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Abstract 
 

In contrast to other numerical methods, the boundary integral equation method and 

boundary element method involve singular integrals. Although fictitious boundary 

element method and null-field integral formulation can avoid the singularity, they both 

result in an ill-posed model for direct problems. To avoid the singularity and to obtain a 

well-posed model at the same time are our goals. In this thesis, a unified formulation for 

solving boundary value problems with multiple circular inclusions using the null-field 

approach is proposed although our focus is on the Laplace problem only. The 

subdomain approach, namely, the concept of taking free body, is adopted for inclusion 

problems. For each subdomain, the null-field integral equation as well as boundary 

integral equation is derived. To fully capture the circular geometries, separable 

expressions of fundamental solutions in the adaptive observer system for field and 

source points and Fourier series for boundary densities are adopted to analytically 

calculate the boundary integral and to ensure the exponential convergence. By 

collocating the null-field point on the real boundary, singular and hypersingular 

integrals are transformed to series sums after introducing the concept of degenerate 

kernels. Not only the singularity but also senses of principle values are novelly avoided. 

Then the linear algebraic system is obtained after matching the boundary condition and 

the unknown coefficients can be easily determined. For the calculation of boundary 

stress, the Hadamard principal value for hypersingularity is not required and can be 

easily calculated by using series sums. For the eccentric case, the vector decomposition 

technique for the radial and tangential derivatives is carefully considered in 

implementing the hypersingular equation. At the same time, the boundary-layer effect is 

eliminated owing to the introduction of degenerate kernels. Convergence rate using 

various terms of Fourier series is also examined. Because the solution is formulated in a 

manner of semi-analytical form, it possesses certain advantages over the conventional 

boundary element method. Finally, three topics of engineering applications, anti-plane 

piezoelectricity, in-plane electrostatic and anti-plane elasticity problems, were given to 

demonstrate the accuracy and efficiency of present method after comparing with other 
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available methods. It is found that the stress and electric field concentrations are 

dependent on the distance between the two inclusions, the mismatch in the material 

constants and the magnitude of mechanical and electromechanical loadings. A 

general-purpose program for multiple circular inclusions of various radii, arbitrary 

positions and different materials constants was developed. 

 

Keywords: degenerate kernel, Fourier series, null-field approach, inclusion, anti-plane 

deformation, piezoelectricity, boundary-layer effect 
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中文摘要 
 

相較於其它數值方法，邊界積分方程法與邊界元素法皆會引入奇異積分。雖然虛

擬邊界元素法與零場積分方程法可以避免奇異積分，卻會造成矩陣病態問題。本

文目標則是提出一套可同時避免奇異積分並獲得良態模式的系統性解法，求解含

多圓形夾雜之邊界值問題。利用多領域法，即切取自由體圖的觀念，對於每個次

領域而言都可使用零場積分方程與邊界積分方程求解。其中，將基本解以場、源

點分離的概念展開為分離（退化）的型式，而邊界物理量則以傅立葉級數展開，

搭配自適性觀察座標系統可解析求出邊界積分及確保級數指數收歛。經由均勻佈

點於真實邊界上，奇異與超奇異積分都可被轉換成級數和的形式，且無須面對主

值計算問題，在滿足邊界條件後可由所得的線性代數系統輕易地解出未知係數。

針對非同心圓的例子，使用超奇異積分式計算勢能導微時，需採用向量分解的技

巧來加以處理；而在計算邊界應力時所產生的主值問題也可被轉換成級數和的形

式求得。同時，由於分離核（退化核）的引入，邊界層效應可被消除。另外，選

取不同項數的傅立葉級數進行收斂分析來測試本方法的收斂速率。相對於傳統邊

界元素法，此半解析法擁有某種程度的優越性。最後，為了驗證此方法的準確性

與效率性，對反平面壓電問題、平面靜電場問題與反平面彈力問題均予以測試。

所得的數值結果也與由其它方法所得之結果加以比較，均能得到不錯的結果。由

數值結果可以得知，應力與電場集中的大小取決於兩夾雜間的距離、材料常數與

外力的作用大小。經由一系列的研究工作後，我們成功開發出一套系統性求解含

任意數目、位置、不同大小與材料常數的圓形夾雜分析程式。 

 

關鍵字：分離核函數、傅立葉級數、零場積分方程、夾雜、反平面位移、壓電力

學、邊界層效應 
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Chapter 1 Introduction 
 

1.1 Motivation of the research and literature review 

Engineering analysis can be formulated as mathematical models of the boundary value 

problems. In order to solve the boundary value problems, researchers and engineers 

have paid more attention on the development of boundary integral equation method 

(BIEM), boundary element method (BEM) and meshless method than domain type 

methods, finite element method (FEM) and finite difference method (FDM). Among 

various numerical methods, BEM is one of the most popular numerical approaches for 

solving boundary value problems. Although BEM has been involved as an alternative 

numerical method for solving engineering problems, four critical issues are of concern. 

(1) Treatment of singularity and hypersingularity 

It is well known that BEM are based on the use of fundamental solutions to solve 

partial differential equations. These solutions are two-point functions which are 

singular as the source and field points coincide. Most of the efforts have been 

focused on the singular boundary integral equation for problems with ordinary 

boundaries. In some situations, the singular boundary integral equation is not 

sufficient, e.g. degenerate boundary, fictitious frequency and spurious eigenvalue. 

Therefore, the hypersingular equation is required. The role of hypersingularity in 

computational mechanics has been examined in the review article of Chen and 

Hong [27]. In the past, several regularizations for hypersingularity were offered to 

handle it in direct and indirect ways. Hong and Chen [99] have developed the 

theory of dual BIEM and dual BEM with hypersingular kernels. The analytical 

formula reveals the jump behavior of double-layer potentials. How to determine 

accurately the free terms has received more attentions in the past decade. To directly 

face the singular and hypersingular integrals, a large amount of papers on the 

Cauchy, Riemann and Hadamard principal values have been published through the 

bump contour approach. Two conventional approaches were employed to regularize 

the singular and hypersingular integrals. First, Guiggiani [55] has derived the free 

terms for Laplace and Navier equations using the differential geometry and bump 
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approach in Fig. 1-1 (a). Second, Gray and Manne [51] have employed a limiting 

process to ensure a unique solution by pushing an interior point to boundary in Fig. 

1-1 (b) using the symbolic software. In the present approach, we employed the 

degenerate kernel to represent the two-point fundamental solution for problems with 

circular boundaries as shown in Fig. 1-1 (c). Recently, Wu [93] has developed a 

new boundary integral equation for the analysis of linear elastic bodies with cracks. 

In his formulation, displacement gradients and tractions on the non-crack boundary 

and dislocation on the crack line are required instead of displacement and traction in 

the dual BEM. Numerical quadratures for weak, strong singularities and 

hypersingularities have been proposed [65]. Chen and Chiu [25] has derived the 

separable expression of fundamental solution and can avoid calculating the 

improper integrals along the boundary. The singularity and hypersingularity 

disappeared in boundary integral equation after describing the potential into two 

parts. Unlike the conventional BEM and BIEM, Waterman [90] introduced first the 

so-called T-matrix method for electromagnetic scattering problems. Various names, 

null-field approach or extended boundary condition method (EBCM), have been 

coined. The null-field approach or T-matrix method is used widely for obtaining 

numerical solutions of acoustics [8, 9, 68, 91], elastodynamics [85, 92] and 

hydrodynamics [69]. Boström [14] introduced a new method of treating the 

scattering of transient fields by a bounded obstacle in three-dimensional space. He 

defined new sets of time-dependent basis functions, and use of these to expand the 

free space Green’s function and the incoming and scattered fields. The method is a 

generalization to the time domain of the null-field approach first given by Waterman 

[90]. A crucial advantage of the null-field approach or T-matrix method consists in 

the fact that the influence matrix can be computed easily. Although many works for 

acoustic, elastodynamic and hydrodynamic problems have been done, only a few 

articles on elastostatics can be found [73]. The idea of changing real boundary to 

fictitious boundary (fictitious BEM) or putting the observation point outside the 

domain (null-field approach) can remove the singular and hypersingular integrals. 

However, they result in an ill-posed matrix which will be elaborated on later. A 
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method of well-posed mathematical model and free of directly determining singular 

and hypersingular integrals is one of our objects in this thesis. 

(2) Boundary-layer effect 

Boundary-layer effect in BEM has received attention in the recent years. In real 

applications, data near boundary can be smoothened since maximum principle 

always exists for potential problems. Nevertheless, it also deserves study to know 

how to manipulate the nearly singular integrals in applied mathematics. Kisu and 

Kawahara [63] proposed a concept of relative quantity to eliminate the 

boundary-layer effect. Chen and Hong in Taiwan [26] as well as Chen et al. in 

China [24] independently extended the idea of relative quantity to two 

regularization techniques which the boundary densities are subtracted by constant 

and linear terms. Sladek et al. [78, 79] used a regularized version of the stress 

boundary integral equation (σ BEM) to compute the correct values of stresses close 

to the boundary better than the non-regularized σ BEM. An interpolation scheme to 

compute stresses at points very close to the boundary was proposed. Others 

proposed a regularization of the integrand by variable transformations. For example, 

Telles et al. [84] used a cubic transformation such that its Jacobian is minimum at 

the point on the boundary close to the collocation point and can smooth the 

integrand. Similarly, Huang and Cruse [60] proposed rational transformations which 

regularize the nearly singular integrals. How to eliminate the boundary-layer effect 

in BEM is vital for researchers. The thesis will identify that the present approach is 

inherently free of boundary-layer effect. 

(3) Convergence rate 

Undoubtedly, BEM is very popular for boundary value problems with general 

geometries since it requires discretization on the boundary only. Regarding to 

constant, linear and quadratic elements, the discretization scheme does not take the 

special geometry into consideration. It leads to the slow convergence rate. For 

problems with special geometries, one can propose the special function to 

approximate the boundary density on the specific geometry. For example, Fourier 

series is suitable for boundary densities on circular boundaries while the spherical 
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harmonic function is always employed to approximate the boundary density on 

surface of sphere. Legendre and Chebyshev polynomials are suited to approximate 

the boundary densities on the regular and degenerate straight boundaries, 

respectively. Methieu function is taken to describe the boundary densities of elliptic 

boundaries. Figure 1-2 shows randomly distribution holes and/or inclusions with 

square, elliptic and circular shapes, etc. in the two-dimensional region. Bird and 

Steele [11, 12] have proposed a solution procedure for Laplace and biharmonic 

problems with circular holes of arbitrary size, position and number. Their method 

can be seen as one kind of the Trefftz method of interior and exterior problems. The 

T-complete function can be found in the degenerate kernel of fundamental solution. 

The equivalence between the method of fundamental solution (MFS) and Trefftz 

method was recently constructed although both methods have histories of more than 

sixty years [40]. Boundary densities can be expanded in terms of truncated Fourier 

series. Caulk and Barone [4, 5, 6, 7, 16, 17, 18, 19] have solved the Laplace 

problem in two-dimensional region with circular holes by using the special 

boundary integral equations. In their approach, the boundary potential and its 

normal derivative are approximated by using Fourier series on each hole. 

Mogilevskaya and Crouch [44, 71, 87] presented a method for solving problems 

with randomly distributed circular elastic inclusions with arbitrary properties. They 

combined the series expansion technique with a complex boundary integral 

equation method. Although previous researchers have employed the Fourier series 

expansion, no one has ever introduced the degenerate kernel in boundary integral 

equations to tackle their problems. Kress has proved that the exponential 

convergence instead of the algebraic convergence in the BEM can be achieved by 

using the degenerate kernel and Fourier expansion [64]. This thesis will take 

advantage of this higher convergence rate to deal with problems with circular 

boundaries using Fourier series in conjunction with degenerate kernels. Moreover, 

the present method can be directly applied to problems with general boundaries 

without any difficulty once the fundamental solution can be separated in the other 

coordinate, e.g. Cartesian coordinate or elliptic coordinate. 
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(4) Ill-posed model 

As mentioned previously in the first issue, to avoid directly calculating the singular 

and hypersingular integrals by using null-field approach or fictitious BEM yields an 

ill-condition system. The influence matrix is not diagonally dominated and needs 

preconditioning. To approach the fictitious boundary to the real boundary or to 

move the null-field point to the real boundary can make the system well-posed. 

However, singularity appears in the meantime. We may wonder is it possible to 

push the null-field point on the real boundary but free of facing the singular or 

hypersingular integrals. The answer is yes and the key idea is to describe the jump 

behavior of potential distribution in the separate region using degenerate (separate) 

kernels for fundamental solutions. The details will be addressed in this study. 

In this thesis, we develop a semi-analytical approach for boundary value problems with 

circular boundaries by using the null-field integral equation in conjunction with the 

degenerate kernel and Fourier series. To fully capture the geometry of circular boundary, 

the fundamental solution and boundary densities are expanded into the degenerate form 

and Fourier series in the polar coordinate, respectively. Four intermediate advantages 

are obtained, (1) singularity free, (2) boundary-layer effect free, (3) exponential 

convergence, (4) well-posed model. The adaptive observer system is proposed to fully 

employ the property of degenerate kernel. All the boundary integrals are analytically 

determined through the orthogonal property between the degenerate kernel and Fourier 

series. Therefore, improper integrals are transformed to series sums instead of the sense 

of principal values. A linear algebraic equation is formulated to determine the unknown 

Fourier coefficients after collocating the null-field point on the boundary and matching 

the boundary condition. For the calculation of potential gradient, the Hadamard 

principal value for hypersingularity is not required and can be easily calculated by using 

series sums and by adapting the vector decomposition technique for eccentric cases. In 

addition, the boundary-layer effect for stress calculations near the boundary and the 

convergence test with various terms of Fourier series are studied. Engineering 

applications containing multiple circular inclusions are demonstrated to see the validity 

of present method. The limiting case of cavities by setting zero modulus is tested to 
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compare previous results by our NTOU/MSV group. The extension to study on 

coupling effect of electrical and mechanical loadings for piezoelectricity problems is 

also done in this thesis. 

 

1.2 Organization of the thesis 

The frame of the thesis is shown in Fig. 1-3. In this thesis, the boundary value problems 

with circular boundaries are studied by using the null-field approach conjunction with 

degenerate kernels and Fourier series. Applications to anti-plane piezoelectricity 

problems with circular piezoelectric inclusions subjected to the mechanical and 

electrical loadings are investigated. Anti-plane elastic and in-plane electrostatic 

problems can be treated as limiting cases of the piezoelectricity problems. Besides, the 

boundary-layer effect for stress calculations and the convergence test are addressed. The 

content of each chapter is summarized below. 

In the chapter 2, we present a semi-analytical formulation using the null-field approach 

in conjunction with degenerate kernel and Fourier series for solving boundary value 

problems. The kernel function is separated into degenerate (separate) forms and the 

boundary density is expanded into Fourier series to fully utilize the property of circular 

geometry. Although the present formulation is suitable for the Laplacian, Helmholtz, 

biharmonic and biHelmholtz operators in one, two and three dimensional problems, 

only two-dimensional Laplace problems is adopted here. 

In the chapter 3, the application to anti-plane piezoelectricity problems with arbitrary 

piezoelectric circular inclusions under remote anti-plane shears and in-plane electric 

fields is considered. Contour plots for the stresses and electric potential are illustrated to 

see the interaction of piezoelectric inclusions. The distributions of stresses, electric 

displacements and electric fields along various paths, e.g. the interface between the 

matrix and inclusion, the contour near the circular boundary and the x  axis, are 

calculated. The two piezoelectric circular inclusions problems with different geometries, 

material constants and magnitudes of mechanical and electromechanical loadings are 

considered to test our program. Besides, the decoupling electrostatic problems are 

solved as an uncoupling case. Numerical results are compared with the exact solution 
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and those of previous researchers by using various methods. 

