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ABSTRACT
Researchers have paid attention on spurious

eigenvalues for multiply-connected domain (2D)
eigenproblems by using BEM/BIEM. This paper
employs the null-field integral equation method to study
the occurring mechanism of spurious eigenvalues for 3D
problems with an inner hole. By expanding the
fundamental solution into degenerate kernels and
expressing the boundary density in terms of spherical
harmonics, all boundary integrals can be analytically
determined. It is noted that our null-field integral
formulation can locate the collocation point on the real
boundary thanks to the degenerate kernel. In addition, the
spurious eigenvalues are parasitized in the formulations,
e.g. singular and hypersingular formulations in the dual
BIEM while true eigensolutions are dependent on the
boundary condition such as the Dirichlet or Neumann
problem. By using the updating terms and updating
document of singular value decomposition (SVD)
technique, true and spurious eigenvalues can be extracted
out, respectively. Besides, true and spurious boundary
eigenvectors are obtained in the right and left unitary
vectors in the SVD structure of the influence matrices.
This finding agrees with that of 2D cases.
Keywords: null-field integral equation, degenerate
kernel, eigenproblem, spurious eigenvalue, singular value
decomposition.
1. INTRODUCTION

The application of eigenanalysis is gradually
increasing for vibration and acoustics. The demand for
eigenanalysis calls for an efficient and reliable method of
computation for eigenvalues and eigenmodes. Over the
past three decades, several boundary element
formulations have been employed to solve the
eigenproblems [1], e.g., determinant searching method,
internal cell method, dual reciprocity method, particular
integral method and multiple reciprocity method. In this
paper, we will focus on the determinant searching
method with emphasis on spurious eigenvalues in using
BIEM for 3D problems with an inner hole. Spurious and
fictitious solutions stem from non-uniqueness solution
problems which appear in different aspects in
computational mechanics. First of all, hourglass modes in

the finite element method (FEM) using the reduced
integration occur due to rank deficiency [2]. Also, loss of
divergence-free constraint for the incompressible
elasticity results in spurious modes. On the other hand,
while solving the differential equation by the finite
difference method (FDM), the spurious eigenvalue also
appears due to discretization [3-5]. In the real-part BEM
[6] or the MRM formulation [7-12], spurious
eigensolutions occur in solving eigenproblems. Even
though the complex-valued kernel is adopted, the
spurious eigensolution also occurs for the
multiply-connected problem [13-14] as well as the
appearance of fictitious frequency for the exterior
acoustics [15]. Spurious eigenvalues in the MFS for 3D
problems were also studied by Tsai et al [16]. In this
paper, a simple case of 3D concentric sphere will be
demonstrated to see how spurious eigensolutions occur
and how they are suppressed by using SVD.

In the recent years, the SVD technique has been
applied to solve problems of fictitious-frequency [15]
and continuum mechanics [17]. Two ideas, namely
updating term and updating document [15], were
successfully applied to extract the true and spurious
solutions, respectively. In this paper, the
three-dimensional eigenproblem of a concentric sphere is
studied in both numerical and analytical ways. Owing to
the introduction of degenerate kernel, the collocation
point can be located exactly on the real boundary.
Besides, true and spurious equations can be found by
using the null-field integral equation in conjunction with
degenerate kernels and spherical harmonics. Surface
distributions of the inner and outer boundaries can be
expanded in terms of spherical harmonics. Since a
spurious eigenvalue is related to mathematics and has no
physical meaning, the remedies, SVD updating term and
SVD updating document, are used to extract or filter out
true and spurious eigenvalues, respectively. Finally, an
example with various boundary conditions is utilized to
validate the present approach by using singular and
hypersingular formulations.

2. ON THE OCCURRING MECHANISM
OF SPURIOUS EIGENVALUES IN
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BEM/BIEM
2.1 Problem statements

The governing equation for the eigenproblem of a
concentric sphere is the Helmholtz equation as follows:

Dxxuk  ,0)()( 22 , (1)

where 2 , k and D are the Laplacian operator, the
wave number and the domain of interest, respectively.
The concentric sphere is depicted in Fig. 1. The inner and
outer radii are a and b, respectively.

