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ABSTRACT

Researchers have paid attention on spurious
eigenvalues for multiply-connected domain (2D)
eigenproblems by using BEM/BIEM. This paper
employs the null-field integral equation method to study
the occurring mechanism of spurious eigenvalues for 3D
problems with an inner hole. By expanding the
fundamental solution into degenerate kernels and
expressing the boundary density in terms of spherical
harmonics, all boundary integrals can be analytically
determined. It is noted that our null-field integral
formulation can locate the collocation point on the real
boundary thanks to the degenerate kernel. In addition, the
spurious eigenvalues are parasitized in the formulations,
e.g. singular and hypersingular formulations in the dual
BIEM while true eigensolutions are dependent on the
boundary condition such as the Dirichlet or Neumann
problem. By using the updating terms and updating
document of singular value decomposition (SVD)
technique, true and spurious eigenval ues can be extracted
out, respectively. Besides, true and spurious boundary
eigenvectors are obtained in the right and left unitary
vectors in the SVD structure of the influence matrices.
Thisfinding agrees with that of 2D cases.
Keywords: null-field integral equation, degenerate
kernel, eigenproblem, spurious eigenvalue, singular value
decomposition.

1. INTRODUCTION

The application of eigenanalysis is gradualy
increasing for vibration and acoustics. The demand for
eigenanalysis calls for an efficient and reliable method of
computation for eigenvalues and eigenmodes. Over the
past three decades, severa boundary element
formulations have been employed to solve the
eigenproblems [1], e.g., determinant searching method,
internal cell method, dual reciprocity method, particular
integral method and multiple reciprocity method. In this
paper, we will focus on the determinant searching
method with emphasis on spurious eigenvalues in using
BIEM for 3D problems with an inner hole. Spurious and
fictitious solutions stem from non-uniqueness solution
problems which appear in different aspects in
computational mechanics. First of all, hourglass modesin

the finite element method (FEM) using the reduced
integration occur due to rank deficiency [2]. Also, loss of
divergence-free constraint for the incompressible
elagticity results in spurious modes. On the other hand,
while solving the differential equation by the finite
difference method (FDM), the spurious eigenvalue also
appears due to discretization [3-5]. In the real-part BEM
[6] or the MRM formulation [7-12], spurious
eigensolutions occur in solving eigenproblems. Even
though the complex-valued kernel is adopted, the
spurious  eigensolution also  occurs for  the
multiply-connected problem [13-14] as well as the
appearance of fictitious frequency for the exterior
acoustics [15]. Spurious eigenvalues in the MFS for 3D
problems were also studied by Tsai et al [16]. In this
paper, a simple case of 3D concentric sphere will be
demonstrated to see how spurious eigensolutions occur
and how they are suppressed by using SVD.

In the recent years, the SVD technique has been
applied to solve problems of fictitious-frequency [15]
and continuum mechanics [17]. Two ideas, namely
updating term and updating document [15], were
successfully applied to extract the true and spurious
solutions,  respectively. In  this paper, the
three-dimensional eigenproblem of a concentric sphereis
studied in both numerical and analytical ways. Owing to
the introduction of degenerate kernel, the collocation
point can be located exactly on the real boundary.
Besides, true and spurious equations can be found by
using the null-field integral equation in conjunction with
degenerate kernels and spherical harmonics. Surface
distributions of the inner and outer boundaries can be
expanded in terms of spherica harmonics. Since a
spurious eigenvalue is related to mathematics and has no
physica meaning, the remedies, SVD updating term and
SVD updating document, are used to extract or filter out
true and spurious eigenvalues, respectively. Finally, an
example with various boundary conditions is utilized to
validate the present approach by using singular and
hypersingular formulations.

2. ON THE OCCURRING MECHANISM
OF SPURIOUS EIGENVALUES IN
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BEM/BIEM

2.1 Problem statements

The governing equation for the eigenproblem of a
concentric sphere is the Helmholtz equation as follows:
(VZ+kHu(x)=0, xeD, (@)

where V?, k and D are the Laplacian operator, the

wave number and the domain of interest, respectively.

The concentric sphereisdepicted in Fig. 1. The inner and
outer radii are a and b, respectively.