In the chapter 4, we derive the null-field approach for an elastic infinite medium 

containing elastic circular inclusions with arbitrary radii, positions and material 

constants under the remote anti-plane shears. It can be seen as a limiting case of 

anti-plane piezoelectricity problems. The boundary-layer effect for the stress calculation 

is examined. The exact solution for a single elastic inclusion is also re-derived by using 

the present formulation. Several problems of two holes, two inclusions, one cavity 

surrounded by two inclusions and three inclusions are revisited to demonstrate the 

generality and validity of our method. Regardless of the number, size and the position 

of circular inclusions and cavities, the proposed method is tested for its generality and 

validity. Finally, we draw out some concluding remarks item by item and exhibit some 

further issues in the chapter 5. 
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Figure 1-2 A two-dimensional problem with holes, inclusions and cracks 
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Figure 1-3 The frame of the thesis 
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Chapter 2 Basic formulation of null-field 
approach for boundary value problems with 

circular inclusions 
 

Summary 

In this chapter, the boundary value problem with circular boundaries is formulated by 

using the null-field integral equation. Degenerate kernels for fundamental solutions and 

Fourier series for unknown boundary densities are introduced to derive the formulation 

analytically. Intermediate advantages are obtained: (1) well-posed model, (2) singularity 

free, (3) boundary-layer effect free and (4) exponential convergence. The method is 

basically a numerical approach, and because of its semi-analytical nature, it possesses 

certain advantages over the conventional boundary element method. The null-field 

approach employing degenerate kernels can be applied to solve boundary value 

problems which are governed by the Laplace, Helmholtz, biharmonic and biHelmholtz 

equations. Inclusion problems for anti-plane elasticity as well as the piezoelectricity 

study are our main concern. 

 

2.1 Introduction 

Many engineering problems can be described by using mathematical models of the 

Laplace, Helmholtz, biharmonic and biHelmholtz equations. For example, anti-plane 

piezoelectricity, in-plane electrostatic, anti-plane elasticity, steady state heat conduction, 

ideal steady flow problems are the classical problems which are always simulated by the 

Laplace equation. Membrane vibration, water wave and acoustic problems are often 

modeled by the Helmholtz problems. Plate vibration problems are governed by the 

biHelmholtz equation. Plate problems in solid mechanics and Stokes’ flow in fluid 

mechanics can be formulated by the biharmonic equation through the Airy stress 

function and streamfunction, respectively. 

Engineers often have the opportunity to apply circular components to engineering 

structures. Although these structures are rather simple, the analytical solutions for their 
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engineering system are difficult to obtain. To the author’s best knowledge, special 

mapping technique or bipolar coordinate were always used to derive the analytical 

solution for two circular holes and/or inclusions, respectively. However, conformal 

mapping or bipolar coordinate is limited to doubly connected regions even to conforcal 

connected regions; most efforts have concentrated on special solution representations. 

Alternative methods have been adopted to solve problems with multiple circular holes 

[48, 49]. Numerical approaches, e.g. finite difference method (FDM), finite element 

method (FEM), boundary element method (BEM), boundary integral equation method 

(BIEM) and meshless method, etc., are always resorted to handle the problems. Among 

diverse numerical approaches, FEM and BEM have become the popular research tools 

for engineers. In the past decade, FEM has been widely applied to carry out many 

engineering problems, but one deficiency is that discretizations are time-consuming to 

generate the mesh. Unlike FEM, the discretizations are restricted only to the boundary 

when using BEM. The main advantage is one-dimension reduction in mesh generation 

and particularly convenient for unbounded domain and stress concentration problems. 

BEM is also ideally suited to the analysis of external problems where domains extend to 

infinity, since discretizations are confined to the internal boundaries with no need to 

truncate the domain at a finite distance. There is no doubt that BEM has been 

appreciated as an alternative numerical method which has been extensively used. 

Practical engineers and academic researchers paid attention to theoretical study and 

applications of BEM in the recent decades. Although BEM is recognized as an 

acceptable tool, some pitfalls still exist, e.g. degenerate scale for potential problems, 

fictitious frequency for exterior acoustics and boundary-layer effect for stress 

calculations near the boundary. Detailed discussions for the pitfalls of BEM can consult 

with the three lectures by Chen et al. [28, 33, 34]. 

For problems with circular boundaries, the BIEM can be utilized instead of BEM to 

improve the convergence rate by introducing Fourier series. The Fourier series 

expansion is specially tailored to problems with circular geometry. Early attempts to 

solve problems involving circular boundaries using series expansions were reported by 

Mogilevskaya and Crouch [44, 71], Barone and Caulk [4-7] and Bird and Steele [11, 12]. 
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Barone and Caulk explored the use of special BIEM for solving Laplace’s equation in 

two-dimensional regions with circular holes. Based on his idea, the boundary potential 

and its normal derivative were expressed in a finite series of circular harmonics on each 

hole. Unlike other approaches, the unknown coefficients in each hole are determined by 

a new set of integral equations with special kernel functions. However, the explicit 

equations in [16] were limited to the case when a constant potential is specified on the 

boundary of each hole. Steele and his coworkers [11, 12] have adopted the Fourier 

series for harmonic and biharmonic problems with circular holes. In their numerical 

results, only six terms of Fourier series on each hole were sufficient to yield error of less 

than 0.05 percent. Recently, Mogilevskaya and Crouch [71] also presented a method by 

employing the Fourier series expansion technique and used the Galerkin method for 

solving problems with randomly distributed circular elastic inclusions with arbitrary 

properties. They combined the series expansion technique with a direct BIEM. However, 

all of previous studies didn’t employ the null-field integral equation and degenerate 

kernels in polar coordinate to fully capture the circular boundary to the author’s best 

knowledge although they have employed the Fourier series. Degenerate kernels play an 

important role not only for mathematical analysis [39] but also for numerical 

implementation [64]. For example, the spurious eigenvalue [31], fictitious frequency 

[30] and degenerate scale [32] have been mathematically and numerically studied by 

using degenerate kernels for problems with circular boundaries. One gain is that the 

exponential convergence instead of the algebraic convergence in BEM can be achieved 

by using the degenerate kernel and Fourier expansion [64]. 

In the chapter, we focus on the boundary value problems with circular inclusions and 

propose a semi-analytical approach. A major benefit of using degenerate kernels for the 

fundamental solution and the Fourier expansion for circular boundaries is that all 

integrations can be performed analytically instead of calculations using senses of 

principal values. Besides, the degenerate kernels for fundamental solutions and Fourier 

series for boundary densities lead to the exponential convergence [64]. After expanding 

the boundary density along each circular boundary by using the Fourier series 

expansion, the null-field integral equation yields a system of linear algebraic equations 
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for unknown coefficients of Fourier series. To match the interface condition between 

the matrix and each inclusion, additional constraints are provided to determine the 

unknown Fourier coefficients by the resulted linear algebraic system. A general-purpose 

program for solving boundary value problems containing circular inclusions with 

different radii, various center positions and arbitrary material properties is developed. 

 

2.2 Dual boundary integral equations and dual null-field 
integral equations 

Suppose there are N  randomly distributed circular inclusions bounded to the contours 

kB  ( 0,1, 2, ,k N= " ) as shown in Fig. 2-1. We define 

0

N

k
k

B B
=

=∪ . (2-1) 

In mathematical physics, many engineering problems can be modeled by the governing 

equation, 
(x) 0ϕ =L , x D∈ , (2-2) 

where L  may be the Laplacian, Helmholtz, biharmonic or biHelmholtz operators, 

(x)ϕ  is the potential function and D  is the domain of interest. For the 

two-dimensional second-order operators of Laplacian and Helmholtz, the boundary 

integral equation for the domain point can be derived from the third Green’s identity 

[27], we have 

2 (x) (s, x) (s) (s) (s, x) (s) (s)
B B
T dB U dBπϕ ϕ ψ= −∫ ∫ , x D∈ , (2-3) 

x

(x)2 (s, x) (s) (s) (s, x) (s) (s)
n B B

M dB L dBϕπ ϕ ψ∂ = −
∂ ∫ ∫ , x D∈ , (2-4) 

where s  and x  are the source and field points, respectively, s(s) (s) / nψ ϕ=∂ ∂ , B  

is the boundary, xn  denotes the outward normal vector at the field point x  and the 

kernel function (s, x)U  is the fundamental solution which satisfies 
(s, x) 2 (x s)U πδ= −L , (2-5) 

in which (x s)δ −  denotes the Dirac-delta function. The other kernel functions, (s, x)T , 

(s, x)L  and (s, x)M , are defined by 
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s

(s, x)(s, x)
n

UT ∂≡
∂

, 
x

(s, x)(s, x)
n

UL ∂≡
∂

, 
2

s x

(s, x)(s, x)
n n
UM ∂≡

∂ ∂
, (2-6) 

where sn  is the outward normal vector at the source point s . By moving the field 

point to the boundary, Eqs. (2-3) and (2-4) reduce to 

(x) . . . (s, x) (s) (s) . . . (s, x) (s) (s)
B B

C PV T dB R PV U dBπϕ ϕ ψ= −∫ ∫ , x B∈ , (2-7) 

x

(x) . . . (s, x) (s) (s) . . . (s, x) (s) (s)
n B B

H PV M dB C PV L dBϕπ ϕ ψ∂ = −
∂ ∫ ∫ , x B∈ , (2-8) 

where . . .C PV , . . .R PV  and . . .H PV  denote the Cauchy principal value, Riemann 

principal value and Hadamard principal value, respectively. Once the field point x  

locates outside the domain, the null-field integral equation of the direct method in Eqs. 

(2-7) and (2-8) yield 

0 (s, x) (s) (s) (s, x) (s) (s)
B B
T dB U dBϕ ψ= −∫ ∫ , x cD∈ , (2-9) 

0 (s, x) (s) (s) (s, x) (s) (s)
B B

M dB L dBϕ ψ= −∫ ∫ , x cD∈ , (2-10)

where cD  is the complementary domain. Note that the conventional null-field integral 

equations are not singular since s  and x  never coincide. If the kernel function in Eqs. 

(2-3), (2-4), (2-9) and (2-10) can be described as degenerate (separate) forms for the 

inside D  or outside cD  domain, we have 

2 (x) (s, x) (s) (s) (s, x) (s) (s)
B B
T dB U dBπϕ ϕ ψ= −∫ ∫ , x D B∈ ∪ , (2-11)

x

(x)2 (s, x) (s) (s) (s, x) (s) (s)
n B B

M dB L dBϕπ ϕ ψ∂ = −
∂ ∫ ∫ , x D B∈ ∪ , (2-12)

0 (s, x) (s) (s) (s, x) (s) (s)
B B
T dB U dBϕ ψ= −∫ ∫ , x cD B∈ ∪ , (2-13)

0 (s, x) (s) (s) (s, x) (s) (s)
B B

M dB L dBϕ ψ= −∫ ∫ , x cD B∈ ∪ . (2-14)

It is noted that the boundary integral equation for the domain point and the null-field 

integral equation for the null-field point can include the collocation point on the real 

boundary since the appropriate kernel can be used as elaborated on later in the following 

section. 
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2.3 Expansions of fundamental solution and boundary density 

Now, we adopt the mathematical tools, degenerate kernels and Fourier series, for the 

purpose of analytical study. The combination of degenerate kernels and Fourier series 

plays the major role in handling problems with circular boundaries. Instead of directly 

calculating the . . .C PV , . . .R PV  and . . .H PV  in Eqs. (2-7) and (2-8), we obtain the 

linear algebraic system from the null-field integral equation of Eqs. (2-13) and (2-14) 

through the kernel expansion by “exactly” collocating the point on the real boundary. 

Based on the separable property, the kernel function (s, x)U  can be expanded into the 

separable form by dividing the source and field points: 

(s, x) (s) (x), s x
(s, x)

(s, x) (x) (s), x s

i
j j

j

e
j j

j

U A B
U

U A B

⎧⎪⎪ = ≥⎪⎪⎪⎪=⎨⎪⎪ = >⎪⎪⎪⎪⎩

∑

∑
, (2-15)

where the bases of ( )A ⋅  and ( )B ⋅  can be found for the Laplacian, Helmholtz, 

biharmonic and biHelmholtz operators and the superscripts “ i ” and “ e ” denote the 

interior ( s x≥ ) and exterior ( x s> ) cases, respectively. To classify the interior (left, 

1-D) and exterior (right, 1-D) regions, Figure 2-2 shows for one, two and three 

dimensional cases. For the degenerate form of T , L  and M  kernels, they can be 

derived according to their definitions in Eq. (2-6). For simplicity, Table 2-1 summarizes 

the main difference between the present formulation and conventional BEM for 

simply-connected domain problems. Regarding the multiply-connected domain 

problems, the interior “ i ” and exterior “ e ” expansions for the kernel should be taken 

with care. Although the mathematical tools of degenerate kernels, are suitable for the 

Laplacian, Helmholtz, biharmonic and biHelmholtz operators in one, two and three 

dimensional problems, we focus on the two-dimensional Laplace problems in this thesis 

as explained below. 

 

Degenerate kernels for fundamental solutions: 

Based on the separable property, the kernel function (s, x) lnU r= , ( x sr ≡ − ), is 

expanded into the degenerate form by separating the source point and field point in the 
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polar coordinate [25]: 

1

1

1( , ; , ) ln ( ) cos ( ),
(s, x)

1( , ; , ) ln ( ) cos ( ),

i m

m

e m

m

U R R m R
m R

U
RU R m R

m

ρθ ρ φ θ φ ρ

θ ρ φ ρ θ φ ρ
ρ

∞

=
∞

=

⎧⎪⎪ = − − ≥⎪⎪⎪⎪=⎨⎪⎪ = − − >⎪⎪⎪⎪⎩

∑

∑
, (2-16)

where the superscripts “ i ” and “ e ” denote the interior ( R ρ> ) and exterior ( Rρ> ) 

cases, respectively. The origin of the observer system for the degenerate kernel is ( 0,0 ). 

Figure 2-3 shows the graph of separate expressions of fundamental solutions where 

source point s  located at 10.0R=  and / 3θ π= . By setting the origin at o  for the 

observer system, a circle with radius R  from the origin o  to the source point s  is 

plotted. If the field point x  is situated inside the circular region, the degenerate kernel 

belongs to the interior expression of iU ; otherwise, it is the exterior case. It is noted 

that the leading term and numerator term in Eq. (2-16) involve the larger argument to 

ensure the log singularity and series convergence, respectively. After taking the normal 

derivative / R∂ ∂  with respect to Eq. (2-16), the (s, x)T  kernel yields 

1
1

1

1

1( , ; , ) ( ) cos ( ),
(s, x)

( , ; , ) ( ) cos ( ),

m
i

m
m

m
e

m
m

T R m R
R R

T
RT R m R

ρθ ρ φ θ φ ρ

θ ρ φ θ φ ρ
ρ

∞

+
=

−∞

=

⎧⎪⎪ = + − >⎪⎪⎪⎪=⎨⎪⎪ =− − >⎪⎪⎪⎪⎩

∑

∑
, (2-17)

and the higher-order kernel functions, (s, x)L  and (s, x)M , are shown below 

1

1

1
1

( , ; , ) ( ) cos ( ),
(s, x)

1( , ; , ) ( ) cos ( ),

m
i

m
m

m
e

m
m

L R m R
R

L
RL R m R

ρθ ρ φ θ φ ρ

θ ρ φ θ φ ρ
ρ ρ

−∞

=

∞

+
=

⎧⎪⎪ =− − >⎪⎪⎪⎪=⎨⎪⎪ = + − >⎪⎪⎪⎪⎩

∑

∑
, (2-18)

1

1
1

1

1
1

( , ; , ) ( ) cos ( ),
(s, x)

( , ; , ) ( ) cos ( ),

m
i

m
m

m
e

m
m

mM R m R
R

M
mRM R m R

ρθ ρ φ θ φ ρ

θ ρ φ θ φ ρ
ρ

−∞

+
=

−∞

+
=

⎧⎪⎪ = − ≥⎪⎪⎪⎪=⎨⎪⎪ = − >⎪⎪⎪⎪⎩

∑

∑
. (2-19)

Since the potentials resulted from (s, x)T  and (s, x)L  kernels are discontinuous 

across the boundary, the potentials of (s, x)T  and (s, x)L  for R ρ+→  and R ρ−→  
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are different. This is the reason why R ρ=  is not included for degenerate kernels of 

(s, x)T  and (s, x)L  in Eqs. (2-17) and (2-18). 

