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Support motion of a finite bar with an external viscous damper 
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ABSTRACT 

In this paper, we extended the previous experience to solve the vibration problem of a finite bar with an 

external viscous damper on one side and the support motion on the other side. Two analytical methods, 

the mode superposition method in conjunction with the quasi-static decomposition method and the 

method of characteristics using the diamond rule, were employed to solve this problem. The 

non-conservative system with an external viscous damper is solved straightforward by using the 

method of diamond rule to avoid the complex-valued eigen-system. Both advantages and disadvantages 

of two methods were discussed. The effect of an external viscous damper on the vibration response is 

also addressed. 
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1. INTRODUCTION 

Support motion is very important in physics 

and mechanics, because there are various 

engineering problems which can be modeled by 

using this model. Many researchers have solved 

this problem by using various methods, e.g., 

the mode superposition technique [1], the 

method of separation variables [2, 3, 4], the 

method of quasi-static decomposition [3, 5, 6], 

the method of the diamond rule [3, 7] or the 

so-called method of characteristics, the image 

method [6], the finite element method (FEM) 

[8], the boundary element method (BEM) [9], 

and the meshless method [10], etc.. 

The Rayleigh-damped Bernoulli-Euler beam 

and the string subjected to multi-support 

excitation have been studied by using many 

methods including Stokes transformation and 

Cesaro sum [3, 5, 6]. D’Alembert’s solution 

can provide an exact solution for an infinite 

string. Method of characteristics (Diamond 

rule) can be found in the textbook of Farlow 

[11]. It is widely employed to solve various 

kinds of problems, e.g., water hammer [12]. 
The diamond rule on D’Alembert’s solution 

was proposed by John [13] in 1975 and was 

mainly used to solve the wave problem. 

The diamond rule has been employed to solve the 

one-dimensional vibration problem of an infinite 

or a semi-infinite string attached by a mass, a 

spring, or a damper [7], a finite string [3] and a 

finite bar with an external spring subjected to a 

support motion [5]. Besides, the animation was 

also given in [7]. 

Although the mode superposition method in 

conjunction with the quasi-static decomposition is 

a popular approach for solving the support-motion 

problem, it becomes tedious when the vibration 

system contains a damper. Three reasons can be 

explained. One is that the quasi-static solution is 

not straight forward to be obtained. Another is that 

the orthogonal relation of complex modes is not 

easily found. The other is that a complex 

eigen-system is required. The present solution free 

of mode superposition is possible since we can 

employ the method of characteristics in 

conjunction with the diamond rule for the real 

response in the time domain. 

In this paper, we extend the vibration problem of a 

finite bar with an external spring [4] to a finite bar 

with an external viscous damper. For the 

non-conservative system with an external viscous 

damper, the effect of an external viscous damper 

on the vibration response is addressed in more 

detail. 
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2. PROBLEM STATEMENTS AND 

METHODS OF SOLUTION 

Here, we consider a finite bar with an external 

viscous damper as shown in Figure 1. The 

governing equation for the vibration problem of a 

finite bar is shown below: 
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where /c E    and  ,u x t   denote the wave 

speed and displacement in the x direction, 

respectively. The symbols ,   and E L denote 

Young’s modulus, the density and the length of 

bar, respectively. The initial displacement and 

velocity conditions are 
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where  x  and  x  are initial displacement 

and velocity functions, respectively. 

The boundary condition at the left hand side (x = 

0) can be expressed by the specified support 

motion as follows: 

   0, .u t a t   (4) 

The boundary condition at the right hand side is 

given from the effect of the viscous damper in 

Figure 1 as follows: 
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where cd denotes the damping coefficient, and A is 

the area of cross section. 