Al
V| o

Fig. 1 A concentric sphere

2.2 Dual null-field integral formulation — the

conventional version

The dua boundary integral formulation [5] for the
domain point is shown below:

4z u(x) = IB T (s, x)u(s)dB(s)

7"‘ U (s,x) 6;;55)

au(x)

dB(s), xe D, (2

s

4 j M (s, x)u(s)dB(s)

ou(s)
—IB L(s,x) < 2*dB(s), xeD, A3)

S

where x and s are the field and source points, respectively,
B is the boundary, n, and ns denote the outward normal
vector at the field point and the source point, respectively,
and the kernel function U(s,x) is the fundamental solution
which satisfies

(V2 +K2)U(s,X) = 476 (x—S) - 4%
where § isthe Dirac-deltafunction. The other kernel

functions can be obtained as
oU (s,x)

T(S, X) = T]’ 1 (5)

L(s,%) = 6U6(ns, X) ©)
_0U(sX)

M(s:x) = onon, ()

If the collocation point x is on the boundary, the dua
boundary integral equations for the boundary point can
be obtained as follows:

2 u(x) = C.P.\/.jB T (s, x)u(s)dB(s)

—R.P.\/.I U 4g(s), xeB, (8)
B on

S

ou(x)

Ny

2n =H .P.\/.jB M (s, x)u(s)dB(s)

P
—C.P.V.J.B L(s, x)?dB(s), xe B, (9)

S

where RP.V. CP.V. and H.P.V. are the Riemann
principal value, the Cauchy principal value and the
Hadamard (or caled Mangler) principa value,
respectively. By collocating x outside the domain, we
obtain the null-field integral equation as shown below:

0= jB T(s,X)u(s)dB(s)

~[ U(sx 6U(S)dB() x e DS, (10)

0= j M(s, x)u(s)dB(s)
- j L(s, x)au—(s) dB(s), xe D, (11)
B on

where D° denotes the complementary domain.
2.3 Dual null-field integral formulation — the

present version

By introducing the degenerate kernels, the
collocation points can be located on the rea boundary
free of facing singularity. Therefore, the representations
of integral equations including the boundary point can be
written as

Az u(x) = IB T (s, x)u(s)dB(s)

- Us )% 4g(s), xepus, (12
B ong

ou(x)
ony

Az

=IB M (s, x)u(s)dB(s)

ou(s
,IB L(s, x)aT(s)dB(s), xe DUB, (13)

and
0= L T(s,)u(s)dB(s)

[ U(sx)a()dB(s) xe DS UB, (14)

o= M, x)u(s)dB(s)

3 ou(s)
j . L(s, X) on,

once the kernel is expressed in terms of an appropriate
degenerate form. It is found that the collocation point is
categorized to three positions, domain (Egs.(2)-(3)),
boundary (Egs.(8)-(9)) and complementary domain
(Egs.(10)-(11)) in the conventional formulation. After
using the degenerate kernel for the null-field BIEM, both
Egs.(12)-(13) and Egs.(14)-(15) can contain the boundary
point.

2.4 Expansions of the fundamental solution and

dB(s), xeD°UB, (15)

boundary density
The fundamental solution as previously mentioned is

U(s x)=- e:kr (16)

where r =|s—x is the distance between the source
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point and the field point and i is the imaginary number
with i2=—-1. To fully utilize the property of spherical
geometry, the mathematical tools, degenerate (separable
or of finite rank) kernel and spherica harmonics, are
utilized for the analytical calculation of boundary
integrals.
2.4.1 Degenerate (separable) kernel for fundamental
solutions

In the spherical coordinate, the field point (x) and

source point (s) can be expressed asx= (p,¢,6) and

s= (;,%,5) in the spherical coordinate, respectively. By

employing the addition theorem for separating the source
point and field point, the kernel functions, U (s,X),