 

Fourier series expansions for unknown boundary densities 

For problems with circular boundaries, we apply the Fourier series expansions to 

approximate the potential ϕ  and its normal derivative ψ  on the boundary kB  as 

0
1

(s ) ( cos sin )
L

k k k
k n k n k

n

a a n b nϕ θ θ
=

= + +∑ , sk kB∈ , 0,1, 2, ,k N= " , (2-20)

0
1

(s ) ( cos sin )
L

k k k
k n k n k

n

p p n q nψ θ θ
=

= + +∑ , sk kB∈ , 0,1, 2, ,k N= " , (2-21)

where s(s ) (s ) / nk kψ ϕ=∂ ∂ , k
na , k

nb , k
np  and k

nq  ( 0,1, 2, ,n L= ) are the Fourier 

coefficients and kθ  is the polar angle. In the real computation, only 2 1L+  finite 

terms are considered where L  indicates the truncated terms of Fourier series. 

 

2.4 Mathematical formulation and solution procedure 

2.4.1 Adaptive observer system 

By using the collocation method, the null-field integral equation becomes a set of 

algebraic equations for the Fourier coefficients. To ensure the stability of algebraic 

equations, one has to choose collocation points throughout all the circular boundaries of 

inclusions. Since the boundary integral equation is derived from the reciprocal theorem 

of energy concept, the boundary integral equation is frame indifferent due to the 

objectivity rule. This is the reason why the observer system is adaptively to locate the 

origin at the center of circle in the boundary integration. The adaptive observer system 

is chosen to fully employ the property of degenerate kernels. Figures 2-4 (a) and 2-4 (b) 

show the boundary integration for the circular boundary in the adaptive observer system. 

It is worth noting that the origin of the observer system is located on the center of the 

corresponding circle under integration to entirely utilize the geometry of circular 

boundary for the expansion of degenerate kernels and boundary densities. The dummy 

variable in the circular integration is the angle (θ ) instead of the radial coordinate ( R ). 
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2.4.2 Linear algebraic equation 

By moving the null-field point xm  to the kth  circular boundary in the limit sense for 

Eq. (2-13) in Fig. 2-4 (a), we have 

0 0

0 ( , ; , ) ( , ) ( , ; , ) ( , )

, x( , ) ,
k k

N N

k k m m k k k k k k m m k k k kB Bk k
c

m m

T R R R d U R R R d

D B

θ ρ φ ϕ θ θ θ ρ φ ψ θ θ

ρ φ
= =

= −

∈ ∪

∑ ∑∫ ∫  (2-22)

where N  is the number of circular inclusions and 0B  denotes the outer boundary for 

the bounded domain. In case of the infinite problem, 0B  becomes B∞ .  Note that the 

kernels (s, x)U  and (s, x)T  are shown in the degenerate form given by Eqs. (2-16) 

and (2-17), respectively, while the boundary densities ϕ  and ψ  are expressed in 

terms of the Fourier series expansion forms given by Eqs. (2-20) and (2-21), 

respectively. Then, the integrals multiplied by separate expansion coefficients in Eq. 

(2-22) are non-singular and the limit of the null-field point to the boundary is easily 

implemented by using appropriate forms of degenerate kernels. Through such an idea, 

all the singular and hypersingular integrals are well captured. Thus, the collocation point 

x( , )m mρ φ  in the discretized Eq. (2-22) can be considered on the boundary kB , as well 

as the null-field point. Along each circular boundary, 2 1L+  collocation points are 

required to match 2 1L+  terms of Fourier series for constructing a square influence 

matrix with the dimension of 2 1L+  by 2 1L+ . In contrast to the standard discretized 

boundary integral equation formulation with nodal unknowns of the physical boundary 

densities ϕ  and ψ . Now the degrees of freedom are transformed to Fourier 

coefficients employed in expansion of boundary densities. It is found that the 

compatible relationship of the boundary unknowns is equivalent by moving either the 

null-field point or the domain point to the boundary in different directions using various 

degenerate kernels as shown in Fig. 2-4 (a) and 2-4 (b). Both approaches yield the same 

linear algebraic equation due to the Wronskian property (see the Appendix in [36]). In 

the kB  integration, we set the origin of the observer system to collocate at the center 

kc  to fully utilize the degenerate kernels and Fourier series. By collocating the 

null-field point on the boundary, the linear algebraic system is obtained 

[ ]{ } [ ]{ }=U Tψ ϕ , (2-23)
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where [ ]U  and [ ]T  are the influence matrices with a dimension of ( 1)(2 1)N L+ +  

by ( 1)(2 1)N L+ + , { }ϕ  and { }ψ  denote the column vectors of Fourier coefficients 

with a dimension of ( 1)(2 1)N L+ +  by 1 in which those are defined as follows: 

[ ]

00 01 0

10 11 1

0 1

N

N

N N NN

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

U U U
U U U

U

U U U

"
"

# # % #
"

, [ ]

00 01 0

10 11 1

0 1

N

N

N N NN

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

T T T
T T T

T

T T T

"
"

# # % #
"

, (2-24)

{ }

0

1

2

N

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪=⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

#

ϕ
ϕ

ϕ ϕ

ϕ

, { }

0

1

2

N

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪=⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

#

ψ
ψ

ψ ψ

ψ

, (2-25)

where { }kϕ  and { }kψ  are in the form of { }0 1 1

Tk k k k k
L La a b a b"  and 

{ }0 1 1

Tk k k k k
L Lp p q p q" , respectively; the first subscript “ j ” ( 0,1, 2, ,j N= ) 

in jk
⎡ ⎤⎢ ⎥⎣ ⎦U  and jk

⎡ ⎤⎢ ⎥⎣ ⎦T  denotes the index of the jth  circle where the collocation point is 

located and the second subscript “ k ” ( 0,1, 2, ,k N= " ) denotes the index of the kth  

circle when integrating on each boundary data { }kϕ  and { }kψ , N  is the number of 

circular inclusions in the domain and the number L  indicates the truncated terms of 

Fourier series. The coefficient matrix of the linear algebraic system is partitioned into 

blocks, and each off-diagonal block corresponds to the influence matrices between two 

different circular boundaries. The diagonal blocks are the influence matrices due to 

themselves in each individual circle. After uniformly collocating the points along the 

kth  circular boundary, the submatrix can be written as 

0 1 1
1 1 1 1 1

0 1 1
2 2 2 2 2

0 1 1
3 3 3 3 3

0 1 1
2 2 2 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

c c s Lc Ls
jk jk jk jk jk
c c s Lc Ls

jk jk jk jk jk
c c s Mc Ls

jk jk jk jk jk
jk

c c s Lc Ls
jk L jk L jk L jk L jk

U U U U U
U U U U U
U U U U U

U U U U U

φ φ φ φ φ
φ φ φ φ φ
φ φ φ φ φ

φ φ φ φ

⎡ ⎤=⎢ ⎥⎣ ⎦U

"
"
"

# # # % # #
" 2

0 1 1
2 1 2 1 2 1 2 1 2 1

( )
( ) ( ) ( ) ( ) ( )

L
c c s Lc Ls

jk L jk L jk L jk L jk LU U U U U
φ

φ φ φ φ φ+ + + + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦"

, (2-26)
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0 1 1
1 1 1 1 1

0 1 1
2 2 2 2 2

0 1 1
3 3 3 3 3

0 1 1
2 2 2 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

c c s Lc Ls
jk jk jk jk jk

c c s Lc Ls
jk jk jk jk jk

c c s Lc Ls
jk jk jk jk jk

jk

c c s Lc Ls
jk L jk L jk L jk L jk

T T T T T
T T T T T
T T T T T

T T T T T

φ φ φ φ φ
φ φ φ φ φ
φ φ φ φ φ

φ φ φ φ

⎡ ⎤=⎢ ⎥⎣ ⎦T

"
"
"

# # # % # #
" 2

0 1 1
2 1 2 1 2 1 2 1 2 1

( )
( ) ( ) ( ) ( ) ( )

L
c c s Lc Ls

jk L jk L jk L jk L jk LT T T T T
φ

φ φ φ φ φ+ + + + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦"

, (2-27)

where mφ , 1, 2, , 2 1m L= +" , is the angle of collocation point along the circular 

boundary. Although both the matrices in Eqs. (2-26) and (2-27) are not sparse, it is 

found that the higher order harmonics are considered, the lower influence coefficients in 

numerical experiments are obtained. It is noted that the superscript “ 0s ” in Eqs. (2-26) 

and (2-27) disappears since sin 0nθ=  ( 0n= ). The element of jk
⎡ ⎤⎢ ⎥⎣ ⎦U  and jk

⎡ ⎤⎢ ⎥⎣ ⎦T  are 

defined respectively as 

( ) (s , x ) cos( )
k

nc
jk m k m k k kB

U U n R dφ θ θ= ∫ , 

0,1, 2, ,n L= " , 1, 2, , 2 1m L= +" , 
(2-28)

( ) (s , x ) sin( )
k

ns
jk m k m k k kB

U U n R dφ θ θ= ∫ , 

                           1, 2, ,n L= " , 1, 2, , 2 1m L= +" , 
(2-29)

( ) (s , x ) cos( )
k

ns
jk m k m k k kB

T T n R dφ θ θ= ∫ , 

0,1, 2, ,n L= " , 1, 2, , 2 1m L= +" , 
(2-30)

( ) (s , x ) sin( )
k

ns
jk m k m k k kB

T T n R dφ θ θ= ∫ , 

                           1, 2, ,n L= " , 1, 2, , 2 1m L= +" , 
(2-31)

where k  is no sum, s ( , )k k kR θ= , and mφ  is the angle of collocation point xm  

along the boundary. The influence coefficient of ( )nc
jk mU φ  in Eq. (2-28) denotes the 

response at xm  due to the cos nθ  distribution as shown in Fig. 2-5. Equation (2-22) 

can be calculated by employing the orthogonal property of trigonometric function in the 

real computation. Only the finite L  terms are used in the summation of Eqs. (2-20) 

and (2-21). The explicit forms of all the boundary integrals for U , T , L  and M  

kernels are listed in the Table 2-2. Finite values of singular and hypersingular integrals 

are well captured after introducing the degenerate kernel. Besides, the limiting case 

across the boundary ( R Rρ− +→ → ) is also addressed. The continuous and jump 
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behavior across the boundary is well described. After introducing the Wronskian 

property of two bases mρ , mρ−  in Eq. (2-16), the jump behavior across the boundary 

for the double layer potential T  and the normal derivative of singular layer potential 

L  is well captured by 
2

0
[ ]cos( ) 2 cos( )i eT T n Rd n

π
θ θ π φ− =∫ , (2-32)

2

0
[ ]sin( ) 2 sin( )i eT T n Rd n

π
θ θ π φ− =∫ , (2-33)

2

0
[ ]cos( ) 2 cos( )i eL L n Rd n

π
θ θ π φ− =−∫ , (2-34)

2

0
[ ]sin( ) 2 sin( )i eL L n Rd n

π
θ θ π φ− =−∫ . (2-35)

The term of 2π  depends on the Wronskian of two bases. Reader can consult the 1-D 

case. Besides, the continuous and pseudo-continuous behavior across the boundary for 

the singular layer potential U  and the normal derivative of double layer potential M  

is well described as 
2

0
[ ]cos( ) 0i eU U n Rd

π
θ θ− =∫ , (2-36)

2

0
[ ]sin( ) 0i eU U n Rd

π
θ θ− =∫ , (2-37)

2

0
[ ]cos( ) 0i eM M n Rd

π
θ θ− =∫ , (2-38)

2

0
[ ]sin( ) 0i eM M n Rd

π
θ θ− =∫ . (2-39)

Instead of using nodal values for boundary densities in the BEM, the Fourier 

coefficients become the new unknown degrees of freedom in the formulation. 

Regarding the circular inclusion problems in the infinite domain, it can be decomposed 

to one exterior and many interior Laplace problems with circular boundaries after taking 

free body along the interface of matrix and each inclusion. Two kinds of problems can 

be formulated in a unified manner as shown in Eq. (2-23) after superimposing remote 

loadings: 

(1) One bounded problem of the circular domain becomes the interior problem for each 

inclusion as the only boundary 0B  in Fig. 2-4 (a) exists. 
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(2) The other is unbounded, i.e. the outer boundary 0B  in Fig. 2-4 (a) is B∞ . It is the 

exterior problem for the matrix. 

The direction of contour integration should be taken care, i.e. counterclockwise and 

clockwise directions are for the interior and exterior problems, respectively. To match 

the interface condition between the matrix and each inclusion, additional constraints are 

provided. Matrix form for the constraints will be elaborated on later in Chapters 3 and 

Chapter 4. The unknown Fourier coefficients can be determined by the resulted linear 

algebraic system. Then the potential field is obtained after employing Eq. (2-11). The 

differences between the present formulation and the conventional BEM are listed in 

Table 2-3. 

 

2.4.3 Vector decomposition technique for the potential gradient in the hyper- 

singular equation 

In order to determine the field of potential gradient, the normal and tangential 

derivatives should be calculated with care. Also Eq. (2-12) shows the normal derivative 

of potential for domain points. For the nonconcentric cases, special treatment for the 

potential gradient should be considered as the source point and field point locate on 

different circular boundaries. As shown in Fig. 2-6, the normal direction on the 

boundary (1, 1’) should be superimposed by those of the radial derivative (3, 3’) and 

angular derivative (4, 4’) through the vector decomposition technique. According to the 

concept of vector decomposition technique, the kernel functions of Eqs. (2-18) and 

(2-19) can be modified to 

1

1

1

1

1
1

1
1

( , ; , ) ( ) cos ( ) cos( )

( )sin ( ) cos( ),
2

(s, x)
1( , ; , ) ( ) cos ( ) cos( )

( )sin ( )cos( ),
2

m
i

m
m

m

m
m

m
e

m
m

m

m
m

L R m
R

m R
R

L
RL R m

R m R

ρθ ρ φ θ φ ζ ξ
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where ζ  and ξ  are shown in Fig. 2-6. For the special case of confocal, the potential 

gradient is derived free of special treatment since ζ ξ= . 

 

 

2.5 Concluding remarks 

For boundary value problems with circular boundaries, the null-field approach by using 

the null-field integral equation, degenerate kernels and Fourier series in the adaptive 

observer system was proposed. The singularity and hypersingularity were avoided after 

introducing the concept of degenerate kernels for interior and exterior regions. Besides, 

the boundary-layer effect for the potential gradient calculation is expected to be 

eliminated since the degenerate kernel can describe the jump behavior for interior and 

exterior domains, respectively. The generality and versatility for the problems with 

multiple circular inclusions of arbitrary radii, positions and properties will be examined 

in the following chapters. Both the efficiency and accuracy will be investigated. 

Moreover, the presented method here can be applied to Laplace problems with circular 

boundaries, e.g. piezoelectricity, electrostatic, magnetic, torsion, elasticity, heat 

conduction and hydrodynamic problems. Besides, extensions to the Helmholtz, 

biharmonic and biHelmholtz operators as well as 3-D problems are straightforward once 

the corresponding degenerate kernels and bases for boundary densities can be found. In 

this thesis, our main concern is only the Laplace problem. 
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Table 2-1 Comparison of formulation between the present approach and conventional BEM for simply-connected domain problems 
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Table 2-2 Influence coefficients for the singularity distribution on the circular boundary 
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Table 2-3 Comparisons of the present method and the conventional BEM 
 

 
Boundary density 

discretization 
Auxiliary system Formulation Observer system Singularity Convergence 

Boundary-layer 

effect 

P
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nt

 m
et

ho
d Fourier series 

 

Degenerate kernel
Null-field integral 

equation 
Adaptive observer 

system 

Disappear after 
introducing the 

degenerate kernel

Exponential 
convergence 
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C
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B
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M
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Fundamental 
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Boundary integral 
equation 
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Principal values 
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Linear algebraic 
convergence 

Appear 

where . . .C PV , . . .R PV  and . . .H PV  are the Cauchy, Riemann and Hadamard principal values, respectively. 
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Figure 2-1 Randomly distributed circular inclusions bounded to the contour kB  
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Figure 2-2 Degenerate kernels for one, two and three dimensional problems 
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Figure 2-3 Graph of the degenerate kernel for the fundamental solution 
s (10, / 3)π=  
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Figure 2-4 (a) Sketch of the null-field integral equation for a null-field point in 
conjunction with the adaptive observer system ( x , x kD B∉ → ) 

 

Figure 2-4 (b) Sketch of the boundary integral equation for a domain point in 
conjunction with the adaptive observer system ( x , x kD B∈ → ) 
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Figure 2-5 Physical meaning of influence coefficients ( )nc
jk mU φ , ( )ns

jk mU φ : the 
responses for the xm  point of the jth  boundary due to the cos nθ , sin nθ  

boundary distributions of the kth  circular boundary 
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Figure 2-6 Vector decomposition for the potential gradient in the hypersingular 
equation 
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Chapter 3 Applications to anti-plane 
piezoelectricity and in-plane electrostatic 

problems with circular inclusions 
 

Summary 

In this chapter, piezoelectricity problems with arbitrary number of circular inclusions 

under remote anti-plane shears and in-plane electric fields are studied. Piezoelectric 

problems with two piezoelectric circular inclusions are revisited and compared with the 

solutions by previous researchers to demonstrate the validity of our method. The 

limiting case shows that the two inclusions separating far away leads to the Pak’s exact 

solution of a single inclusion. Stress and electric field concentrations are calculated and 

are dependent on the distance between the two inclusions, the mismatch in the material 

constants and the magnitude of mechanical and electromechanical loadings. Besides, the 

uncoupling case for in-plane electrostatic problems in electric fields is also addressed. 