Fig. 1 A concentric sphere

2.2 Dual null-field integral formulation — the

conventional version
The dual boundary integral formulation [5] for the

domain point is shown below:
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where x and s are the field and source points, respectively,
B is the boundary, nx and ns denote the outward normal
vector at the field point and the source point, respectively,
and the kernel function U(s,x) is the fundamental solution
which satisfies

2 2( ) ( , ) 4 ( )k U s x x s    . (4)

where  is the Dirac-delta function. The other kernel

functions can be obtained as

sn
xsU

xsT





),(
),( , (5)

xn
xsU

xsL





),(
),( , (6)

xs nn
xsU

xsM





),(
),(

2
. (7)

If the collocation point x is on the boundary, the dual
boundary integral equations for the boundary point can
be obtained as follows:
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where R.P.V. C.P.V. and H.P.V. are the Riemann
principal value, the Cauchy principal value and the
Hadamard (or called Mangler) principal value,
respectively. By collocating x outside the domain, we
obtain the null-field integral equation as shown below:
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where cD denotes the complementary domain.

2.3 Dual null-field integral formulation — the

present version
By introducing the degenerate kernels, the

collocation points can be located on the real boundary
free of facing singularity. Therefore, the representations
of integral equations including the boundary point can be
written as
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once the kernel is expressed in terms of an appropriate
degenerate form. It is found that the collocation point is
categorized to three positions, domain (Eqs.(2)-(3)),
boundary (Eqs.(8)-(9)) and complementary domain
(Eqs.(10)-(11)) in the conventional formulation. After
using the degenerate kernel for the null-field BIEM, both
Eqs.(12)-(13) and Eqs.(14)-(15) can contain the boundary
point.

2.4 Expansions of the fundamental solution and

boundary density
The fundamental solution as previously mentioned is

( , )
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where xsr  is the distance between the source

a

b
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point and the field point and i is the imaginary number
with 12 i . To fully utilize the property of spherical
geometry, the mathematical tools, degenerate (separable
or of finite rank) kernel and spherical harmonics, are
utilized for the analytical calculation of boundary
integrals.
2.4.1 Degenerate (separable) kernel for fundamental

solutions
In the spherical coordinate, the field point ( x ) and

source point ( s ) can be expressed as ( , , )x  and

( , , )s  in the spherical coordinate, respectively. By
employing the addition theorem for separating the source
point and field point, the kernel functions, ),( xsU ,

),( xsT , ),( xsL and ),( xsM , are expanded in terms
of degenerate kernel as shown below:
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where the superscripts “i”and “e”denote the interior
and exterior regions, nj and (2)

nh are the nth order
spherical Bessel function of the first kind and the nth

order spherical Hankel function of the second kind,
respectively, m

nP is the associated Lengendre

polynomial and m is the Neumann factor,









.,,2,1,2

,0,1
m

m
m (21)

It is noted that U and M kernels in Eqs.(17) and (20)
contain the equal sign of   while T and L kernels
do not include the equal sign due to discontinuity.
2.4.2 Spherical harmonics expansion for boundary

densities

We apply the spherical harmonics expansion to
approximate the boundary density and its normal
derivative as expressed by
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where vwA and vwB are the unknown coefficients.

3. PROOF OF THE EXISTENCE OF
SPURIOUS EIGENSOLUTIONS FOR A
CONCENTRIC SPHERE
In order to fully utilize the geometry of sphere

boundary, the potential u and its normal derivative t
can be approximated by employing the spherical
harmonic. Therefore, the following expressions can be
obtained
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where i
vwA and i

vwB are the spherical coefficients on

iB ( 1, 2i  ). When the field point is located on the inner
boundary 1B , substitution of Eqs. (24)-(27) into the
null-field integral equations yields
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When the field point is located on the outer boundary
2B , we have
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( )!

cos ( ) cos cos( ) cos( ) sin( ) .

n v
m

n n n
n m v w

m w
n v

n m
j kR h k P

n m

m w P P R d d

 