T(s,X), L(s,x) ard M(s,x), are expanded in terms
of degenerate kernel as shown below:

|kz 2n+lz ( ;'cos[ (¢-4)]
V=] R (UBB) ( ORI oo
,.kz 2n+1Zsm rr:;:cos[ (¢- ¢)}
P (cos0) R (cose) A (kp) WP (kp), p>p.
T :ik2§(2n+1)§gm (:;z)'cos[m(d)—&)}
. R (cos0) R (cos? ) i (k)W (kp), 7> p. 18)
Te:ik2§(2n+l)§sm%cos[m(¢—$)]
Pm(cose)Pm(ws§)j’(kﬁ)h,(f)(kp), p>p.
|kzz 2n+1Zsm [ = ¢)}
Lo R (cosG)an(COjO)]n(kp)h,(])(kﬁ), 5>p, 19)
Le:ikzg(2n+1);gmﬂcos[m(¢fﬁ)}
R (cos0) R (cosd ) j, (kp) W (kp), o> p.
M :ik3§(2n+1)mi:ogm E:;:;'oos[m(¢—q?)]
V(s - RT(GB9)HT(an)M(kp)hfa(kﬁy p2p, 20)
Me:ik3§(2n+1)mz:ogmE:;E;:cos[m(¢—$)]
RI"(cos6) R (cosd ) 5 (kp) W (kp), p > p.

where the superscripts “i” and “e” denote the interior
and exterior regions, j,and h® are the n" order

spherical Bessel function of the first kind and the n™
order spherical Hankel function of the second kind,

respectively, P is the associated Lengendre

n

polynomial and ¢, isthe Neumann factor,
1 m=0,
= 21
e {z m=12 . (1)

It is noted that U and M kernels in Eqgs.(17) and (20)
contain the equal sign of p=p while T and L kernels
do not include the equal sign due to discontinuity.

2.4.2 Spherical harmonics expansion for boundary
densities

We apply the spherical harmonics expansion to
approximate the boundary density and its normal
derivative as expressed by

u(s) = iiAﬂNR,W(cosé)cos(W@), seB, (22)

v=0 w=0

au(s)

t(s) = izvl BWPVW(oosé)oos(w&), seB, (23)
v=0 w=0

where AM, and B, are the unknown coefficients.

3. PROOF OF THE EXISTENCE OF
SPURIOUS EIGENSOLUTIONS FOR A
CONCENTRIC SPHERE
In order to fully utilize the geometry of sphere

boundary, the potential uand its norma derivative t

can be approximated by employing the spherical

harmonic. Therefore, the following expressions can be
obtained

4O = 25 AR (co)oos(o). seBe (29
uz(s)ziimaw(coso)cos(w), seB,, (25)
W9 3D LR (o)), s<B (29
b9 =D SR (esd)oos(u). s (@)

where A, and B!, are the spherical coefficients on
B (i=12). Whenthefield point islocated on the inner

boundary B, substitution of Eqgs. (24)-(27) into the

null-field integral equations yields

0=TI$ 3 5 % e, &, 20+ T (ko) (R )PP (cos(0)
cos(m(g - ¢))cos(w¢)(P’“(cos(@))Pw(cos(§))§n(§))R12d§d$

TI555 S -
0 0n=0m=0v=0w=0

By (2N +1)

l (kp)R® (KR)PY"(cos(6))

Q
<}
a
L
3
2
N
|

J))co (w¢)(P’“(cos(&))Pw(cos(e))sm(e))Rldeq)
(n—m)!
oo (n+m)!
cos(m(¢—$))co (w¢)(P’“(cos(&))P‘”(cos(H))stn(H))deedq)
Jisyrs i ke, B, (2n+1)(” m)

=0 m=0v-0w- (n+

(28)

K6, A%, (2n+1) i1 (k) (KR, )" (cos(6)

In(ko)h{? (KR, )P (cos(6))
cos(m(¢ —¢))cos(wg )(Pn’“(cos(e)) va(cos(e))gn(e))deeddb.

When the field point is located on the outer boundary
B, , we have

27 o

0=[[3 ¥ ¥ Yiki suil(2n+2) O

0 01=0m-0v-0w-0 ( )‘

i1 (KRN (kp) P (005(6)
cos(m(¢—$))cos(w¢)(P’“(cos(@))PW(cos(§))§n(§))Rfd§d$
(155 5 % ke Bl (2nen) s )| i, (RN (kp)P (cos(6)
cos(m(¢-$))co (w¢)(P’“(cos(@))PW(cos(§))§n(§))Rfd§d$
AM(2n+1)(” LRI ()PP (cos(0)

Q
Q
7}

Py
3
S
<
|

<
=
Q
O
g
=
=
50
3
—
Q
(=]
L
|
N~
=
<0
=
—
Q
(=]
RS
|
&
=
Q.
=}
=
|
3
-
o’
D
D.
<

fisss i e, B, 20+ 0 ’“) ) (R (k)P (cos(0)
cos(m(g - 4))cos (wqb)(&’“(cos(&))va(cos(O))sn(G))R2d9d¢.