 

3.1 Introduction 

The recent technological developments and the increasing market demand have opened 

promising research opportunities and engineering priorities in the field of 

micromechanics. Coupled electro-elastic analysis in smart composites and 

micro-electro-mechanical systems (MEMS) receives much attention. Due to the 

intrinsic coupling effect of electrical and mechanical fields, the piezoelectric material is 

widely applied to intelligent structures. Regarding the piezoelectric circular inclusions, 

an exact solution of a single piezoelectric inclusion was derived by Pak [74] under 

remote anti-plane shear and in-plane electric loadings. For the two piezoelectric 

inclusions, Honein et al. [58] employed the Möbius transformation to derive the 

electromechanical field. Based upon the complex variable theory and the method of 

successive approximations, Chao and Chang [20] revisited the problem of two 

piezoelectric inclusions in terms of explicit series form. Wu and Funami [95] also 

solved this problem by using the conformal mapping and the theorem of analytical 



 38

continuation. Wang and Shen [88] considered the shear and electric loadings in two 

directions. In addition, Chen and Chiang [41] employed conformal mapping techniques 

to analyze this kind of boundary value problems and specific results were given for 

elliptical, polygonal and star-shape inclusions. For the decoupling problems, Emets and 

Onofrichuk [46] presented an analytic solution for two dielectric cylinders in electric 

fields. 

This chapter aims the first attempt to employ the null-field formulation to solve 

piezoelectricity problems with multiple circular inclusions. By introducing a 

multi-domain approach, an inclusion problem can be decomposed into two parts. One is 

the piezoelectric infinite medium with circular holes and the other is the problem with 

each piezoelectric circular inclusion. After considering the continuity and equilibrium 

conditions on the interface for electrical and mechanical fields, a linear algebraic system 

can be obtained and the unknown Fourier coefficients in the algebraic system can be 

determined. Then the displacement field and electric potential are obtained. Furthermore, 

an arbitrary number of piezoelectric circular inclusions are treated by using the present 

method without any difficulty. The calculation of potential gradient must be determined 

with care by using the vector decomposition and the adaptive observer system for the 

nonconfocal case. Also the boundary stress and electric fields can be easily determined 

by using series sums instead of employing the sense of Hadamard principal value. A 

general-purpose program for arbitrary number of piezoelectric circular inclusions with 

various radii, arbitrary positions and different material constants was developed. Several 

examples solved previously by other researchers [20, 46, 74, 88, 95] were revisited to 

see the accuracy and efficiency of the present formulation. The Pak’s solution of a 

single inclusion is designed as a limiting case when two inclusions dispart far away. 

 

3.2 Problem statements and mathematical formulation 

The physical problem to be considered is shown in Fig. 3-1, where multiple 

piezoelectric circular inclusions are imbedded in an infinite piezoelectric medium under 

the far-field antiplane shear zxσ∞ , zyσ∞  and the far-field inplane electric field xE∞ , yE∞ . 

Bleustein [13] has found that if one takes the plane normal to the poling direction as the 
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plane of interest, only the anti-plane displacement w  couples with the in-plane electric 

field rE  and Eθ . Therefore, we only consider the anti-plane displacement and the 

in-plane electric field such that 

0u v= = , ( , )w w r θ= ; ( , )r rE E r θ= , ( , )E E rθ θ θ= , 0zE = , (3-1) 

where u , v  and zE  are the vanishing components of displacements and electric field, 

respectively. The governing equation for anti-plane elasticity w  and in-plane 

electrostatics Φ , in the absence of body forces and body charges, can be decoupled and 

simplified to 
2 0w∇ = , 2 0∇ Φ= , (3-2) 

where 2∇  is the two-dimensional Laplacian operator 

2
2 2 2

1 1
r r r r θ
∂ ∂ ∂∇ ≡ + +
∂ ∂ ∂

, (3-3) 

and Φ  is the in-plane electric potential. The coupling between the elastic field and the 

electrical field occurs only through the constitutive equations 

44 15zr zr rc e Eσ γ= − , 44 15z zc e Eθ θ θσ γ= − , (3-4) 

15 11r zr rD e Eγ ε= + , 15 11zD e Eθ θ θγ ε= + , (3-5) 

where 44c  is the elastic modulus, 15e  is the piezoelectric constant, 11ε  is the 

dielectric constant, ijσ  and iD  are respectively the anti-plane shear stress and 

in-plane electric displacement, ijγ  and iE  are respectively the anti-plane shear strain 

and in-plane electric field, which are defined as 

zr
w
r

γ ∂=
∂

, 1
z

w
rθγ

θ
∂=
∂

, rE
r

∂Φ=−
∂

, 1E
rθ θ
∂Φ=−
∂

. (3-6) 

The analogy between the anti-plane shear deformation and in-plane electrostatics for 

anti-plane piezoelectric problems is listed in Table 3-1. For the stress fields zxσ , zyσ  

and electric displacement fields xD , yD , they are found in Table 3-1 or can be 

superimposed by zrσ , zθσ  in Eq. (3-4) and rD , Dθ  in Eq. (3-5) as 

cos sinzx zr zθσ σ φ σ φ= − , (3-7) 

sin coszy zr zθσ σ φ σ φ= + , (3-8) 

cos sinx rD D Dθφ φ= − , (3-9) 

sin cosy rD D Dθφ φ= + . (3-10)
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By taking free body along the interface between the matrix and inclusions, the problem 

can be decomposed into two systems. One is an infinite medium with N  circular holes 

under remote anti-plane shear and in-plane electric loadings as shown in Fig. 3-2 (a). 

The other is N  circular inclusions bounded by the kB  contour which satisfies the 

Laplace equation as shown in Fig. 3-2 (b). From the numerical point of view, this is the 

so-called multi-domain approach. For the problem in Fig. 3-2 (a), it can be 

superimposed by two parts. One is an infinite medium under remote shear and electric 

loadings and the other is an infinite medium with N  circular holes which satisfies the 

Laplace equation as shown in Figs. 3-2 (c) and 3-2 (d), respectively. Therefore, one 

exterior problem for the matrix is shown in Fig. 3-2 (d) and several interior problems 

for nonoverlapping inclusions are shown in Fig. 3-2 (b). The two problems in Figs. 3-2 

(d) and 3-2 (b) can be solved in a unified manner by the null-field integral formulation 

since they both satisfy the Laplace equation. 

When the coupled effect between the mechanical and electrical fields is absent or the 

piezoelectric constant are equal to zero, the expressions of the electro-elastic field in the 

present formulation reduces to the results given by Emets and Onofrichuk [46] and 

Honein et al. [56], respectively. 

 

3.3 Matching of interface conditions and solution procedures 

In the present application, both anti-plane mechanical and in-plane electrical fields are 

modeled by using the null-field formulation. Since both the displacement field w  and 

the electric potential Φ  satisfy the Laplace equation, the variables ϕ  and 

s(s) (s) / nψ ϕ=∂ ∂  formulated in Chapter 2, can be replaced by w , s(s) (s) / nt w=∂ ∂  

for anti-plane elasticity and Φ , s(s) (s) / nΨ =∂Φ ∂  for in-plane electrostatics, 

respectively. By collocating the null-field point on the boundary, the linear algebraic 

system is obtained from Eq. (2-22): 

For the exterior problem of matrix in Fig. 3-2 (d), we have 

{ } { }M M M M∞ ∞⎡ ⎤ ⎡ ⎤− = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦U t t T w w , (3-11)
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{ } { }M M M M∞ ∞⎡ ⎤ ⎡ ⎤− = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦U Ψ Ψ T Φ Φ . (3-12)

For the interior problem of each inclusion in Fig. 3-2 (b), we have 

{ } { }I I I I⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦U t T w , (3-13)

{ } { }I I I I⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦U Ψ T Φ , (3-14)

where the superscripts “ M ” and “ I ” denote the matrix and inclusion, respectively. The 

matrix due to degenerate kernels M⎡ ⎤⎢ ⎥⎣ ⎦U , M⎡ ⎤⎢ ⎥⎣ ⎦T , I⎡ ⎤⎢ ⎥⎣ ⎦U  and I⎡ ⎤⎢ ⎥⎣ ⎦T  and vectors for Fourier 

series { }Mw , { }Mt , { }∞w , { }∞t , { }MΦ , { }MΨ ,  { }∞Φ , { }∞Ψ , { }Iw , { }It , 

{ }IΦ  and { }IΨ  employed in the null-field equation can be found in Chapter 2. It is 

noted that { }∞w , { }∞t , { }∞Φ  and { }∞Ψ  in Fig. 3-2 (c) are the displacement and 

traction fields due to the remote shear and electric loadings, respectively. 

According to the continuity of displacement and equilibrium of traction along the kth  

interface, we have the four compatible relationships for boundary data on the interface. 

For the stress field, the interface condition yields 

M Iw w=  on kB , (3-15)

  M I
zr zrσ σ=  on kB . (3-16)

For the electric field, the interface condition gives 

M IΦ =Φ  on kB , (3-17)

M I
r rD D=  on kB . (3-18)

Invoking the governing equation of piezoelectricity with proper continuity conditions, 

fully coupled equations are obtained. By assembling the matrices in Eqs. (3-11) ~(3-14) 

and (3-15) ~(3-18), we have 
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44 44 15 15

15 15 11 11

M M M

I I M

M M I

I I I

M

M I M I M

I

M I M I I

⎡ ⎤ ⎧ ⎫⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎪⎢ ⎥ ⎪⎪⎨ ⎬⎢ ⎥ ⎪⎢ ⎥ ⎪⎪⎢ ⎥ ⎪⎪⎢ ⎥ ⎪⎢ ⎥ ⎪⎪⎢ ⎥ ⎪⎢ ⎥ ⎪⎪⎢ ⎥ ⎪⎢ ⎥ ⎪⎩⎣ ⎦ ⎪

T -U 0 0 0 0 0 0 w
0 0 T -U 0 0 0 0 t
0 0 0 0 T -U 0 0 w
0 0 0 0 0 0 T -U t
I 0 -I 0 0 0 0 0 Φ
0 c 0 c 0 e 0 e Ψ
0 0 0 0 I 0 -I 0 Φ
0 e 0 e 0 -ε 0 -ε Ψ

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎨ ⎬⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎩ ⎭⎪⎭⎪ ⎪ ⎪

a
0
b
0

=
0
0
0
0

, (3-19)

where { }a  and { }b  are the forcing terms due to the far-field antiplane shears and the 

far-field inplane electric fields as shown in Appendix 3-1, 44
M⎡ ⎤⎢ ⎥⎣ ⎦c , 44

I⎡ ⎤⎢ ⎥⎣ ⎦c , 15
M⎡ ⎤⎢ ⎥⎣ ⎦e , 15

I⎡ ⎤⎢ ⎥⎣ ⎦e , 

11
M⎡ ⎤⎢ ⎥⎣ ⎦ε  and 11

I⎡ ⎤⎢ ⎥⎣ ⎦ε  are defined as follows: 

44

44
44

44

0 0
0 0

0 0

M

M
M

M

c
c

c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

c , 

44

44
44

44

0 0
0 0

0 0

I

I
I

I

c
c

c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

c , (3-20)

15

15
15

15

0 0
0 0

0 0

M

M
M

M

e
e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

e , 

15

15
15

15

0 0
0 0

0 0

I

I
I

I

e
e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

e , (3-21)

11

11
11

11

0 0
0 0

0 0

M

M
M

M

ε
ε

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

ε , 

11

11
11

11

0 0
0 0

0 0

I

I
I

I

ε
ε

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

ε . (3-22)

The matrix [ ]I  is an identity matrix. After obtaining the unknown Fourier coefficients 

in Eq. (3-19), the origin of observer system is set to kc  in the kB  integration as 

shown in Fig. 2-4 (b) to obtain the field potential by employing Eq. (2-11). In 

determining the stress and electric fields, the gradient of potential should be determined 

with care as shown in Section 2.4.3. The flowchart of the present method for anti-plane 

piezoelectricity problems is shown in Table 3-2. 
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3.4 Illustrative examples and discussions 

The exact solution for a single piezoelectric inclusion, which was obtained by Pak [74], 

can be derived by using the present formulation. Although our formulation is general for 

multiple inclusions, we consider two piezoelectric circular inclusions perfectly bonded 

to a matrix which is subjected to the remote shear and electric field as shown in Fig. 3-3. 

For the purpose of comparison, the applied loadings and material properties of the 

matrix and inclusions are assumed as the same of Pak [74], Chao and Chang [20], Wang 

and Shen [88], Wu and Funami [95] and Emets and Onofrichuk [46]. All the numerical 

results are given below by using only twenty terms of Fourier series ( 20L= ) since 

those are checked to achieve good accuracy under acceptable error tolerance as 

compared to those by using the thirty terms. 

 

Case 1: Two piezoelectric circular inclusions parallel to the applied loadings solved by 

Chao and Chang 

We consider two piezoelectric circular inclusions of radii 2 12r r=  perfectly bonded to 

a piezoelectric matrix which is subjected to the remote shear zyσ τ∞
∞=  and electric 

field yE E∞
∞=  as shown in Fig. 3-3. In the following discussion, the material 

constants of the matrix and two inclusions are assumed as the same of Chao and Chang 

[20] by using 10 2
44 44 3.53 10 NmM Ic c −= = × , 8 1 1

11 11 1.51 10 CV mM Iε ε − − −= = × , 
2

15 10CmIe −=  and other values are stated specifically. 

In order to examine the accuracy of the present formulation, the stress concentration 

factor /zθσ τ∞  in the matrix at 0θ=  under remote loadings of 7 25 10 Nmτ −
∞ = ×  

and 6 6 110 , 0, 10 VmE − −
∞ =  is plotted in Fig. 3-4 (a) as a function of the ratio of 

piezoelectric constants 15 15/M Ie e , where the two circular inclusions are arrayed parallel to 

the applied loadings ( 90β = ) and the distance between two circular inclusions 

1/ 10d r = . It is found that the results displayed in Fig. 3-4 (a) agree very well with 

Chao and Chang’s results [20] and approach the Pak’s solution of a single inclusion [74]. 

