Sketch diagram of the ill-
posed problem with the 
artificial contamination. 

Figure 3: Sketch diagram of 
mixed-type problem 
with mixed-type 
condition. 
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Figure 4: Flowchart of adaptive error estimation. 



     In the adaptive error estimation, the L-curve shape can be observed and the 
optimal λ  is located on the corner. The corner is a compromise between 
regularization error (due to data smoothing) and perturbation errors (due to noise 
disturbance). To clarify the procedure, the flowchart of the adaptive error 
estimation can be described in Fig. 4. 

3 Numerical examples 

To illustrate applications of the Trefftz method in conjunction with the Tikhonov 
technique, the Linear regularization method and the adaptive error estimation for 
the Laplace equation with overspecified BCs, the case for a circle domain, the 
radius 1.0R =  is chosen as a representation example. Two kinds of treatments in 
the ill-posed problem are considered: the Tikhonov technique and the Linear 
regularization method, all for the inverse problem contaminated by noise 
pollutions. 
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Figure 5: A sketch diagram. Figure 6: The random error. 

3.1 Circular case 

The present model of the inverse problem with noises can be shown as Fig. 5. By 
using random data simulation, we can obtain 1% random errors to contaminate 
the input boundary data, as described in Fig. 6. If regularization techniques are 
not employed, the results by using the Trefftz method are unreasonable and 
divergent as shown in Fig. 7(a), 7(b). 
     When the Tikhonov technique and the linear regularization method are 
applied in this case, we can obtain solutions with different values of the 
regularized parameters of (T)λ  and (L)λ  by employing the Tikhonov technique 
and the linear regularization method respectively, as shown in Fig. 8(a), 8(b), 
respectively, and the field solutions are shown in Fig. 9(a), 9(b). To obtain the 
optimal λ , the norm error comparing with exact solution is defined as 

{ }2 d
b

e ea
u u u u x− = −∫  and the norm errors versus λ  are plotted in Fig. 10, 



by using the Tikhonov technique and the linear regularization method 
respectively. The L-curve shape can be observed and the optimal λ  is located on 
the corner as shown in Fig. 11(a), 11(b).  
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                                     (a)                                                         (b) 

Figure 7: (a) Analytical solution and the boundary potential without 
regularization techniques, (b) the Field solution without 
regularization techniques. 
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Figure 8: The numerical solution remedied by (a) the Tikhonov technique 
and (b) the linear regularization method with 3 different lambdas 
(200 nodes). 
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Figure 9: (a) The numerical field solution remedied by the Tikhonov 
technique and the linear regularization method with 3 different 
lambdas (200 nodes), (b) the numerical field solution remedied by 
the linear regularization method with 3 different lambdas (200 
nodes). 

 
 
 
 
 
 
                              
 
 
 

Figure 10: A sketch diagram. 

     As we expected from the mathematical point of view, a corner is presented in 
the L-curve shape. If the corner of the L-curve is chosen as an optimal point, the 
appropriate value is 0.00169 for the Tikhonov technique and 0.00049 for the 
linear regularization method respectively.  
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     Therefore, we can figure out the norm error of the L-curve shape by the 
Tikhonov technique is much lower than the linear regularization method shown 
as Fig. 12. Then the results have been regularized to approximate the analytical 
solution, as shown in Fig. 13, and the field solutions are shown in Fig. 14(a), 
14(b). The regularized result by the Tikhonov technique is more approximate 
than that by the linear regularization method. However, the exact solution is 
needed from the definition of norm error. 
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                                      (a)                                                          (b) 

Figure 11: (a) and (b) The norm deriving from comparing numerical solution 
with analytical solution by the Tikhonov technique and the linear 
regularization method. 
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Figure 12: The norm error of the L-

curve shape by the 
Tikhonov technique is 
much lower than the 
linear regularization 
method. 

Figure 13: Numerical solution 
being remedied by the 
Tikhonov technique and 
the linear regularization 
method with the optional 
lambda (200 nodes). 
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(a)                                    (b) 

Figure 14: Numerical field solution being remedied by (a) the Tikhonov 
technique and (b) the linear regularization method with optional 
lambda (200 nodes). 

     We are well aware that many problems usually have no analytic solution. In 
order to assess the validity of the Tikhonov technique and the linear 
regularization method and to find out the optimal solution, choosing the adaptive 
error estimation without exact solution is needed. The new norm error is 
implemented as defined in the section 2.2.3 and obtain the optimal λ . We find 
the optimal λ  by implementing the adaptive error estimation is similar with the 
before λ , as shown in Fig. 15(a), 15(b). Therefore, we can derive the optimal 
result by employing the adaptive error estimation even though no exact solution 
can be obtained.  
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Figure 15: (a) The optimal result by employing the adaptive error estimation 
and the Tikhonov technique under no exact solution, (b) the 
optimal result by employing the adaptive error estimation and the 
linear regularization method under no exact solution. 

4 Conclusion 

In this paper, we used the Trefftz method to solve the Laplace equation in a two-
dimensional finite domain with overspecified boundary condition.  



     The numerical instability existing in the solver owing to the regular 
formulation of this method is encountered. To overcome this difficulty, the 
regularization techniques using the Tikhonov technique and the linear 
regularization method, together with the L-curve, plays a role in determining the 
optimal parameter λ  which can maintain the system characteristic and can make 
the system insensitive to contaminating noise. 
     Furthermore, the numerical results obtained by using the Tikhonov technique 
for the case are in very close agreements with the analytical solutions , adaptive 
error estimation and outperform other regularization techniques. 
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