For the Dirichlet problem, Egs. (28) and (29) can be
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reduced to

0=3 3. akBh, j, (Ka)h® (ka) P (cos(0)) cos(my)
nJ:O ITr|1=0 (30)
> bk, (k) (K0) R (cos(6) cos(ny),

+3
0=3 3. akBL,j,(ka)h? (Kb) PX"(cos(6)) cos(my)

n:O n:O (31)
+3 Y bk, i, (Ko (Kb) R (cos(6)) cos(myp).

n=0m=0

In order to prove that the spurious eigensolutions of a
concentric sphere satisfy the BIE by collocating the inner
and outer boundary points, we first derive the true
eigensolutions of a sphere subject to the Dirichlet
boundary condition.

Now, we consider the sphere with a radius a in the
continuous system. By using the null-field integral
equation and collocating the point on the boundary, we
obtain the true eigenequation

in(ka) =0, (32)
and the corresponding true eigenmode is
{Bul (33)

where ZZ'BVW| # 0. By collocating the point in the
complementary domain (x° e D®) as shown in Fig. 2,
the null-field equation yields
0= jBlU (s, x)t(s)dB(s), x°eD°®. (34)

We can obtain the null-field response for x°as shown
below

Bl jn(ka)h{? (ka")P,"(cos(6)) cos(m¢) = O, (39)
where n and me N, since k satisfies Eq. (32).

C,

X

DC

Fig. 2 Callocation point on the sphere boundary
from the null-field point (p=a")

Fig. 3 Collocation point of the concentric sphere
(p=a’)

Secondly, we consider the spherical case with the
fixed-fixed boundary condition as shown in Fig. 3. By
selecting a nontrivial inner boundary mode for the
boundary mode and trivial outer boundary mode, we
have j (ka)=0 and

g,| [B.
{BWH o} 9

This indicates that spurious eigenevalues of j (ka)=0

and the nontrivial boundary mode of Eq. (36) satisfy Egs.
(30) and (31) due to U'(s,a”) =U®(x,a*) . Therefore,
spurious eigenvalues in conjunction with the trivial outer
boundary mode happen to be the true eigenvalue of the
domain bounded by the inner boundary. Similarly, the
concentric sphere subjects to the Neumann boundary

condition by using the hypersingular formulation results
inthetrivial outer boundary mode.

4. SVD TECHNIQUE FOR EXTRACTING
ouT TRUE AND SPURIOUS
EIGENVALUES BY USING UPDATING
TERMSAND UPDATING DOCUMENTS

4.1 Method to extract the true eigensolutions
SVD technique is an important tool in the linear

algebra. The matrix [A]with a dimension M by N can

be decomposed into a product of the unitary matrix

[®@] (M by M), the diagonal matrix [Z] (M by N) with

positive or zero elements, and the unitary matrix [¥]

(Nby N)

H

[A]MxN = [CI)]MXM [Z]MXN [‘P]NXN ! (37)

where the superscript “H” is the Hermitian, [®] and

[¥] are both unitary that their column vectors which
satisfy

¢ =9 (38)

L4 ‘L/JH =0y, (39)

in which o] [@]=[1],.,, ad [¥]"[¥]=[1],.,.

For the eigenproblem, we can obtain a nontrivial solution
for the homogeneous system from a column vector

{wi} of [¥] when the singular value (o;) is zero. For
the direct BEM, we have

Singular formulation (UT method)

[Te]{up = U {1} = {0}, (40)
Hypersingular formulation (LM method)
Mot} =[] = (o). (@)

where {u} and {t} aretheboundary excitations.