The electric field concentration /E Eθ ∞  in the matrix at 0θ=  with 6 110 VmE −
∞ =  

and 7 7 25 10 , 0, 5 10 Nmτ −
∞ = × − ×  is plotted in Fig. 3-4 (b) as a function of the ratio 

of piezoelectric constants. It is also found that the results in Fig. 3-4 (b) leads to the 
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Pak’s solution of a single inclusion [74] since the two inclusions displace far away 

( 1/ 10d r = ). The electric field concentration /E Eθ ∞  occurring at 0θ=  is plotted in 

Fig. 3-5 as a function of the ratio of dielectric constants 11 11/M Iε ε  while letting 
10 2

44 44 3.53 10 NmM Ic c −= = × , 2
15 15 17CmM Ie e −= =  and 8 1 1

11 1.51 10 CV mIε − − −= × . It is 

shown that the electric field concentration approaches two for a large value of 11 11/M Iε ε  

as 1/ 10d r =  which is consistent with Chao and Chang’s results [20] and reduces to 

the Pak’s solution of a single inclusion [74]. When the two inclusions approach each 

other, both the tangential stress zθσ  and tangential electric field Eθ  in the matrix 

along the boundary of the smaller inclusion are plotted in Figs. 3-6 (a) and 3-6 (b), 

respectively, as the piezoelectric constants are fixed at 15 15/ 3M Ie e = . Furthermore, we 

adopted the Parseval’s theorem to study the convergence rate with different terms of 

Fourier series since the boundary densities are continuous on [ 0, 2π ]. The Parseval’s 

theorem are defined as below 
2

2 2 2 2
00 1

[ ( )] 2 ( )
L

n n
n

f d a a b
π

θ θ π π
=

+ +∑∫ , (3-23)

where 

0
1

( ) ( cos sin )
L

n n
n

f a a n b nθ θ θ
=

= + +∑ . (3-24)

According to Eq. (3-23), we have the Parseval’s sum versus various terms of Fourier 

series for boundary densities of each circular boundary in anti-plane elastic and in-plane 

electric fields as plotted in Figs. 3-7 (a) ~3-7 (h). It is found that no more than 20 terms 

can yield convergence. Figures 3-8 (a) and 3-8 (b) respectively show the tangential 

stress and tangential electric field distribution that the matrix is subjected to the reversal 

of the poling direction as compared to the inclusion due to the negative ratio of 

piezoelectric constants 15 15/ 5M Ie e =− . The two figures show the consistency between 

the present data and those of Chao and Chang in ranges of 0 ~ 180θ=  except near 

90θ= . It is open for discussions why our results are different from those of Chao and 

Chang near 90θ= . The tangential stress and tangential electric field are continuous 

across 90θ=  using our formulation while the results of Chao and Chang seems to 

have a jump at 90θ=  for the case of 1/ 0.01, 0.02d r = . For the negative ratio of 

15 15/ 5M Ie e =− , the Parseval’s sum versus various terms of Fourier series for boundary 
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densities of each circular boundary in anti-plane elastic and in-plane electric fields is 

also done in Figs. 3-9 (a) ~3-9 (h). From the convergence test using the Parseval’s 

theorem, it is also observed that only few terms of Fourier series can yield convergence 

for boundary densities. 

 
Case 2: Two piezoelectric circular inclusions perpendicular to the applied loadings 

solved by Chao and Chang 

As the two circular inclusions are arrayed perpendicular to the applied loadings 

( 0β = ), both the stress and electric field concentrations and distributions are also 

experienced. When the two inclusions approach each other, both the tangential stress 

zθσ  and tangential electric field Eθ  in the matrix along the boundary of the smaller 

inclusion are plotted in Figs. 3-10 (a) and 3-10 (b), respectively, as the piezoelectric 

constants are fixed at 15 15/ 5M Ie e =− . After comparing with the results of Chao and 

Chang [20], agreement is made except near 0θ=  and 180 . Variations of stress and 

electric field concentrations appear at 0θ=  with the ratio of piezoelectric constants 

as shown in Figs. 3-11 (a) and 3-11 (b). It is seen that, from Figs. 3-11 (a) ~3-12 (b),  

both the stress and electric field concentrations are equal to one as 15 15/ 1M Ie e =  which 

are reasonable results due to homogeneity. The stress and electric field concentrations 

are plotted in Figs. 3-12 (a) and 3-12 (b) under loadings of various magnitude for a 

far-field inplane electric load E∞  and a far-field antiplane shear τ∞ , respectively. 

After comparing with the results of Chao and Chang [20], agreement is made except for 

the negative value of 15 15/M Ie e . However, our results are smoother as shown in Figs. 3-11 

(a) ~3-12 (b) which are different from the oscillation behavior in the Chao and Chang’s 

paper [20]. To reconfirm our validity of formulation, we choose other cases by others 

for comparison. 

 

Case 3: Two piezoelectric circular inclusions under two-direction loadings solved by 

Wang and Shen 

In this case, the radii of two piezoelectric circular inclusions are 1r  and 2r  with 

2 11.5r r=  and the magnitude of remote loadings are 7 2/ 2 2.5 10 Nmzxσ τ∞
∞= = × ,  
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7 25 10 Nmzyσ τ∞
∞= = × , 6/ 2 0.5 10 VmxE E∞

∞= = ×  and 610 VmyE E∞
∞= = . The 

distance between the two inclusions is 10.01d r=  and the orientation is 0β = . The 

material constants of the matrix and two inclusions are assumed as the same of Wang 

and Shen [88] by using 10 2
44 3.53 10 NmMc −= × , 9 2

44 1.00 10 NmIc −= × , 2
15 10CmMe −= , 

2
15 20CmIe −= , 8 1 1

11 11 1.51 10 CV mM Iε ε − − −= = × . 

Figure 3-13 shows that the stress and electric displacement distribution along the x  

axis. It is observed that zxσ  and xD  are continuous while zyσ  and yD  are 

discontinuous across the interface between the matrix and inclusions. We also note that 

the stress and electric displacement are not uniform within the two inclusions. Figure 

3-14 shows the distribution of stress and electric displacement along the interface 

between the matrix and the smaller inclusion. Figure 3-15 shows the distribution of 

stress and electric displacement along the interface between the matrix and the larger 

inclusion. According to these curves, it is found that the normal stress zrσ  and electric 

displacement rD  in the matrix and inclusion are continuous through the interface due 

to the equilibrium and continuity requirement, respectively. Figure 3-16 illustrates the 

case when the larger inclusion and the matrix have the same material property. It 

indicates that the stress and electric displacement are uniform within the only inclusion. 

Figure 3-17 shows the case when the two inclusions are separated far away ( 1/ 10d r = ). 

In this case, the stress and electric displacement are uniform in both of the two 

inclusions. Figures 3-18 (a) ~3-18 (c) respectively show the contours of shear stresses 

/zxσ τ∞ , /zyσ τ∞  and electric potential / E∞Φ  subjected to the loadings 0zxσ∞ = , 

zyσ τ∞
∞= , 0xE∞ = , yE E∞

∞= . It reveals that zxσ  and Φ  are anti-symmetric with 

respect to the x  axis and zyσ  is symmetric with respect to the x  axis. There exists 

serious amplification at the point where the two inclusions are nearly in contact with 

each other. The electric potential is continuous across the interface between the matrix 

and each inclusion. The present results agree very well with Wang and Shen’s results 

[88]. 

 

Case 4: Two piezoelectric circular inclusions with different geometries and material 

constants subjected to various loadings solved by Wu and Funami 
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In order to analyze the interaction between two piezoelectric circular inclusions 

centered on the x  axis ( 0β = ), we consider the variations of components of stresses 

and electric displacements along two different paths, the x  axis and the contour 

(1.01,θ ). In Figs. 3-19 (a) ~3-20 (b), the inhomogeneous medium is comprised of the 

polymer matrix and two PZT-7A circular inclusions. In Figs. 3-21 (a) ~3-22 (b), PZT-7A 

is still chosen as two inclusions and PZT-5 is taken as the matrix to show the interaction 

of different piezoelectric media. The material constants used in the numerical 

calculation are shown in Table 3-3. Figures 3-19 (a) ~3-19 (c) illustrate the stress and 

electric displacement distributions along the x  axis when the distance d  between 

two inclusions is equal to 0.05, 0.5  and 1.5 , respectively and only the remote shear 

stress zyσ τ∞
∞=  is applied. From these three figures, it is observed that the varying 

gradients of stress and electric displacement components inside two piezoelectric 

circular inclusions along the x  axis become larger when the distance d  decreases. It 

means that the interaction of two piezoelectric circular inclusions becomes more 

prominent when the distance d  tends towards zero. Since the polymer is taken as the 

matrix that has no piezoelectric properties, the stress zyσ  and electric displacement 

yD  tend to τ∞  and zero, respectively, when the variable x  tends to infinity. 

To show the effect of the geometric size of the piezoelectric circular inclusion on the 

distribution of stress and electric displacement, the radii of two inclusions are taken as 

2 12r r=  in Fig. 3-20 (a). After comparing with Fig. 3-19 (b), the symmetry of the stress 

and electric displacement distributions on the point 1.25x=  is broken. The stress field 

in the left inclusion is slightly lower while it is relatively higher in the right inclusion. It 

indicates a smooth variation when the right inclusion becomes larger. This implies that 

the uniform shear stress zyσ τ∞
∞=  at infinity is borne more by the larger inclusion than 

the smaller one. For the electric displacement component, a similar variation to the 

stress field is found in Fig. 3-20 (a). Figure 3-20 (b) shows the stress and electric 

displacement distributions along the contour (1.01,θ ) when only the remote shear stress 

zyσ τ∞
∞=  is applied. It is seen that the stress zrσ  and electric displacement rD  have 

an asymmetric distribution and the electro-elastic field zθσ  and Dθ  have a symmetric 

distribution on θ π= . The value of stress component zθσ  is relatively low in 
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comparison with zrσ . 

To show the interaction of different piezoelectric media and different loadings applied at 

infinity, we choose PZT-5 as the matrix and different loadings are applied at infinity in 

Figs. 3-21 (a) ~3-22 (b). Figures 3-21 (a) ~3-21 (c) illustrate the stress and electric 

displacement distributions along the x  axis subjected to the applied loading 

yE E∞
∞= , xE E∞

∞=  and zxσ τ∞
∞=  at infinity, respectively. From Fig. 3-21 (a), it 

indicates that the stress field zyσ  in two piezoelectric circular inclusions has a different 

sign from one in the matrix. Particularly, the stress zyσ  between two inclusions has a 

larger varying gradient. In comparison with the stress field, the electric displacement 

field has a smooth tendency. From Figs. 3-21 (b) and 3-21 (c), it is seen that the 

distributions of stress zxσ  and electric displacement xD  are continuous across the 

interface between the matrix and inclusions. In comparison with Fig. 3-21 (c), the stress 

component between the matrix and right inclusion in Fig. 3-21 (b) has a larger varying 

gradient. This means that the electric field intensity E∞  has a more important impact 

on the distribution of the stress field than the shear stress τ∞ . 

Figures 3-22 (a) and 3-22 (b) show the stress and electric displacement distributions 

along the x  axis when two piezoelectric circular inclusions are tangent to each other.  

Since two piezoelectric circular inclusions have the same material properties, the stress 

component zyσ  and electric displacement component yD  at the point 1x=  are 

continuous. From Fig. 3-22 (a), it is found that the stress field near the tangent point of 

two piezoelectric circular inclusions has a larger varying gradient when the electric field 

yE E∞
∞=  at infinity is applied. In comparison with the stress field of Fig. 3-22 (a), the 

stress field of Fig. 3-22 (b) has a relatively smooth variation. The present results in Figs. 

3-19 (a) ~3-22 (b) agree very well with those solved by Wu and Funami [95]. 

 

Case 5: Uncoupling case of in-plane electrostatic problems 

As mentioned previously, the present solution on the mechanical and electrical fields 

can reduce to the uncoupling case of Emets and Onofrichuk [46] when the coupling 

effect between the mechanical and electrical fields of the piezoelectric medium is absent. 

Figure 3-23 shows that two dielectric circular inclusions with radii of 2 10.8r r=  
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imbedded in an infinite dielectric medium are in various uniform electric fields 

xE E∞
∞= , ( , ) ( cos 45 , sin 45 )x yE E E E∞ ∞

∞ ∞=  and yE E∞
∞=  applied at infinity, 

respectively. The distance between two inclusions is 10.1d r=  and dielectric constants 

for matrix and each inclusion are 0ε , 1ε  and 2ε . Illustrations of the patterns of the 

electric field are shown in Figures 3-24 (a) and 3-24 (b) for different compositions of 

the dielectric constant, e.g. 0 3ε = , 1 9ε = , 2 5ε =  and 0 2ε = , 1 9ε = , 2 1ε = . 

From these patterns of the electric field, it is observed that the electric field is 

continuous across the interface between the matrix and inclusions and agrees well with 

those of Emets and Onofrichuk [46]. 

 

3.5 Concluding remarks 

The present work not only demonstrated an elegant method for solving boundary value 

problems but also understood the interesting coupling behaviors between mechanical 

and electrical fields that have not been studied previously by using BIE. It was shown 

that the concentration behavior of stress and electric fields depends on the distance 

between two piezoelectric inclusions, the mismatch in the material constants and the 

magnitude of mechanical and electromechanical loadings. In addition, the interaction 

between two piezoelectric circular inclusions has a more important effect on the 

distributions of stress and electric displacement when the distance between two 

inclusions approaches zero or even touches each other. The uncoupling case reduces to 

either anti-plane elastic or in-plane electrostatic problems. Singularity free and 

boundary-layer effect free are the main gains using the present formulation as well as 

the exponential convergence. The present study is useful in designing piezoelectric 

composites and in understanding the coupling effects of two inclusions. 
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Table 3-1 Analogy between the anti-plane shear deformation and in-plane 
electrostatics for anti-plane piezoelectric problems 

 

Anti-plane shear 
deformation 

Constitutive equations 
for anti-plane 

piezoelectricity 
In-plane electrostatics 

z -displacement w   Electric potential Φ  
Strain ziγ   Electric field iE  
Stress ziσ  Electric displacement iD

Shear modulus μ  Dielectric constant ε  
Body force f  

Shear modulus 44c  
Dielectric constant 11ε  

Piezoelectric constant 15e Charge density ρ * 
Strain-disp. relationship 

,zi iwγ =  
Electricity 

,i iE =−Φ  
Constitutive law 

zi ziσ μγ=  

Coupling effect 
44 15zi zi ic e Eσ γ= −  

15 11i zi iD e Eγ ε= +  Constitutive law 
i iD Eε=  

Governing equation of 
equilibrium 

,zi i zfσ =−  
 

Governing equation of 
Maxwell 

,i iD ρ=  
Poisson equation 

2 /w f μ∇ =−   
Poisson equation 

2 /ρ ε∇ Φ=−  

* Here, ρ  is the charge density. The subscript “,” refers to partial differentiation with 
respect to the subsequent spatial coordinate “ i ”. 
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Table 3-2 Flowchart of the present method for anti-plane piezoelectricity problems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Obtain the unknown Fourier coefficients in Eq. (3-19) 

Boundary integral equation for the domain point in Eq. (2-11) 

Vector decomposition technique 

Potential gradient for stress and electric fields 

Null-field integral equation in Eq. (2-22) 

Linear algebraic system in Eq. (3-19) 

Adaptive observer system in the boundary integrations 

Fundamental solution 
[Degenerate kernels are 

listed in Table 2-2] 

Analytical 
part 

Numerical 
Part 

Collocating the null-field point to construct the compatible 
relationship among boundary data in Eqs. (3-11)~ (3-14) 

Constructing influence coefficients in Table 2-2 

Boundary densities for 
circular boundaries 

[Fourier series in Eqs. 
(2-20) and (2-21)] 

Laplace problem with circular boundaries 
(anti-plane elastic and in-plane electric fields) 

Continuity and equilibrium 
conditions of anti-plane elastic 

field using Eq. (3-15) and (3-16) 

Continuity and equilibrium 
conditions of in-plane electric 

field using Eq. (3-17) and (3-18) 
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Table 3-3 Electro-elastic material properties 
 

 44c ( GPa ) 15e ( 2Cm− ) 11 0/ εε  
PZT-7A 25.4 9.2 460 
PZT-5 21.1 12.3 916 

Polymer 0.64 0 9 
Note: permittivity of free space 12 2 1 2

0ε 8.85 10 C N m− − −= ×  
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Figure 3-1 Infinite anti-plane piezoelectricity problem with arbitrary number of 
circular inclusions under remote shear and electric loadings 
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Figure 3-2 (a) Infinite piezoelectric medium with 
circular holes under remote shear and electric 

loadings 

Figure 3-2 (b) Interior Laplace problems for each 
piezoelectric inclusion 

 
  
  

 

Figure 3-2 (c) Infinite piezoelectric medium under 
remote shear and electric loadings 

Figure 3-2 (d) Exterior Laplace problems for the 
piezoelectric medium 
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Figure 3-3 Two piezoelectric circular inclusions embedded in a piezoelectric matrix 
under remote shear and electric loadings 
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Figure 3-4 (a) Stress concentrations as a function of the ratio of piezoelectric 

constants with 90β =  
 

 
Figure 3-4 (b) Electric field concentrations as a function of the ratio of piezoelectric 

constants with 90β =  
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Figure 3-5 Electric field concentrations as a function of the ratio of dielectric 

constants with 15 15/ 1.0M Ie e =  and 90β =  
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Figure 3-6 (a) Tangential stress distributions for different ratios 1/d r  with 