 

Figure 1 Sketch of a finite bar with an external 

viscous damper subjected to a support motion 

2.1 Method 1: Mode superposition 

approach in conjunction with the 

quasi-static decomposition method 

The solution can be decomposed into two parts: 

       , , ,n n
n

u x t U x t q t u x



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where  ,U x t  denotes the quasi-static solution, 

and the natural modes  nu x  weighted by the 

generalized coordinate,  nq t  is the generalized 

coordinate of dynamic contribution due to the 

inertia effect. The quasi-static part  ,U x t  , 

satisfies the governing equation 
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and is subject to time-dependent boundary 

conditions at the two sides: 

   0, = ,U t a t   (8) 
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By solving Eq. (7) subject to boundary conditions, 

we have the quasi-static solution, 

     , ,U x t t x t     (10) 
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after using the integration factor, where the 

undetermined constant can be determined by 

       0 0  & .a t a t     (12) 

The nth complex-valued function  nu x  with the 

complex eigenvalue 
n  is 
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The corresponding complex-valued eigen-values 

are given below: 
1
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and the corresponding complex frequency is 

 ,  0,  1,  2 .n n nc       (15) 

Since the quasi-static part in Eq. (6) satisfies the 

boundary condition in Eq. (5), we set each basis   

of the solution to also satisfy the boundary 

condition in Eq. (5). By taking the following 

equation 
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we have 

   .n n nq t q t  (17) 

Differentiating Eq. (6) with respect to t, we have 
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By adopting Eq. (17), Eq. (18) can be written as 
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Subtracting Eq. (19) from Eq. (18), we have 
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Then, differentiating Eq. (20) with respect to x 

and multiplying by the wave speed c, we obtain 
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Substituting Eq. (6) into Eq. (1), we have 
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By adding Eq. (20) to Eq. (22) together and 

subtracting Eq. (20) from Eq. (22), we obtain 
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, respectively. We substitute – x for x in Eq. (24) 

and the interval is changed from [0, L] to [ -L, 0], 

yields 
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Substituting the complex-valued eigenvalue into 

Eqs. (23) and (25) and rearranging them into a 

single equation, we have 
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Multiplying the exponential term  i/m L x
e

  (where 

m is an integer) on both sides of Eq. (26) and 

integrating from - L to L, the left side of Eq. (26) 

can be expressed as 

   
   2

i i 4 ,  
2

0                             ,   

n m
x xL

n n nL L

n n n
L

q t q t L n m
q t q t e e dx

n m

   
 

   
   
   



       



  (27) 

For the right side of Eq. (26), it can be combined 

by using the reflection property of integrals as 

given below: 
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Combining Eqs. (27) and (28), the first-order 

ordinary differential equation for the generalized 

coordinates  nq t  can be obtained as 
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The initial condition of generalized coordinates 

can be determined from the initial conditions of 

the total solution. Using Eq. (6) to satisfy the 

initial displacement condition in Eq. (2) and 

differentiating it with respect to x, we have 
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Multiplying Equation (30) by the wave speed c, 

we have 
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Similarly, using Eq. (6) to satisfy the initial 

velocity condition in Eq. (3), we have 
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By adding Eq. (32) to Eq. (31) together and 

subtracting Eq. (32) from Eq. (31), we obtain 
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, respectively. We substitute – x for x in Eq. (34) 

and the interval is changed from [0, L] to [ -L, 0], 
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Similarly, combining Eqs. (33) and (35) into a 

single equation and rearranging it, we have 
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Multiplying the exponential term  i/m L x
e

  (where 

m is an integer) on both sides of Eq. (36) and 

integrating from - L to L, the left side of Eq. (36) 

can be expressed as 
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Using of the reflection property of integrals in the 

right side of Eq. (36), we have 
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Combining Eqs. (37) and (38), the initial 

condition of generalized coordinates  nq t  can be 

obtained as 
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Therefore, we can solve  nq t  by considering 

Eqs. (29) and (39) and have 
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Finally, the series solution for the displacement, 

 ,u x t , is shown below: 
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2.2 Method 2: Method of characteristics in 

conjunction with the diamond rule 

By employing the method of characteristic line, 

we can assume the general solution of 1D wave 

equation in Eq. (1) as 

     , ,u x t P x ct Q x ct      (42) 

where  P x ct  and  Q x ct  are specified 

functions to match initial conditions in Eqs. (2) 

and (3). The functions  P x ct  and  Q x ct  

represent a left-going-traveling wave and a 

right-going-traveling wave, respectively. By 

satisfying Eqs. (2) and (3) for Eq. (42), the 

D’Alembert’s solution for a certain region is 

expressed as 
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where  x  and  x  are functions of initial 
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displacement and velocity, respectively. Two 

groups of characteristic lines from Eq. (43) are 

included in the solution of the wave equation. 