   









 

       

(29)

For the Dirichlet problem, Eqs. (28) and (29) can be
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reduced to
2 1 (2)

0 0

2 2 (2)

0 0

0 ( ) ( ) (cos( ))cos( )

( ) ( ) (cos( )) cos( ),

n
m

nm n n n
n m

n
m

nm n n n
n m

a kB j ka h ka P m

b kB j ka h kb P m



 



 









 

 
(30)

2 1 (2)

0 0

2 2 (2)

0 0

0 ( ) ( ) (cos( ))cos( )

( ) ( ) (cos( ))cos( ).

n
m

nm n n n
n m

n
m

nm n n n
n m

a kB j ka h kb P m

b kB j kb h kb P m



 



 









 

 
(31)

In order to prove that the spurious eigensolutions of a
concentric sphere satisfy the BIE by collocating the inner
and outer boundary points, we first derive the true
eigensolutions of a sphere subject to the Dirichlet
boundary condition.
Now, we consider the sphere with a radius a in the
continuous system. By using the null-field integral
equation and collocating the point on the boundary, we
obtain the true eigenequation

( ) 0nj ka  , (32)
and the corresponding true eigenmode is

 vwB , (33)

where 0vwB  . By collocating the point in the

complementary domain ( c cx D ) as shown in Fig. 2,
the null-field equation yields

1
0 ( , ) ( ) ( ),e c c c

B U s x t s dB s x D  . (34)

We can obtain the null-field response for cx as shown
below

1 ( 2 )( ) ( ) (cos( )) cos( ) 0,m
nm n n nB j ka h ka P m   (35)

where n and m, since k satisfies Eq. (32).

Fig. 2 Collocation point on the sphere boundary
from the null-field point ( a  )

Fig. 3 Collocation point of the concentric sphere
( a  )

Secondly, we consider the spherical case with the
fixed-fixed boundary condition as shown in Fig. 3. By
selecting a nontrivial inner boundary mode for the
boundary mode and trivial outer boundary mode, we
have ( ) 0nj ka  and

1

2 0
vwvw

vw

BB
B

   
   
  

(36)

This indicates that spurious eigenevalues of ( ) 0nj ka 

and the nontrivial boundary mode of Eq. (36) satisfy Eqs.
(30) and (31) due to ( , ) ( , )i eU s a U x a  . Therefore,
spurious eigenvalues in conjunction with the trivial outer
boundary mode happen to be the true eigenvalue of the
domain bounded by the inner boundary. Similarly, the
concentric sphere subjects to the Neumann boundary
condition by using the hypersingular formulation results
in the trivial outer boundary mode.

4. SVD TECHNIQUE FOR EXTRACTING
OUT TRUE AND SPURIOUS
EIGENVALUES BY USING UPDATING
TERMS AND UPDATING DOCUMENTS

4.1 Method to extract the true eigensolutions
SVD technique is an important tool in the linear

algebra. The matrix A with a dimension M by N can
be decomposed into a product of the unitary matrix
 (M by M), the diagonal matrix  (M by N) with

positive or zero elements, and the unitary matrix  
(N by N)

     ,H
M N M M M N N N   A    (37)

where the superscript “H”is the Hermitian,  and

  are both unitary that their column vectors which
satisfy

,H
i j ij 

  (38)

,H
i j ij 
 
   (39)

in which  H
M MI   and    N NI   .

For the eigenproblem, we can obtain a nontrivial solution
for the homogeneous system from a column vector
 i of   when the singular value ( i) is zero. For
the direct BEM, we have

Singular formulation (UT method)

  0 ,e eu t       T U (40)

Hypersingular formulation (LM method)

  0 ,e eu t       M L (41)

where u and t are the boundary excitations.
For the Dirichlet problem, Eq. (40) and (41) can be
combined to have

 0 .
e

e
t

 
 

  

U

L
(42)

By using the SVD technique, the two submatrices in Eqs.
(40) and (41) can be combined to have

( ) ( ) ( ) He U U U          U    or

  ( ) ( ) ( ) ,
He U U U

j j j
j

     U
(43)

a

 x
cD



b

a

cx
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( ) ( ) ( ) He L L L          L    or