15 15/ 3.0M Ie e =  and 90β =  
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Figure 3-6 (b) Tangential electric field distributions for different ratios 1/d r  with 

15 15/ 3.0M Ie e =  and 90β =  
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Figure 3-7 (a) Parseval’s sum for 1

Mw  with 

15 15/ 3.0M Ie e =  and 1/ 0.01d r =  
Figure 3-7 (b) Parseval’s sum for 2

Mw  with 

15 15/ 3.0M Ie e =  and 1/ 0.01d r =  
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Figure 3-7 (c) Parseval’s sum for 1
Mt  with 

15 15/ 3.0M Ie e =  and 1/ 0.01d r =  
Figure 3-7 (d) Parseval’s sum for 2

Mt  with 

15 15/ 3.0M Ie e =  and 1/ 0.01d r =  
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Figure 3-7 (e) Parseval’s sum for 1

MΦ  with 

15 15/ 3.0M Ie e =  and 1/ 0.01d r =  
Figure 3-7 (f) Parseval’s sum for 2

MΦ  with 
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Figure 3-7 (g) Parseval’s sum for 1

MΨ  with 

15 15/ 3.0M Ie e =  and 1/ 0.01d r =  
Figure 3-7 (h) Parseval’s sum for 2

MΨ  with 

15 15/ 3.0M Ie e =  and 1/ 0.01d r =  
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Figure 3-8 (a) Tangential stress distributions for different ratios 1/d r  with 

15 15/ 5.0M Ie e =−  and 90β =  
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Figure 3-8 (b) Tangential electric field distributions for different ratios 1/d r  with 

15 15/ 5.0M Ie e =−  and 90β =  
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Figure 3-9 (a) Parseval’s sum for 1

Mw  with 

15 15/ 5.0M Ie e =−  and 1/ 0.01d r =  
Figure 3-9 (b) Parseval’s sum for 2

Mw  with 

15 15/ 5.0M Ie e =−  and 1/ 0.01d r =  
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Figure 3-9 (c) Parseval’s sum for 1

Mt  with 

15 15/ 5.0M Ie e =−  and 1/ 0.01d r =  
Figure 3-9 (d) Parseval’s sum for 2

Mt  with 

15 15/ 5.0M Ie e =−  and 1/ 0.01d r =  
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Figure 3-9 (e) Parseval’s sum for 1

MΦ  with 

15 15/ 5.0M Ie e =−  and 1/ 0.01d r =  
Figure 3-9 (f) Parseval’s sum for 2

MΦ  with 
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Figure 3-9 (g) Parseval’s sum for 1

MΨ  with 

15 15/ 5.0M Ie e =−  and 1/ 0.01d r =  
Figure 3-9 (h) Parseval’s sum for 2

MΨ  with 

15 15/ 5.0M Ie e =−  and 1/ 0.01d r =  
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Figure 3-10 (a) Tangential stress distributions for different ratios 1/d r  with 

15 15/ 5.0M Ie e =−  and 0β =  
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Figure 3-10 (b) Tangential electric field distributions for different ratios 1/d r  with 

15 15/ 5.0M Ie e =−  and 0β =  
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Figure 3-11 (a) Stress concentrations as a function of the ratio of piezoelectric 

constants with 0β =  
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Figure 3-11 (b) Electric field concentrations as a function of the ratio of 

piezoelectric constants with 0β =  
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Figure 3-12 (a) Stress concentrations as a function of the ratio of piezoelectric 

constants with 0β =  
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Figure 3-12 (b) Electric field concentrations as a function of the ratio of 

piezoelectric constants with 0β =  
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Figure 3-13 Stress and electric displacement distributions along the x  axis 
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Figure 3-14 Stress and electric displacement distributions along the interface between the 

matrix and the smaller inclusion 
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Figure 3-15 Stress and electric displacement distributions along the interface between 

the matrix and the larger inclusion 
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Figure 3-16 Stress and electric displacement distributions along the x  axis for the 

case when the larger inclusion and the matrix have the same material property 
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Figure 3-17 Stress and electric displacement distributions along the x  axis for the 

case when the two inclusions are separated far away ( 1/ 10d r = ) 
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Figure 3-18 (a) Contour of shear stress /zxσ τ∞  when 1/ 0.01d r =  

 

-3 -2 -1 0 1 2 3 4 5 6

x

-3

-2

-1

0

1

2

3

y

 
Figure 3-18 (b) Contour of shear stress /zyσ τ∞  when 1/ 0.01d r =  
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Figure 3-18 (c) Contour of electric potential / E∞Φ  when 1/ 0.01d r =  
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Figure 3-19 (a) Stress and electric displacement distributions along the x  axis when 

1 2r r=  and 10.05d r=  
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Figure 3-19 (b) Stress and electric displacement distributions along the x  axis when 

1 2r r=  and 10.5d r=  
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Figure 3-19 (c) Stress and electric displacement distributions along the x  axis when 

1 2r r=  and 11.5d r=  
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Figure 3-20 (a) Stress and electric displacement distributions along the x  axis when 

2 12r r=  and 10.5d r=  
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Figure 3-20 (b) Stress and electric displacement distributions along the contour 

(1.01,θ ) when 1 2r r=  and 11.5d r=  
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Figure 3-21 (a) Stress and electric displacement distributions along the x  axis when 

yE E∞
∞= , 1 2r r=  and 10.5d r=  
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Figure 3-21 (b) Stress and electric displacement distributions along the x  axis when 

xE E∞
∞= , 1 2r r=  and 10.5d r=  
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Figure 3-21 (c) Stress and electric displacement distributions along the x  axis when 

zxσ τ∞
∞= , 1 2r r=  and 10.5d r=  
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Figure 3-22 (a) Stress and electric displacement distributions along the x  axis when 

two inclusions touch each other and yE E∞
∞= , 1 2r r=  
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Figure 3-22 (b) Stress and electric displacement distributions along the x  axis when 

two inclusions touch each other and zyσ τ∞
∞= , 1 2r r=  
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Figure 3-23 The dielectric system of two inclusions in the applied electric field 

 
 
 
 
 
 
 
 
 
 
 
 
 

1r 2r

y

x  

d

xE∞

yE∞  

0ε

1ε 2ε



 79

 
 

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

xE E∞
∞=  

  

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

cos 45xE E∞
∞=  and sin 45yE E∞

∞=  
  

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

yE E∞
∞=  

  
Figure 3-24 (a) Patterns of the electric 
field for 0 2ε = , 1 9ε =  and 2 5ε =  

Figure 3-24 (b) Patterns of the electric 
field for 0 3ε = , 1 9ε =  and 2 1ε =  
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Chapter 4 Applications to anti-plane elasticity 
problems with circular inclusions 

 

Summary 

In this chapter, we apply the null-field integral equation to solve an infinite medium 

containing circular holes and/or inclusions with arbitrary radii and positions under the 

remote anti-plane shear. The method is basically a numerical method, and because of its 

semi-analytical nature, it possesses certain advantages over the conventional boundary 

element method. The exact solution for a single inclusion is revisited using the present 

formulation and matches well with the Honein et al.’s solution by using the 

complex-variable formulation. Several problems of two holes, two inclusions, one 

cavity surrounded by two inclusions and three inclusions are examined to demonstrate 

the validity of our method. Besides, the convergence test and boundary-layer effect for 

the present method and conventional boundary element method are also addressed to 

show the validity of the present approach. The proposed formulation can be generalized 

to multiple circular inclusions and cavities in a straightforward way without any 

difficulty. 

 

4.1 Introduction 

The distribution of stress in an infinite medium containing circular holes and/or 

inclusions under the remote anti-plane shear has been studied by many investigators. 

However, analytical solutions are rather limited except for simple cases. To the author’s 

best knowledge, an exact solution of a single inclusion was derived by Honein et al. [56] 

using the complex potential formulation. Besides, analytical solutions for two identical 

holes and inclusions were obtained by Stief [82] and by Budiansky and Carrier [15], 

respectively. Zimmerman [98] employed the Schwartz alternative method for plane 

problems with two holes or inclusions to obtain a closed-form solution. In addition, 

Sendeckyj [76] proposed an iterative scheme for solving problems of multiple 

inclusions. However, the approach is rather complicated and explicit solutions were not 
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provided. Numerical solutions for problems with two unequal holes and/or inclusions 

were provided by Honein et al. [56] using the Möbius transformations involving the 

complex potential. Not only anti-plane shears but also screw dislocations were 

considered. Numerical results were presented by Goree and Wilson [50] for an infinite 

medium containing two inclusions under the remote shear. Bird and Steele [12] used a 

Fourier series procedure to revisit the anti-plane elasticity problems of Honein et al.’s 

paper [56]. To approximate the Honein et al.’s problem of infinite domain, an 

equivalent bounded-domain approach with the stress applied on the outer boundary was 

utilized. A shear stress zrσ  on the outer boundary is used in place of a stress zyσ  at 

infinity to approach the Honein et al.’s results as the radius becomes large. Wu [94] 

solved the analytical solution for two inclusions under the remote shear in two 

directions by using the conformal mapping and the theorem of analytic continuation. 

Based on the technique of analytical continuity and the method of successive 

approximation, Chao and Young [22] studied the stress concentration on a hole 

surrounded by two inclusions. For a triangle pattern of three inclusions, Gong [48] 

employed the complex potential and Laurent series expansion to calculate the stress 

concentration. Complex variable boundary element method (CVBEM) was utilized to 

deal with the problem of two circular holes by Chou [43] and Ang and Kang [1], 

independently. To provide a general solution to the anti-plane interaction among 

multiple circular inclusions with arbitrary radii, shear moduli and location is not trivial. 

Mathematically speaking, only circular boundaries in an infinite domain are concerned 

here. Mogilevskaya and Crouch [71] have also employed Fourier series expansion 

technique and used the Galerkin method instead of collocation technique to solve the 

problem of circular inclusions in 2-D elasticity. The advantage of their method is that 

one can tackle a lot of inclusions even inclusions touching one another. However, they 

did not expand a fundamental solution into a degenerate kernel in the polar coordinate. 

Another disadvantage is that their method can not reduce to cavity problems using the 

formulation for inclusions, as quoted by Mogilevskaya’s Group, “This approach, 

however, could not simply treat a hole as a limiting case of an inclusion with zero 

elastic properties. This is because, for the problem of a hole, the tractions are usually 
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prescribed on the hole boundary and, this problem is therefore governed by a different 

boundary integral equation - a complex hypersingular equation written in terms of 

unknown displacement.” Our formulation can treat cavity problems as a limiting case of 

inclusion problems with zero elastic properties. Chen and his coworkers [36, 38] have 

successfully solved the anti-plane problem with circular holes and/or inclusions using 

the null-field integral equation in conjunction with the degenerate kernel and Fourier 

series. The extension to biharmonic problems was also implemented [29]. 

By introducing a multi-domain approach, an inclusion problem can be decomposed into 

two parts. One is the infinite medium with circular holes and the other is the problem 

with each circular inclusion. After considering the continuity and equilibrium conditions 

on the interface between the matrix and inclusion, a linear algebraic system is obtained 

and the unknown Fourier coefficients can be determined. Then, the field potential and 

stress are easily obtained. Furthermore, an arbitrary number of circular inclusions can be 

treated by using the present method without any difficulty. One must take care the 

vector decomposition in using the adaptive observer system for the nonconfocal case. 

Also, the boundary stress is easily determined by using series sums instead of 

employing the sense of Hadamard principal value. A general-purpose program for 

arbitrary number of circular inclusions with various radii, arbitrary positions and shear 

moduli was developed. The infinite medium with multiple circular holes [36] can be 

solved as a limiting case of zero shear modulus of inclusions by using the developed 

program. Several examples solved previously by other researchers [15, 22, 48, 50, 56, 

82, 94] were revisited to see the accuracy and efficiency of the present formulation. In 

addition, the test of convergence is done and the boundary-layer effect for the 

calculations of stresses is also addressed. 

 

4.2 Problem statements and mathematical formulation 

The displacement field of the anti-plane deformation is defined as: 

0u v= = , ( , )w w x y= , (4-1) 

where w  is the only nonvanishing component of displacement with respect to the 

Cartesian coordinate which is a function of x  and y . For a linear elastic body, the 
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stress components are 

zx
w
x

σ μ ∂=
∂

, (4-2) 

zy
w
y

σ μ ∂=
∂

, (4-3) 

where μ  is the shear modulus. The equilibrium equation can be simplified to 

0zyzx

x y
σσ ∂∂ + =

∂ ∂
. (4-4) 

Thus, we have 
2 2

2
2 2 0w w w

x y
∂ ∂+ =∇ =
∂ ∂

. (4-5) 

Equation (4-5) indicates that the governing equation of this problem is the Laplace 

equation. For the stress field described in the polar coordinate, it also follows the 

anti-plane shear deformation in Table 3-1 or can be superimposed by zxσ  and zyσ  in 

Eqs. (4-2) and (4-3) as 

cos sinzr zx zyσ σ φ σ φ= + , (4-6) 

sin cosz zx zyθσ σ φ σ φ=− + , (4-7) 

where zrσ  and zθσ  are the normal and tangential stresses, respectively. Here, we 

consider an infinite medium subject to N  circular inclusions bounded by the kB  

contour ( 1, 2, ,k N= ) for either the matrix or inclusions under the anti-plane shear 

zxσ∞  and zyσ∞  at infinity or equivalently under the displacement 

/ /zx zyw x yσ μ σ μ∞ ∞ ∞= +  at infinity as shown in Fig. 4-1 (a). By taking the free body 

along the interface between the matrix and inclusions, the problem can be decomposed 

into two systems. One is an infinite medium with N  circular holes under the remote 

shear and the other is N  circular inclusions bounded by the kB  contour which 

satisfies the Laplace equation as shown in Figs. 4-1 (b) and 4-1 (c), respectively. From 

the numerical point of view, this is the so-called multi-domain approach. For the 

problem in Fig. 4-1 (b), it can be superimposed by two parts. One is an infinite medium 

under the remote shear and the other is an infinite medium with N  circular holes 

which satisfies the Laplace equation as shown in Figs. 4-1 (d) and 4-1 (e), respectively. 
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This part was solved efficiently by Chen et al. [36] using the null-field equation 

approach which is adapted here again. Therefore, one exterior problem for the matrix is 

shown in Fig. 4-1 (e) and several interior problems for nonoverlapping inclusions are 

shown in Fig. 4-1 (c). According to the null-field integral formulation, the two problems 

in Figs. 4-1 (e) and 4-1 (c) can be solved in a unified manner since they both satisfy the 

Laplace equation. 

 

4.3 Matching of interface conditions and solution procedures 

After decomposing the inclusion problems into two parts, we employ the null-field 

approach to handle one exterior Laplace problem for the matrix as shown in Fig. 4-1 (e) 

and several interior Laplace problems for nonoverlapping inclusions as shown in Fig. 

4-1 (c). By collocating the null-field point on the boundary, the linear algebraic system 

is obtained from Eq. (2-22). 

For the exterior problem of matrix in Fig. 4-1 (e), we have 

{ } { }M M M M∞ ∞⎡ ⎤ ⎡ ⎤− = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦U t t T w w . (4-8) 

For the interior problem of each inclusion in Fig. 4-1 (c), we have 

{ } { }I I I I⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦U t T w , (4-9) 

where the superscripts “ M ” and “ I ” denote the matrix and inclusion, respectively. The 

degenerate kernels M⎡ ⎤⎢ ⎥⎣ ⎦U , M⎡ ⎤⎢ ⎥⎣ ⎦T , I⎡ ⎤⎢ ⎥⎣ ⎦U  and I⎡ ⎤⎢ ⎥⎣ ⎦T  and Fourier series { }Mw , { }Mt , 

{ }∞w , { }∞t , { }Iw  and { }It  employed in the null-field equation can be found in 

Chapter 2. It is noted that { }∞w  and { }∞t  in Fig. 4-1 (d) are the displacement and 

traction field due to the remote shear, respectively. 