Moreover, the two groups of parallel characteristic 

lines can form a parallelogram in the space-time 

plane as shown in Figure 2. Based on the 

D’Alembert’s solution, we have the equation of 

the diamond rule [4, 6], as shown below: 

,A B C Du u u u     (44) 

where Au  , Bu , Cu and Du  denote the 

displacement at the four points A, B, C and D, 

respectively. Several parallel characteristic lines 

separate the domain into many regions of the 

space-time plane as shown in Figure 3. The 

diagrams of calculating the displacement by using 

the diamond rule in the regions I, II, III, IV, V and 

VI are given in Figure 4. The displacements in the 

former six regions are given below: 
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   IV  I, V
ct x

u x,t a x,t
c

 
  

 
,
 

(48) 

   V  , V
ct x

u x,t a x,t
c

 
  

 
,
 

(49) 

   VI 2 V
1 1 1

 I, 
ct x x ct 2L x ct L

u x,t a a r x,t
c c c c c c

    
    

    

    
         .  (50) 

where the simple form of Eqs. (48)-(50) is due to 

zero r1(t) in silent regions of I and III and zero 

initial displacement  x  and velocity  x  . 

Following the same procedure, the marching 

scheme of the time-space plane region and 

solution can be done.  Then, r1(t) and r2(t) denote 

the displacements of  , ,  0 /u L t t L c   and 

 , ,  / 2 /u L t L c t L c  , respectively, which can be 

obtained from the condition of force equilibrium 

at x = L, 

   IIIIII , ,
= ,d

x L x L

u x t u x t
AE c

x t 

 


 

  
(51) 

   I VIV , ,
= ,d

x L x L

u x t u x t
AE c

x t 

 


 

 
(52) 

Thus, we can determine r1(t) by using Eq. (47) to 

satisfy Eq. (51). The displacement at x = L, 
 III , 0u L  and  I , 0u L , must satisfy the displacement 

continuity. Then, we have 

 
1 =0 , 0  / .r t t L c 　 　   (53) 

Similarly, the response of r2(t) can be obtained by 

using Eq. (50) to satisfy Eq. (52). By solving the 

corresponding first-order ODE for r2(t) at the end 

of damper as shown below: 

 2 , / 2 / ,
2

 
d

L c t L c
AE ct L

r t a
AE c c c

 
 

   
  

  (54) 

we can obtain 

 2 , / 2 / ,
2

 
d

r t L c t L c
AE ct L

a C
AE c c c

  
 

 
  

  (55) 

where the undetermined constant C   can be 

determined by satisfying the displacement 

continuity of solution in the region IV and VI at 

   , , /x t L L c  as shown in Figure 4. 

 

Figure 2 The diamond rule of A B C Du u u u    

 

Figure 3 Space-time regions separated by using 

the characteristic line. 

 

Figure 4 Space-time regions, I, II, III, IV, V and 

VI and the diamond rule. 

3. AN ILLUSTRATIVE EXAMPLE 

A finite bar with a damper subjected to a 

support motion is considered. The model 

parameters are given as shown below: 1 /c m s , 

1 AE N , 7 L m  and 5 /dc N s m  . By 

setting the support motion, 

   sin ,a t t  (56) 

the solutions of two approaches can be obtained as 

shown in the following subsection. 

3.1 Mode superposition method 

After substituting model parameters 
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,  ,  ,  ,  dc A E L c  and Eq. (56) into Eq. (41), the 

vibration response of displacement can be 

obtained by taking the Eq. (41). 