  ( ) ( ) ( ) He L L L
j j j

j

     L .
(44)

where the superscripts, (U) and (L), denote the
corresponding matrices. For the linear algebraic system,
t is a column vector of  i in the matrix  

corresponding to the zero singular value ( 0i  ). By

setting t as a vector of  i , in the right unitary

matrix for the true eigenvalue tk , Eq. (42) reduces to

  ( ) 0 ,e
t ik    U (45)

  ( ) 0 .e
t ik    L (46)

According to Eqs. (43) - (46), we have

  ( ) ( ) 0 ,U U
j j   (47)

  ( ) ( ) 0 .L L
j j   (48)

We can easily extract out the true eigenvalues,

( ) ( ) 0U L
j j   , since there exists the same

eigensolusion (   it  ) for the Dirichlet problem
using Eqs. (42) or (45) and (46). In a similar way, Eqs.
(40) and (41) can be combined to have

 
( )

0 ,
( )

e
t

e
t

k
u

k

 
 

  

T

M
(49)

for the Neumann problem. We can easily extract out the
true eigenvalues for the Neumann problem with respect
to the jth zero singular values of ( ) ( ) 0T M

j j   .

4.2 Method to filter out the spurious eugensolutions
By employing the LM formulation in the direct BEM,

we have

  .e eu t p       M L (50)

Since the spurious eigenvalue sk is embedded in both
the Dirichlet and Neumann problems, we have

  0 ,H
ip   (51)

where i satisfies

 ( ) 0 ,
He

s ik    L for the Dirichlet problem (52)

 ( ) 0 ,
He

s ik    M for the Neumann problem (53)

according to the Fredholm alternative theorem. By
substituting Eq. (50) into Eqs. (52) and (53), we have

  ( ) 0
HH e

s iu k    M , for the Dirichlet problem (54)

  ( ) 0
HH e

s it k    L , for the Neumann problem (55)

Since u and t can be arbitrary boundary
excitation for the Dirchlet problem and Neumann
problem, respectively, this yields

 ( ) 0 ,
He

s ik    M for the Dirichelt problem (56)

 ( ) 0 ,
He

s ik    L for the Neumann problem (57)

By combining Eqs. (52) and (53) with Eqs. (56) and (57)
for the Dirichlet problem, we have

 0

He

iHe


  
    
    

L

M

or  0 .H e e
i         L M (58)

It indicates that two matrices have the same spurious
boundary mode i corresponding to the ith zero
singular values. By using the SVD technique, the two
matrices in Eq. (58) ca be decomposed into

( ) ( ) ( )H He L L L          L    or

  ( ) ( ) ( ) ,
He L L L

j j j
j

      L
(59)

( ) ( ) ( )H He M M M          M    or

  ( ) ( ) ( ) .
He M M M

j j j
j

      M
(60)

By substituting Eqs. (59) and (60) into Eqs. (54) and (55),
we have

  ( ) ( ) 0 ,L L
j j   (61)

  ( ) ( ) 0 .M M
j j   (62)

We can easily extract out the spurious eigenvalues since
there exists the same spurious boundary mode i
corresponding the ith zero singular value,

( ) ( ) 0L M
i i   . Similarly, the spurious eigenvalue

parasitized in the UT formulation can be obtained by
using SVD updating documents.

5. AN ILLUSTRATIVE EXAMPLE AND
DISCUSSIONS

Case 1: A concentric sphere subject to the Dirichlet
boundary condition ( 1 2u = u = 0 ) using the
semi-analytical approach

A concentric case with radii a and b ( 0.5a  m and
1.0b  m) is shown in Fig. 1. The analytical solution can

be obtained by using the null-filed integral formulation,
degenerate kernel and spherical harmonics. The true
eigenequation for the Dirichlet problem is

( ) ( ) ( ) ( ) 0.j ka y kb j kb y kan n n n  (63)
The common drop locations in Figs. 4(a) and 4(b)
indicate the true eigenvalues. We employ the SVD

updating term
U
L




to extract the true eigenvalues for

the Dirichlet problem as shown in Fig. 4(c). It’s found 
that all the spurious eigenvalues are filtered out. The
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results agree well with the previous solutions.