According to the continuity of displacement and equilibrium of traction along the kth  

interface, we have the two constraints 

{ } { }M I=w w  on kB , (4-10)

  [ ]{ } [ ]{ }0
M I

k=−μ t μ t  on kB , (4-11)

where [ ]0μ  and [ ]kμ  are defined as follows: 
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μ , (4-12)

where 0μ  and kμ  denote the shear modulus of the matrix and the kth  inclusion, 

respectively. By assembling the matrices in Eqs. (4-8) ~(4-11), we have 

0

M M M

I I M

I

I
k

⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭⎣ ⎦

cT -U 0 0 w
00 0 T -U t

=
0I 0 -I 0 w
00 μ 0 μ t

, (4-13)

where { }c  is the forcing term due to the remote shear stress and [ ]I  is the identity 

matrix. The calculation for the vector { }c  is elaborated on later in Appendix 2. After 

obtaining the unknown Fourier coefficients in Eq. (4-13), the origin of observer system 

is set to kc  in the kB  integration as shown in Fig. 2-4 (b) to obtain the field potential 

by employing Eq. (2-11). In determining the stress and electric fields, the gradient of 

potential should be determined with care as shown in Section 2.4.3. The flowchart of 

the present method for anti-plane elasticity problems is shown in Table 4-1. 

Except the foregoing formulation, one can also treat the anti-plane shear deformation as 

a limiting case of the anti-plane piezoelectricity problems when the coupled effect 

between the mechanical and electrical fields is absent or the piezoelectric constant are 

equal to zero. It is obvious to observe that the resulted linear algebraic system in Eq. 

(4-13) can be obtained from Eq. (3-19) after taking off the influence terms of the 

coupling parts. 

 

4.4 Illustrative examples and discussions 

First, we derive an exact solution for a single inclusion using the present formulation in 

Appendix 3. Symbolic software of Mathematica is employed to solve a 2 1L+  by 

2 1L+  sparse matrix by using the induction concept. Then, seven problems solved by 

previous scholars are revisited by using the present method to show the generality and 
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validity of our formulation. Besides, we demonstrate the problem of interaction of two 

cavities in Case 1 to compare the present method with the conventional BEM. 

 

Case 1: Two equal-sized holes lying on the x  axis (a limiting case) 

Figure 4-2 (a) shows the geometry of two equal-sized holes in the infinite medium 

under the remote shear zyσ τ∞
∞= . The stress concentration of the problem is illustrated 

in Fig. 4-2 (b). It indicates that the present result agrees well with the analytical solution 

of Steif [82] and those obtained by Chao and Young [22] even though the two holes 

approach each other. Figure 4-2 (c) shows that only few terms of Fourier series can 

obtain good results. However, more nodes are required by using the conventional BEM 

to achieve convergence. Our formulation is free of boundary-layer effect instead of 

appearance by using the conventional BEM when the stress zθσ  near the boundary as 

shown in Fig. 4-2 (d). Stress concentration factors and errors for various distances 

between two holes by using the present method and the conventional BEM are listed in 

Table 4-2. These results show that the present method is more accurate and effective 

than those of the conventional BEM. Under the same error tolerance, the CPU time of 

the present method is fewer than that of the conventional BEM. Besides, it is noted that 

more terms of Fourier series are required to capture the singular behavior when the two 

holes approach each other. 

 

Case 2: Two identical inclusions locating on the x  axis 

We consider two identical elastic inclusions of radii 1 2r r=  and shear moduli 1 2μ μ=  

embedded in an infinite medium subjected to the remote shear zxσ τ∞
∞=  at infinity [15] 

as shown in Fig. 4-3 (a). Figure 4-3 (b) shows that stress concentration factor 

diminishes when the inclusion spacing increases. We note that the mathematical model 

of rigid-inclusion problem is equivalent to that of uniform potential flow past two 

parallel cylinders with no circulation around either cylinder. The remote shear 

zxσ τ∞
∞=  is similar to the velocity V∞  in the x  direction at infinity and the velocity 

field is similar to the stress field [66]. 
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Case 3: Two circular inclusions locating on the x  axis 

Two inclusions with radii of 1r  and 2r  under the remote shear are considered in Fig. 

4-4 (a). The stress distributions in the matrix including the radial component zrσ  and 

the tangential component zθσ  around the circular boundary of radius 1r  are plotted in 

Figs. 4-4 (b) and 4-4 (c) for various inclusion spacings when the two inclusion radii are 

equal-sized ( 1 2r r= ). Two limiting cases are considered for rigid inclusions 

( 1 0 2 0/ /μ μ μ μ= =∞ , 610 in the real computation) and for cavities 

( 1 0 2 0/ / 0.0μ μ μ μ= = ). It can be found that 0zθσ =  or 0zrσ =  for rigid inclusions 

or cavities as predicted for the single inclusion or cavity, respectively. Moreover, the 

nonzero stress components for these two cases are identical when the stress components 

at infinity are interchanged, i.e. the stresses around the circular boundary zrσ  in one 

case equals to zθσ  for the other case due to the analogy of mathematical model. It can 

be seen from Figs. 4-4 (b) and 4-4 (c) that unbounded stress apparently occurs at 

180θ=  under the condition of zxσ τ∞
∞=  for rigid inclusions or zyσ τ∞

∞=  for 

cavities when two inclusions approach closely or even touch each other. In Figs. 4-4 (d) 

and 4-4 (e), the variation of stresses around the circular boundary of radius 1r  is shown 

versus radius 2r  for a fixed separation of 10.1d r= . More terms of Fourier series are 

required to capture the singular behavior when the two inclusions approach each other 

as well as the two radii of inclusions are quite different. The present results match very 

well with those by Goree and Wilson [50]. 

 

Case 4: Two circular inclusions locating on the y  axis 

The infinite medium with two elastic inclusions is under the uniform remote shear 

zyσ τ∞
∞= . The first inclusion centered at the origin of radius 1r  with the shear modulus 

1 02 / 3μ μ=  and the other inclusion of radius 2 12r r=  centered on y axis at 

1 2r r d+ +  ( 10.1d r= ) with the shear modulus 2 013 / 7μ μ=  are shown in Fig. 4-5 (a). 

In order to be compared with the Honein et al.’s data obtained by using the Möbius 

transformations [56], the stresses along the boundary of radius 1r  is shown in Fig. 4-5 

(b). It satisfies the equilibrium traction along the interface of circular boundary. The 

stress concentration factor reaches maximum at 0θ=  in the matrix. Figure 4-5 (c) 
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shows that only few terms of Fourier series can also yield acceptable results. Figures 

4-5(d) and 4-5 (e) indicates that our formulation is free of boundary-layer effect since 

stresses zrσ  and zθσ  near the boundary can be smoothly predicted, respectively. The 

key to eliminate the boundary-layer effect is that we introduce the degenerate kernel to 

describe the jump behavior for potential in interior and exterior regions as shown in 

Table 2-2. 

 

Case 5: Two inclusions locating on the x  axis under the two-direction shears 

In Fig. 4-6 (a), the parameters used in the calculation are taken as 1 2r r= , 

zx zyσ σ τ∞ ∞
∞= = , 0 0.185μ =  and 1 2 4.344μ μ= = . Figure 4-6 (b) shows stress 

distributions zxσ  and zyσ  along the x  axis when 0.1d = . It can be seen that the 

stress component zxσ  is continuous across the interface between two different 

materials and has a peak value between two inclusions. The stress component zyσ  is 

discontinuous across the interface of two different materials. Figures 4-6 (c) and 4-6 (d) 

illustrate stress distributions of zxσ  and zyσ  along the x  axis when  0.4d =  and 

1.0d = , respectively. Both figures indicate that stress components of zxσ  and zyσ  

have similar changing curves to those of Fig. 4-6 (b). However, it should be noted that 

the maximum value of stress component zxσ  drops when the distance d  between the 

two inclusions increases. Figure 4-6 (e) illustrates the normal stress distributions zrσ  

along the contour (1.001,θ ) for various cases of 0.1, 0.5d =  and 1.0 . It shows that 

the shear stress zrσ  increases as the distance d  between the two inclusions decreases 

at the point where two inclusions approach each other. However, the distance d  has a 

slight effect on zrσ  when the angle is in the range of 90 320θ< < . Figure 4-6 (f) 

illustrates the tangential stress zθσ  distributions along the contour ( 1.001,θ ) for 

various distances of  0.1, 0.5d =  and 1.0 . It should be noted that the absolute value 

of tangential stress zθσ  is very small in comparison with that of zrσ . Figure 4-6 (g) 

illustrates the variation of stress components zxσ  and zyσ  in the matrix at the point 

(1.001,0 ) versus the distance d  between the two inclusions. From the figure, it can be 

seen that stress components zxσ  and zyσ  become larger when the two inclusions 

approach each other. However, stress components zxσ  and zyσ  tend smoothly to the 
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constant when the two inclusions separate away. Figure 4-6 (h) shows stress 

distributions zxσ  and zyσ  along the x  axis when the two inclusions touch each other. 

It can be seen that the shear stress zxσ  has a peak value at the touched point. For the 

increasing value of x , zxσ  tends to match the remote shear τ∞ . Besides, the stress 

component zyσ  is continuous at the tangent point ( 1/ 1.0x r = ) and has a discontinuous 

jump on the interface between the matrix and inclusion ( 1/ 3.0x r = ). The present results 

in Figs. 4-6 (b) ~4-6 (h) agree very well with the Wu’s data [94]. Only the stress 

component zxσ  at the touched point is lower than the Wu’s data as shown in Fig. 4-6 

(h), since separate Fourier expansions on the two boundaries are described for the 

touched inclusions in our formulation. 

 

Case 6: One hole surrounded by two circular inclusions 

Figure 4-7 (a) shows that a circular hole centered at the origin of radius 1r  is 

surrounded by two circular inclusions ( 1/ 1.0d r = ) with the equal radius 2 3 12r r r= =  

and equal shear modulus 2 3μ μ=  under the remote shear zxσ τ∞
∞= . We solved the 

distribution of the tangential stress along the circular hole influenced by the surrounding 

inclusions when they are arrayed in parallel ( 0β = ) or perpendicular ( 90β = ) to the 

direction of uniform shear as shown in Figs. 4-7 (b) and 4-7 (c). It is found that, when a 

hole and two inclusions are arrayed parallel to the applied load ( 0β = ), the stress 

concentration factor, reaching maximum at 90θ=  along a circular hole, increases (or 

decreases) as the neighboring hard (or soft) inclusions approach a circular hole as 

shown in Figs. 4-7 (b) and 4-7 (d). On the contrary, when a hole and two inclusions are 

perpendicular to the applied load ( 90β = ), the stress concentration factor, reaching 

maximum at 90θ= , decreases (or increases) as the neighboring hard (or soft) 

inclusions approach a circular hole as shown in Figs. 4-7 (c) and 4-7 (e). Our numerical 

results match very well with those of Chao and Young’s [22]. 

 

Case 7: Three identical inclusions forming an equilateral triangle 

Figure 4-8 (a) shows that three identical inclusions ( 1 2 3r r r= = ) subjected to the 

uniform shear stress zyσ τ∞
∞=  at infinity. The three inclusions form an equilateral 
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triangle and are placed at a distance 14r  apart. Besides, the distance between each two 

inclusions is 12d r= . We evaluate the hoop stress zθσ  in the matrix around the 

boundary of the inclusion located at the origin as shown in Fig. 4-8 (b). Good agreement 

is obtained between the Gong’s results [48] and ours. It is obvious that the limiting case 

of circular holes ( 1 0 2 0 3 0/ / / 0.0μ μ μ μ μ μ= = = ) leads to the maximum stress 

concentration at 0θ= , which is larger than 2  of a single hole due to the interaction 

effect. It is also interesting to note that the stress component zθσ  vanishes in the case of 

rigid inclusions ( 1 0 2 0 3 0/ / /μ μ μ μ μ μ= = =∞ , 610  in the real computation), which 

can be explained by a general analogy between solutions for traction-free holes and 

those involving rigid inclusions. 

 

4.5 Concluding remarks 

A semi-analytical formulation for multiple circular inclusions with arbitrary radii, 

moduli and locations using degenerate kernels and Fourier series in the adaptive 

observer system was developed to ensure the exponential convergence. Generally 

speaking, only ten terms of Fourier series ( 10L= ) can yield the acceptable and 

accurate results. More terms of Fourier series are required to capture the singular 

behavior when the two inclusions approach each other as well as the two radii of 

inclusions are quite different. The singularity and hypersingularity were avoided after 

introducing the concept of degenerate kernels for interior and exterior regions. Besides, 

the boundary-layer effect for the stress calculation near the boundary is eliminated since 

the degenerate kernel can clearly describe the jump behavior from interior to exterior 

domains. The exact solution for a single inclusion was also re-derived by using the 

present formulation. Several examples investigated by Steif, Budiansky and Carrier, 

Goree and Wilson, Honein et al., Wu, Chao and Young, and Gong were revisited, 

respectively. Good agreements were made after comparing with the previous results. 

Regardless of the number, size and the position of circular inclusions and cavities, the 

proposed method can offer good results. This “semi-analytical” result may provide a 

datum for comparison when other numerical methods are used. 
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Table 4-1 Flowchart of the present method for anti-plane elasticity problems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Null-field integral equation in Eq. (2-22) 

Laplace problem with circular boundaries 

Adaptive observer system in the boundary integration 

Fundamental solution 
[Degenerate kernels are 

listed in Table 2-2] 

Analytical 

Collocating the null-field point to construct the compatible 
relationship among boundary data in Eqs. (4-8) and (4-9) 

Obtain the unknown Fourier coefficients in Eq. (4-13) 

Boundary integral equation for domain point in Eq. (2-11) 

Vector decomposition technique 

Potential gradient for the stress field 

Linear algebraic system in Eq. (4-13) Numerical 

Assembling Eqs. (4-10) and (4-11) by using the continuity of 
displacement and equilibrium of traction along the interface 

Constructing influence coefficients in Table 2-2 

Boundary densities for 
circular boundaries 

[Fourier series in Eqs. 
(2-20) and (2-21)] 
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 Table 4-2 Stress concentration factors and errors for various distances between two holes using the present approach and BEM 
 

 1/d r  0.01 0.2 0.4 0.6 0.8 1.0 

Analytical solution [82] 14.2247 3.5349 2.7667 2.4758 2.3274 2.2400 

10L=  10.5096 
(26.12%) 

3.5306 
(0.12%) 

2.7664 
(0.01%) 

2.4758 
(0.00%) 

2.3274 
(0.00%) 

2.2400 
(0.00%) Present 

method 20L=  13.3275 
(6.31%) 

3.5349 
(0.00%) 

2.7667 
(0.00%) 

2.4758 
(0.00%) 

2.3274 
(0.00%) 

2.2400 
(0.00%) 

21node=  7.2500 
(49.03%) 

3.4532 
(2.31%) 

2.738 
(1.04%) 

2.4639 
(0.48%) 

2.3168 
(0.46%) 

2.2366 
(0.15%) 

S
tr

es
s 

co
nc

en
tr

at
io

n 
fa

ct
or

 

BEM 
BEPO2D 41node=  10.2008 

(28.29%) 
3.5188 
(0.46%) 

2.7619 
(0.17%) 

2.4747 
(0.04%) 

2.3312 
(0.16%) 

2.2398 
(0.01%) 

Data in parentheses denote error. 
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Figure 4-1 (a) Infinite anti-plane problem with arbitrary number of circular inclusions 

under the remote shear 
 

 

 
Figure 4-1 (b) Infinite medium with 
circular holes under the remote shear 

Figure 4-1 (c) Interior Laplace problems 
for each inclusion 

 

 

Figure 4-1 (d) Infinite medium under the 
remote shear 

Figure 4-1 (e) Exterior Laplace problems 
for the matrix 
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Figure 4-2 (a) Two equal-sized holes ( 1 2r r= ) with centers on the x  axis 
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Figure 4-2 (b) Stress concentration of the problem containing two equal-sized holes
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Figure 4-2 (d) Tangential stress in the matrix near the boundary ( 1.0d = ) 
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Figure 4-3 (a) Two identical inclusions with centers on the x  axis 
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Figure 4-3 (b) Stress concentration factor of inclusion versus inclusion spacing 
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Figure 4-4 (a) Two circular inclusions with centers on the x  axis 
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(b) 20L=  (c) 40L=  
  

Figure 4-4 Effects of spacing on the stresses around the boundary of radius 1r  for two equal-sized 
inclusions (b) 20L= , (c) 40L=  
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(d) 80L=  (e) 100L=  
 

Figure 4-4 Effects of the size of neighboring inclusion on the stresses around the boundary of 
radius 1r  with 10.1d r=  (d) 80L= , (e) 100L=  
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Figure 4-5 (a) Two circular inclusions with centers on the y  axis 
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Figure 4-5 (c) Convergence test of the 
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Figure 4-5 (d) Radial stress in the matrix near the boundary 