For the Dirichlet problem, Eg. (40) and (41) can be
combined to have

U e
e |1 =10) (42)
By using the SV D technique, the two submatricesin Egs.
(40) and (41) can be combined to have

CECHER PRI
[0]- Xt i)

43
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EECRERRTIN
)= T i)

where the superscripts, (U) and (L), denote the
corresponding matrices. For the linear algebraic system,

{t} is a column vector of {y;} in the matrix [¥]
corresponding to the zero singular value (o; =0). By
setting {t} as a vector of {y;}, in the right unitary
matrix for the true eigenvalue k; , Eq. (42) reducesto

[U() ]fwi} = {0}, (45)
[Lo0k) [{wi} = {0} (46)
According to Egs. (43) - (46), we have
o 19"} =10}, (7)
oM {4V} =10}, (48)

We can easily extract out the true eigenvalues,
o) =c{” ={0} , since there exists the same

eigensolusion ( {t} ={y;}) for the Dirichlet problem

using Eqgs. (42) or (45) and (46). In a similar way, Egs.
(40) and (41) can be combined to have

To() |,
{Me(k{)}{u}_{o}’ (49)

for the Neumann problem. We can easily extract out the
true eigenvalues for the Neumann problem with respect

to the " zero singular valuesof (" =™ ={0}.

4.2 Method to filter out the spurious eugensolutions
By employing the LM formulation in the direct BEM,

we have

(M {u} =[ Lot ={p)- (50)
Since the spurious eigenvalue Kk, is embedded in both
the Dirichlet and Neumann problems, we have

{p}" (g} =10}, (51)
where {¢} satisfies

[L°()]" {8} ={0} for the Dirichlet problem  (52)

[Me(ks)]H {#}={0}, for the Neumann problem (53)

according to the Fredholm aternative theorem. By
substituting Eq. (50) into Egs. (52) and (53), we have

{u" [Me(ks)T 14} = {0} , for the Dirichlet problem  (54)
(" [Le(ks)T {4} = {0} , for the Neumann problem  (55)

Since {u} and {t} can be arbitrary boundary

excitation for the Dirchlet problem and Neumann
problem, respectively, thisyields

[Me()]" {#}=1{0}. for the Dirichelt problem  (56)

[Le(ks)]H {¢:} ={0}, for the Neumann problem (57)

By combining Egs. (52) and (53) with Egs. (56) and (57)
for the Dirichlet problem, we have

L]
[Me]’

It indicates that two matrices have the same spurious
boundary mode {4} corresponding to the ith zero

singular values. By using the SVD technique, the two
matricesin Eq. (58) cabe decomposed into

R ERCRIN
[T
e [ [0 o] o
[ ]= Tt i)}

By substituting Egs. (59) and (60) into Egs. (54) and (55),
we have

wi=i0 o (8" [[L] [me]]=(0). (s)

(59)

(60)

o (w9} =10}, (61)

o™ {w§M>} - {0}. (62)
We can easily extract out the spurious eigenvalues since
there exists the same spurious boundary mode {g,}
corresponding  the i™ zero singular  value,
o™ =6 =0 . Similarly, the spurious eigenvalue

parasitized in the UT formulation can be obtained by
using SVD updating documents.

5. AN ILLUSTRATIVE EXAMPLE AND

DISCUSSIONS
Case 1. A concentric sphere subject to the Dirichlet
boundary condition ( u;=u,=0 ) wusing the
semi-analytical approach

A concentric case with radii a and b (a=05m and
b=1.0m) isshown in Fig. 1. The analytical solution can
be obtained by using the null-filed integral formulation,
degenerate kernel and spherica harmonics. The true
eigenequation for the Dirichlet problem is

in (k&) yp (kb) — jp (kb) yn (ka) = O. (63)

The common drop locations in Figs. 4(a) and 4(b)
indicate the true eigenvalues. We employ the SVD

u
updating term to extract the true eigenvalues for
L

the Dirichlet problem as shown in Fig. 4(c). It’s found
that al the spurious eigenvalues are filtered out. The
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results agree well with the previous solutions.