      , , .n nx x

n
n

u x t U x t q t e e
 






  
 

(57) 

3.2 Method of characteristics in 

conjunction with the diamond rule 

By substituting model parameters ,  ,  ,  ,  dc A E L c  

and Eq. (56) into Eqs. (45)-(50), we have 

   I , I0  u x,t x,t  ,  (58) 

     II sin  , IIu x,t t x x,t   , (59) 

   III  III0 , u x,t x,t  , (60) 

     IV sin  , IVu x,t t x x,t   , (61) 

     V sin  V, u x,t t x x,t   , (62) 
         VI 2sin sin 14 7  , VI,u x,t t x x t r x t x,t          (63) 

where 

   2  , 7 14.
1

sin 7
3

r t tt  
  

(64) 

 

The displacement profiles with the silent area for t 

= 2 and 4 sec by using the mode superposition 

method and the diamond rule are shown in Figure 

5 (a)-(b), respectively. It is interesting to find that 

the mode superposition method also yields the 

silent response. In Figure 6, shadow regions, I and 

III, denote the dead zone. It matches the silent 

response begins at x = 2 and 4 m to the end of bar 

(x = 7 m), for the time when t = 2 and 4 sec as 

shown in Figure 5. It is found that the slope is 

discontinuous at x = 2 and 4 m when t = 2 and 4 

sec, respectively. These discontinuities occur at 

the locations of (2,2) and (4,4) in the x-t plane as 

shown in Figure 6. In Figure 6, the shadow region 

denotes the dead zone. As theoretically predicted, 

the discontinuity of the slope really occurs at the 

position of (2,2) and (4,4), on the characteristic 

line. 

Regarding non-silent area, the displacement 

profiles at t = 8 and 10 sec are shown in Figure 7 

(a)-(b), respectively. It is also found that the slope 

is discontinuous at x = 6 and 4 m when t = 8 and 

10 sec, respectively. These slope discontinuities 

occur at the locations of (6,8) and (4,10) in the x-t 

plane as shown in Figure 8. This finding matches 

well from the mathematical requirement that the 

discontinuity must occur at the position on the 

characteristic line [14]. 

 

  

(a) t = 2 sec (b) t = 4 sec 

Figure 5 Displacement profiles with the silent area 

by using the quasi-static decomposition and the 

diamond rule 

 

Figure 6 The locations of slope discontinuities at 

(2,2) and (4,4) 

  

(a) t = 8 sec (b) t = 10 sec 

Figure 7 Displacement profiles by using the 

quasi-static decomposition and the diamond rule 

 

Figure 8 The locations of slope discontinuities 

(6,8) and (4,10) 
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4. CONCLUSION 

In this paper, we have analytically solved the 

direct problem of the longitudinal vibration 

analysis of a finite bar with an external viscous 

damper on one side and the support motion on the 

other clamped side by using two methods. The 

slope discontinuity occurs at the position on the 

characteristic line as mathematically predicted. 

The effect of an external viscous damper on the 

vibration response is also addressed. The method 

of characteristics line in conjunction with the 

diamond rule was successfully employed to solve 

the problem containing the viscous damped 

boundary in the time domain. Good agreement of 

results by using the mode superposition method 

with complex-values eigenvalues and the method 

of characteristics in conjunction with the diamond 

rule. Therefore, it is easier to solve the problem of 

non-conservative system with a damper by using 

the diamond rule, since it is free to consider the 

complex-valued eigen-system to solve the 

problem. Table 5 summaries the comparison of 

advantages and disadvantages of the two 

approaches. 

 

Table 5 Comparison of the two approaches for the 

vibration problem of a finite rod 
 

Method 

 

Item analysis 

Mode superposition method in 

conjunction with the 

quasi-static decomposition 

Method of 

characteristics in 

conjunction with 

the diamond rule 

Solution form Series solution (continuous) 
Exact solution 

(continuous) 

Advantage 

Without dividing the 

space-time region to represent 

the corresponding 

displacement response 

1. Without the 

truncation error of 

finite term of series 

sum 

2. It can 

analytically capture 

the dead zone 

3. General approach 

for either 

conservative or 

non-conservative 

system 

4. Suitable for 

support excitation 

of short duration, 

e.g., earthquake 

input 

Disadvantage 

1. Error due to truncation 

series in the real computation  

2. Convergence test is 

required 

3. Complex-valued 

eigenvalues and eigenequation 

are required for a damped 

system  

Previous stage error 

propagates to the 

later response 
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