 
 

 
Figure 4-5 (e) Tangential stress in the matrix near the boundary 
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Figure 4-6 (a) Two circular inclusions embedded in a matrix under the remote 
anti-plane shear in two directions 
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Figure 4-6 (b) Stress distributions along the 

x  axis when 0.1d =  
 

Figure 4-6 (e) Normal stress distributions 
along the contour (1.001,θ ) 
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Figure 4-6 (c) Stress distributions along the 

x  axis when 0.4d =  
 

Figure 4-6 (f) Tangential stress distributions 
along the contour (1.001,θ ) 
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Figure 4-6 (d) Stress distributions along the 
x  axis when 1.0d =  

Figure 4-6 (g) Variations of stresses at the 
point (1.001,0 ) 
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Figure 4-6 (h) Stress distributions along the x  axis when the two inclusions touch 
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Figure 4-7 (a) One hole surrounded by two circular inclusions 
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Figure 4-7 (b) Tangential stress distribution 
along the hole boundary with 0β =  

Figure 4-7 (c) Tangential stress distribution 
along the hole boundary with 90β =  
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Figure 4-7 (d) Stress concentration as a function 
of the spacing 1/d r  with 0β =  

Figure 4-7 (e) Stress concentration as a function 
of the spacing 1/d r  with 90β =  
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Figure 4-8 (a) Three identical inclusions forming an equilateral triangle 
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Figure 4-8 (b) Tangential stress distribution around the inclusion located at the origin 
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Chapter 5 Conclusions and further research 
 

5.1 Conclusions 

In this thesis, we proposed a null-field integral equation approach for piezoelectricity 

problems with circular inclusions under anti-plane condition. Apparently, this is a very 

useful, semi-analytical and numerical method, and it can provide accurate solutions for 

multi-inclusion interaction problems. Based on the proposed formulation for solving 

boundary value problems involving circular holes and/or inclusions, some concluding 

remarks are itemized as follows: 

 

1. A unified formulation for solving boundary value problems with circular holes 

and/or inclusions was proposed successfully in this thesis although our main 

applications are limited to Laplace problems. Regarding the null-field approach, 

degenerate kernels for fundamental solutions and Fourier expansions for boundary 

densities were adopted in the adaptive observer system. Piezoelectricity problems 

with circular inclusions as well as the uncoupling cases, in-plane electrostatic and 

anti-plane elastic problems, were examined to verify the accuracy of the present 

formulation for various sizes, locations, material constants and magnitudes of 

applied loadings. All the numerical results match well with those of other 

approaches and analytical solutions. 

 

2. The singularity and hypersingularity were avoided due to the introduction of 

degenerate kernels for interior and exterior regions separated by the circular 

boundary. Instead of directly calculating principal values, all the boundary integrals 

can be performed analytically by using the degenerate kernel and Fourier 

expansion. Therefore, the present approach is seen as a “semi-analytical” approach 

since error only ascribes to the truncated Fourier series. 

 

3. Boundary-layer effect for the calculation of stress near the boundary was 

eliminated since degenerate kernels can clearly describe the jump behavior of 
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potential from interior to exterior domains, respectively. Numerical results indicate 

that the stress across the near boundary stress can be described smoothly by using 

the present approach without any treatments of regularization, transformation or 

other techniques. Boundary-layer effect free is inherent in the present approach. 

 

4. The convergence study shows that only a few terms of Fourier series can yield 

acceptable results and the convergence rate is fast. It is because that the use of 

degenerate kernels for fundamental solutions and Fourier expansions for boundary 

densities leads to the exponential convergence. 

 

5. The influence matrix in the linear algebraic system using the present formulation is 

well-posed since the jump behavior of potential distribution was separately 

described in different regions by using the degenerate kernels for the representation 

of fundamental solutions. 

 

6. Four goals of singularity free, boundary-layer effect free, exponential convergence 

and well-posed model are achieved. 

 

7. Adaptive observer system and vector decomposition technique were employed to 

efficiently calculate the invariant of direction derivative of potential gradient using 

the hypersingular formulation. 

 

8. To the author’s best knowledge, the studies of more than “two” circular inclusion 

problems are very few. We have presented an approach for solving problems with 

multiple circular inclusions. Since analytical solutions are not available, our 

semi-analytical results may provide a datum for other researchers’ reference. 

 

9. The results of two equal-sized holes, e.g. convergence test, boundary-layer effect 

detection and error analysis, demonstrate the superiority of present method over 

the conventional boundary element method on the basis of the same number of 
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degrees of freedom. 

 

10. A general-purpose program for solving Laplace problems involving an infinite 

domain with multiple circular inclusions of various radii, arbitrary positions and 

different material constants was developed. Its possible applications in engineering 

are very broad, not only limited in this thesis. 

 

5.2 Further studies 

In this thesis, our formulation has been applied to solve anti-plane piezoelectricity 

problems with circular inclusions as well as in-plane electrostatic and anti-plane elastic 

problems by using the degenerate kernels for representing fundamental solutions and 

Fourier expansions for expanding boundary densities in the null-field integral equation. 

However, several issues are worth to be further investigated as follows: 

 

1. Although it seems that the applications is limited for circular holes and/or 

inclusions, the idea and algorithm of the thesis can be extended to problems of 

general boundaries. Once the degenerate kernel and expansion of boundary 

densities are available. Therefore, three-dimensional problems with spherical 

cavities and/or inclusions can be solved in a similar way. 

 

2. For problems with straight (crack and regular) boundaries, our method can also be 

applied by changing the dummy variable θ  into R . How to expand the boundary 

density along the line is a challenge to ensure the orthogonal property with respect 

to bases of degenerate kernels. 

 

3. We have demonstrated our formulation through several engineering applications 

which satisfy the Laplace equation. Engineering problems involving multiple 

inclusions under various loading types, e.g. concentrated forces, screw dislocations, 

edge dislocations, torques, in-plane shears and in-plane tensions, and with other 

inhomogeneous types, e.g. coated fibers, inclusions with imperfect interfaces and 
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composite bars, may be considered. The main difficulty of screw dislocation is that 

the Green’s third identity can not be directly applied. On the other hand, we may 

apply the same procedure to other fields, e.g. the heat transfer in finite tissue with 

blood vessels in biomechanics. 

 

4. The asymptotic behavior of 1/ ε  for stresses near two approaching inclusions 

can be numerically studied using the present formulation with higher number of 

terms in Fourier series. 

 

5. It is well known that the Green’s function can be derived by various methods. 

Null-field approach also provides an alternative way to construct the Green’s 

function. 

 

6. Half plane and half space problems with multiple inclusions can be solved by using 

the present approach in a straightforward way after introducing the image concept 

to match our model. 

 

7. The fundamental solution was expanded to degenerate kernels with respect to a 

single center for the eccentric case by the separable technique. Hence, the adaptive 

observer system was required to fully capture the geometry of each circle. The 

bi-center expansion technique for the source and field systems may be suitable for 

the eccentric case in a straightforward way such that adaptive observer system is 

not required. 

 

8. Mogilevskaya and Crouch have used the Galerkin method instead of collocation 

technique for multiple circular elastic inclusions. The present approach can be 

extended to the Galerkin formulation only for circular and annular cases. If 

bi-center expansion is feasible, the Galerkin formulation can be directly applied. 

 

9. According to the limit of computer hardware, it may be difficult for solving large 
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scale problems. After employing the fast algorithm technique, large scale problems 

can be solved easily. This is the hot topic of BEM research in recent years. 

 

10. The phenomenon of degenerate scale using the proposed formulation for solving 

Laplace problems containing multiple circular holes has been studies by Chen and 

Shen. Whether the degenerate scale exists for Laplace problems containing 

multiple circular inclusions needs further study. To deal with the problem of 

degenerate scale, possible remedies including the method of adding a rigid body 

term, dual formulation and SVD updating technique may be alternatives to 

overcome the rank-deficiency problem. 
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Appendix 1 Calculation for the forcing term in 
the anti-plane piezoelectricity formulation 

 

According to the constitutive equation due to the coupling behavior in Eq. (3-4), the 

displacement and traction fields in the infinite medium due to the far-field shear zxσ∞ , 

zyσ∞  and electric field xE∞ , yE∞  in Fig. 3-2 (c) yield 

1515

44 44
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zy yzx x

M M

e Ee Ew x y
c c
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∂
, (A1-2)

where the unit outward normal vector on the boundary is n ( , )x yn n= . By comparing 

Eq. (3-11) with the first row of Eq. (3-19), we have 

{ } { } { }M M∞ ∞⎡ ⎤ ⎡ ⎤= −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦a T w U t . (A1-3)

For the circular boundary where the original system is located, the boundary conditions 

due to the far-field shear and electric field are 
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Considering the boundary condition, due to the far-field shear and electric field, on the 

kth  circular boundary with respect to the observer system, we have 
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where xe  and ye  respectively denote the eccentric distance of kth  inclusion in the 

x  and y  direction. By comparing Eq. (A1-5) with Eq. (A1-7), we find that t∞  can 
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be described in any observer system without any change, where kθ  denotes the polar 

angle in the adaptive observer coordinate system. For the forcing term { }b  due to the 

far-field electric field without the coupling behavior, it can be obtained in a similar way 

as the forcing term { }a . 
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Appendix 2 Calculation for the forcing term in 
the anti-plane elasticity formulation 

 

According to Eqs. (4-2) and (4-3), the displacement and traction fields in the infinite 

medium due to the remote shear zxσ∞  and zyσ∞  in Fig. 4-1 (d) are 
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where the unit outward normal vector on the boundary is n ( , )x yn n= . By comparing 

Eq. (4-8) with the first low of Eq. (4-13), we have 

{ } { } { }M M∞ ∞⎡ ⎤ ⎡ ⎤= −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦c T w U t . (A2-3)

For the circular boundary where the original system is located, the boundary conditions 

due to the remote shear are 
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Considering the boundary condition, due to the remote shear, on the kth  circular 

boundary with respect to the observer system, we have 
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where xe  and ye  respectively denote the eccentric distance of kth  inclusion in the 

x  and y  direction, and kθ  is the polar angle in the adaptive observer coordinate 

system. It is found that t∞  can be described in any observer system without changes. 
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Appendix 3 Derivation of the exact solution for a 
single elastic inclusion 

 

We derive the exact solution for anti-plane problem with a single elastic inclusion under 

the remote shear using the present formulation. The infinite medium under the shear 

stress 0zxσ∞ =  and zyσ τ∞
∞=  at infinity is considered. The Fourier coefficients in Eq. 

(4-8) can be written as 
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where 1r  is the radius of the single inclusion. By substituting the appropriate 

degenerate kernels in Eqs. (2-16) and (2-17) into Eqs. (4-8), (4-9) and employing the 

continuity of displacement and the equilibrium of traction along the interface in Eqs. 

(4-10) and (4-11), the unknown boundary data in Eq. (4-13) can be obtained using the 

symbolic software Mathematica as shown below: 
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After substituting Eqs. (A3-1) and (A3-2) into the boundary integral equation for the 

domain point in Eq. (2-11), we obtain the total stress fields in the matrix 
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After substituting Eq. (A3-10) into the boundary integral equation for the domain point 

in Eq. (2-11), we have the total stress fields in the inclusion 
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Finally, the stress components zrσ  and zθσ  in Eqs. (4-6) and (4-7) can be 

superimposed by using zxσ  and zyσ  as shown below: 
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It is obvious to see that the maximum stress concentration occurs at 1rρ=  and 0φ= . 

The stress concentration factor is reduced due to the inclusion in comparison with that 

of cavity ( 1 0μ = ) as shown in Eq. (A3-9). Besides, it is noted that M
zrσ  coincides with 
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I
zrσ  as required by the traction equilibrium on the interface between the matrix and 

inclusion. The exact solution for a single elastic inclusion using the present formulation 

matches well with the previous one obtained by employing the complex-variable 

formulation [56]. 



All the copyrights of figures belong to the corresponding 
journals and authors listed in References. 

 128

Appendix 4 Available results obtained by 
previous researchers 

 

 
Chao and Chang’s data [20] for Figure 3-4 (a) 

 

 
Chao and Chang’s data [20] for Figure 3-5 



All the copyrights of figures belong to the corresponding 
journals and authors listed in References. 
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Chao and Chang’s data [20] for Figure 3-6 (a) 

 

 
Chao and Chang’s data [20] for Figure 3-6 (b) 

 



All the copyrights of figures belong to the corresponding 
journals and authors listed in References. 
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Chao and Chang’s data [20] for Figure 3-8 (a) 

 

 
Chao and Chang’s data [20] for Figure 3-8 (b) 

 



All the copyrights of figures belong to the corresponding 
journals and authors listed in References. 
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Chao and Chang’s data [20] for Figure 3-10 (a) 

 

 
Chao and Chang’s data [20] for Figure 3-10 (b) 

 



All the copyrights of figures belong to the corresponding 
journals and authors listed in References. 
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Chao and Chang’s data [20] for Figure 3-11 (a) 

 

 
Chao and Chang’s data [20] for Figure 3-11 (b) 

 



All the copyrights of figures belong to the corresponding 
journals and authors listed in References. 
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Chao and Chang’s data [20] for Figure 3-12 (a) 

 

 
Chao and Chang’s data [20] for Figure 3-12 (b) 
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Wang and Shen’s data [88] for Figure 3-13 

 
 
 
 
 
 
 
 



All the copyrights of figures belong to the corresponding 
journals and authors listed in References. 

 135

 
 
 
 
 
 
 

 

  

 
Wang and Shen’s data [88] for Figure 3-14 
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Wang and Shen’s data [88] for Figure 3-15 
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Wang and Shen’s data [88] for Figure 3-16 

 
 
 
 
 
 
 
 



All the copyrights of figures belong to the corresponding 
journals and authors listed in References. 

 138

 
 
 
 
 
 
 

  

 
Wang and Shen’s data [88] for Figure 3-17 
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Wang and Shen’s data [88] for Figure 3-18 (a) 
 

 

Wang and Shen’s data [88] for Figure 3-18 (b) 
 
 



All the copyrights of figures belong to the corresponding 
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Wu and Funami’s data [95] for Figure 3-19 (a) 

 
 

 
Wu and Funami’s data [95] for Figure 3-19 (b) 

 
 

 
Wu and Funami’s data [95] for Figure 3-19 (c) 
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Wu and Funami’s data [95] for Figure 3-20 (a) 

 
 

 
Wu and Funami’s data [95] for Figure 3-20 (b) 
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Wu and Funami’s data [95] for Figure 3-21 (a) 

 
 

 
Wu and Funami’s data [95] for Figure 3-21 (b) 

 
 

 
Wu and Funami’s data [95] for Figure 3-21 (c) 
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Wu and Funami’s data [95] for Figure 3-22 (a) 

 
 

 
Wu and Funami’s data [95] for Figure 3-22 (b) 
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xE E∞
∞=  

  

cos 45xE E∞
∞=  and sin 45yE E∞

∞=  
  

yE E∞
∞=  

  
Emets and Onofrichuk’s data [46] for 

Figure 3-24 (a) 
Emets and Onofrichuk’s data [46] for 

Figure 3-24 (b) 
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Budiansky and Carrier’s data [15] for Figure 4-3 (b) 
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Goree and Wilson’s data [50] for Figures 4-4 (b) and 4-4 (c) 

 

 

Goree and Wilson’s data [50] for Figures 4-4 (d) and 4-4 (e) 
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Honein et al.’s data [56] for Figure 4-5 (b) 
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Wu’s data [94] for Figure 4-6 (b) Wu’s data [94] for Figure 4-6 (e) 

  
  

 
Wu’s data [94] for Figure 4-6 (c) Wu’s data [94] for Figure 4-6 (f) 

  
  

Wu’s data [94] for Figure 4-6 (d) Wu’s data [94] for Figure 4-6 (g) 
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Wu’s data [94] for Figure 4-6 (h) 
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Chao and Young’s data [22] for Figure 4-7 (b) Chao and Young’s data [22] for Figure 4-7 (c) 
  
  

  

Chao and Young’s data [22] for Figure 4-7 (d) Chao and Young’s data [22] for Figure 4-7 (e) 
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Gong’s data [48] for Figure 4-8 (b) 
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