Case 2: A concentric sphere subject to the Neumann
boundary condition ( t;=t,=0 ) using the
semi-analytical approach

Similarly, the true eigenequation for the Neumann
problemis

in(ka) yn (kb) — ji (Kb) y (ka) = O. (64)

The common drop locations in Figs. 4(d) and 4(e)
indicate the true eigenvalues. Extraction of true

T
eigenvalues by using the SVD updating term {M} is

shown in Fig. 4(f). The common drop locations in Figs.
5(a) and 5(b) indicate the spurious eigenvalues for the
singular formulation. Similarly, the same drop locations
in Figs. 5(d) and 5(e) indicate the spurious eigenvalues
for the hypersingular formulation. The spurious
eigenequations for the singular and hypersigular
formulation are

in(ka) =0, (65)
in(ka) = 0. (66)
Finaly, we employed the SVD updating document to
filter out the spurious eigenvalues. The spurious
eigenvalues for singular formulation and hypersingular

formulation are extracted as shown in Figs. 5(c) and 5(f),
respectively.

6. CONCLUSIONS

Spurious eigenvalues for a concentric sphere were
studied analytically and numerically. One example was
demonstrated to see how the spurious eigenvalues occur
in the concentric sphere. The trivia outer boundary
densities were examined in case of spurious eigenvalues
which is found to be the true eigenvalue for the domain
bounded by the inner boundary. The contribution of the
work is to show the existence of spurious eigenvalue for
a concentric sphere in an analytical manner by using the
degenerate kernels and the spherical harmonics.
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Singular formulation

The determent of the influence matrice for U kernel
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T: True eigenvalue
(): Analytical solution

in(ka)yn (kb) — jn (Kb)yn (ka) = 0

0

I ! I ! I ! I
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4 6
The wave number (k)

(a) Determinant versus the wave number by using the
singular formulation for the Dirichlet condition.

Hypersingular formulation
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The determent of the influence matrice for L kernel
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(b) Determinant versus the wave number by using
the hypersingular formulation for the Dirichlet

condition.

True eigenvalues for the Dirichlet problem
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The determent of the influence matrice

T: True eigenvalue
(): Analytical solution

in(ka) yn (kb) — jn (Kb)yn (ka) = 0
e.zTeo T
(6.283) 7.110
(7.112)
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T

4 6
The wave number (k)

(c) Extraction of true eigenvalues for the Dirichlet
problem by using the SVD updating terms.
Fig. 4 True eigenvalues for a concentric sphere by using the SVD updating terms (a=0.5 and b=1.0).
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Singular formulation
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The determent of the influence matrice for T kernel

in(ka) yp (kb) — j (kb) yp (ka) = 0
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(d) Determinant versus the wave numbers by using

the singular formulation for
condition.

the Neumann

Hypersingular formulation
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(e) Deter minant ver sus the wave number by using the

hypersingular formulation for

condition.

the Neumann

True eigenvalues for the Neumann problem
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The determent of the influence matrice

(4.390)

1010 —|T: True eigenvalue

(): Analytical solution
in(ka) yp (kb) - jp (k) yp (ka) = 0
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0 4 6
The wave number ( k)

(f) Extraction of true eigenvalues for the Neumann
problem by using the SVD updating terms.
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The determent of the influence matrice for U kernel

(a) Determinant versus the wave number by using the

singular formulation subject to the Dirichlet

Singular formulation
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The determent of the influence matrice for T kernel

(b) Deter minant ver sus the wave number by using the
singular formulation subject to the Neumann

Singular formulation

710

10

s
6.280
(6.283)

700 —
690 —|
680 —|

670 —

|'S: Spurious eigenvalue
| (): Analytical solution s

660 ! 8990
in(ka) =0

(8987

650
I I I I

0 2 4 6
The wave number (k)

condition.

The determent of the influence matrice

(c) Extraction of the spurious eigenvalues for the
singular formulation by using the SVD updating
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Spurious eigenvalues for the singular formulation
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document.

(a=05 and b=1.0).
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The determent of the influence matrice for L kernel
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Hypersingular formulation
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(d) Deter minant ver sus the wave number by using the
hypersingular formulation subject to the Dirichlet
condition.

The determent of the influence matrice for M kernel

Hypersingular formulation
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(e) Determinant ver sus the wave number by using the

hypersingular

formulation  subject

Neumann condition.
Spurious eigenvalues for the hypersingular formulation

The determent of the influence matrice
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(f) Extraction of the spurious eigenvalues for the
hypersingular formulation by using the SVD
updating document.

Fig. 5 Extraction of spurious eigenvalues for a concentric sphere by using the SVD updating documents