Case 2: A concentric sphere subject to the Neumann
boundary condition ( 1 2t = t = 0 ) using the
semi-analytical approach

Similarly, the true eigenequation for the Neumann
problem is

(( ) ) ( ) ( ) 0.j ka y kb j kb y kan n n n     (64)
The common drop locations in Figs. 4(d) and 4(e)
indicate the true eigenvalues. Extraction of true

eigenvalues by using the SVD updating term
T
M
 
 
 

is

shown in Fig. 4(f). The common drop locations in Figs.
5(a) and 5(b) indicate the spurious eigenvalues for the
singular formulation. Similarly, the same drop locations
in Figs. 5(d) and 5(e) indicate the spurious eigenvalues
for the hypersingular formulation. The spurious
eigenequations for the singular and hypersigular
formulation are

( ) 0,j kan  (65)

( ) 0.j kan  (66)
Finally, we employed the SVD updating document to
filter out the spurious eigenvalues. The spurious
eigenvalues for singular formulation and hypersingular
formulation are extracted as shown in Figs. 5(c) and 5(f),
respectively.

6. CONCLUSIONS
Spurious eigenvalues for a concentric sphere were

studied analytically and numerically. One example was
demonstrated to see how the spurious eigenvalues occur
in the concentric sphere. The trivial outer boundary
densities were examined in case of spurious eigenvalues
which is found to be the true eigenvalue for the domain
bounded by the inner boundary. The contribution of the
work is to show the existence of spurious eigenvalue for
a concentric sphere in an analytical manner by using the
degenerate kernels and the spherical harmonics.
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(a) Determinant versus the wave number by using the
singular formulation for the Dirichlet condition.

(d) Determinant versus the wave numbers by using
the singular formulation for the Neumann
condition.

Hypersingular formulation
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(b) Determinant versus the wave number by using
the hypersingular formulation for the Dirichlet
condition.

(e) Determinant versus the wave number by using the
hypersingular formulation for the Neumann
condition.

True eigenvalues for the Dirichlet problem
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True eigenvalues for the Neumann problem

0 2 4 6 8 10

The wave number ( k )

1000

1010

1020

1030

1040

1050

1060

T
he

de
te

rm
en

to
f

th
e

in
fl

ue
nc

e
m

at
ri

ce

T
1.840

(1.840)
T

3.150
(3.151)

T
4.390

(4.390)

T
5.570

(5.575)

T
6.570

(6.572)

T
6.720

(6.718)

T
6.910

(6.912)

T
7.550

(7.554)

T
7.830

(7.831)

T
8.920

(8.925)

T
8.440

(8.439)

T
9.500
(9.501)

(c) Extraction of true eigenvalues for the Dirichlet
problem by using the SVD updating terms.

(f) Extraction of true eigenvalues for the Neumann
problem by using the SVD updating terms.

Fig. 4 True eigenvalues for a concentric sphere by using the SVD updating terms ( 0.5a  and 1.0b  ).
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Hypersingular formulation
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(a) Determinant versus the wave number by using the
singular formulation subject to the Dirichlet
condition.

(d) Determinant versus the wave number by using the
hypersingular formulation subject to the Dirichlet
condition.
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Hypersingular formulation
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(b) Determinant versus the wave number by using the
singular formulation subject to the Neumann
condition.

(e) Determinant versus the wave number by using the
hypersingular formulation subject to the
Neumann condition.

Spurious eigenvalues for the singular formulation
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Spurious eigenvalues for the hypersingular formulation
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(c) Extraction of the spurious eigenvalues for the
singular formulation by using the SVD updating
document.

(f) Extraction of the spurious eigenvalues for the
hypersingular formulation by using the SVD
updating document.

Fig. 5 Extraction of spurious eigenvalues for a concentric sphere by using the SVD updating documents
( 0.5a  and 1.0b  ).
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