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Abstract

In contrast to other numerical methods, the boundary integral equation method and
boundary element method involve singular integrals. Although fictitious boundary
element method and null-field integral formulation can avoid the singularity, they both
result in an ill-posed model for direct problems. To avoid the singularity and to obtain a
well-posed model at the same time are our goals. In this thesis, a unified formulation for
solving boundary value problems with multiple circular inclusions using the null-field
approach is proposed although our focus is on the Laplace problem only. The
subdomain approach, namely, the concept of taking free body, is adopted for inclusion
problems. For each subdomain, the null-field integral equation as well as boundary
integral equation is derived. To fully capture the circular geometries, separable
expressions of fundamental solutions in the adaptive observer system for field and
source points and Fourier series for boundary densities are adopted to analytically
calculate the boundary integral and to ensure the exponential convergence. By
collocating the null-field point on the real boundary, singular and hypersingular
integrals are transformed to series sums after introducing the concept of degenerate
kernels. Not only the singularity but also senses of principle values are novelly avoided.
Then the linear algebraic system is obtained after matching the boundary condition and
the unknown coefficients can be easily determined. For the calculation of boundary
stress, the Hadamard principal value for hypersingularity is not required and can be
easily calculated by using series sums. For the eccentric case, the vector decomposition
technique for the radial and tangential derivatives is carefully considered in
implementing the hypersingular equation. At the same time, the boundary-layer effect is
eliminated owing to the introduction of degenerate kernels. Convergence rate using
various terms of Fourier series is also examined. Because the solution is formulated in a
manner of semi-analytical form, it possesses certain advantages over the conventional
boundary element method. Finally, three topics of engineering applications, anti-plane
piezoelectricity, in-plane electrostatic and anti-plane elasticity problems, were given to

demonstrate the accuracy and efficiency of present method after comparing with other

X1l



available methods. It is found that the stress and electric field concentrations are
dependent on the distance between the two inclusions, the mismatch in the material
constants and the magnitude of mechanical and electromechanical loadings. A
general-purpose program for multiple circular inclusions of various radii, arbitrary

positions and different materials constants was developed.

Keywords: degenerate kernel, Fourier series, null-field approach, inclusion, anti-plane
deformation, piezoelectricity, boundary-layer effect
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Chapter 1 Introduction

1.1 Motivation of the research and literature review

Engineering analysis can be formulated as mathematical models of the boundary value
problems. In order to solve the boundary value problems, researchers and engineers
have paid more attention on the development of boundary integral equation method
(BIEM), boundary element method (BEM) and meshless method than domain type
methods, finite element method (FEM) and finite difference method (FDM). Among
various numerical methods, BEM is one of the most popular numerical approaches for
solving boundary value problems. Although BEM has been involved as an alternative
numerical method for solving engineering problems, four critical issues are of concern.
(1) Treatment of singularity and hypersingularity
It is well known that BEM are based on the use of fundamental solutions to solve
partial differential equations. These solutions are two-point functions which are
singular as the source and field points coincide. Most of the efforts have been
focused on the singular boundary integral equation for problems with ordinary
boundaries. In some situations, the singular boundary integral equation is not
sufficient, e.g. degenerate boundary, fictitious frequency and spurious eigenvalue.
Therefore, the hypersingular equation is required. The role of hypersingularity in
computational mechanics has been examined in the review article of Chen and
Hong [27]. In the past, several regularizations for hypersingularity were offered to
handle it in direct and indirect ways. Hong and Chen [99] have developed the
theory of dual BIEM and dual BEM with hypersingular kernels. The analytical
formula reveals the jump behavior of double-layer potentials. How to determine
accurately the free terms has received more attentions in the past decade. To directly
face the singular and hypersingular integrals, a large amount of papers on the
Cauchy, Riemann and Hadamard principal values have been published through the
bump contour approach. Two conventional approaches were employed to regularize
the singular and hypersingular integrals. First, Guiggiani [55] has derived the free

terms for Laplace and Navier equations using the differential geometry and bump



approach in Fig. 1-1 (a). Second, Gray and Manne [51] have employed a limiting
process to ensure a unique solution by pushing an interior point to boundary in Fig.
1-1 (b) using the symbolic software. In the present approach, we employed the
degenerate kernel to represent the two-point fundamental solution for problems with
circular boundaries as shown in Fig. 1-1 (c). Recently, Wu [93] has developed a
new boundary integral equation for the analysis of linear elastic bodies with cracks.
In his formulation, displacement gradients and tractions on the non-crack boundary
and dislocation on the crack line are required instead of displacement and traction in
the dual BEM. Numerical quadratures for weak, strong singularities and
hypersingularities have been proposed [65]. Chen and Chiu [25] has derived the
separable expression of fundamental solution and can avoid calculating the
improper integrals along the boundary. The singularity and hypersingularity
disappeared in boundary integral equation after describing the potential into two
parts. Unlike the conventional BEM and BIEM, Waterman [90] introduced first the
so-called T-matrix method for electromagnetic scattering problems. Various names,
null-field approach or extended boundary condition method (EBCM), have been
coined. The null-field approach or T-matrix method is used widely for obtaining
numerical solutions of acoustics [8, 9, 68, 91], elastodynamics [85, 92] and
hydrodynamics [69]. Bostrom [14] introduced a new method of treating the
scattering of transient fields by a bounded obstacle in three-dimensional space. He
defined new sets of time-dependent basis functions, and use of these to expand the
free space Green’s function and the incoming and scattered fields. The method is a
generalization to the time domain of the null-field approach first given by Waterman
[90]. A crucial advantage of the null-field approach or T-matrix method consists in
the fact that the influence matrix can be computed easily. Although many works for
acoustic, elastodynamic and hydrodynamic problems have been done, only a few
articles on elastostatics can be found [73]. The idea of changing real boundary to
fictitious boundary (fictitious BEM) or putting the observation point outside the
domain (null-field approach) can remove the singular and hypersingular integrals.

However, they result in an ill-posed matrix which will be elaborated on later. A



(2)

3)

method of well-posed mathematical model and free of directly determining singular
and hypersingular integrals is one of our objects in this thesis.

Boundary-layer effect

Boundary-layer effect in BEM has received attention in the recent years. In real
applications, data near boundary can be smoothened since maximum principle
always exists for potential problems. Nevertheless, it also deserves study to know
how to manipulate the nearly singular integrals in applied mathematics. Kisu and
Kawahara [63] proposed a concept of relative quantity to eliminate the
boundary-layer effect. Chen and Hong in Taiwan [26] as well as Chen et al. in
China [24] independently extended the idea of relative quantity to two
regularization techniques which the boundary densities are subtracted by constant
and linear terms. Sladek et al. [78, 79] used a regularized version of the stress
boundary integral equation (o BEM) to compute the correct values of stresses close
to the boundary better than the non-regularized o BEM. An interpolation scheme to
compute stresses at points very close to the boundary was proposed. Others
proposed a regularization of the integrand by variable transformations. For example,
Telles et al. [84] used a cubic transformation such that its Jacobian is minimum at
the point on the boundary close to the collocation point and can smooth the
integrand. Similarly, Huang and Cruse [60] proposed rational transformations which
regularize the nearly singular integrals. How to eliminate the boundary-layer effect
in BEM is vital for researchers. The thesis will identify that the present approach is
inherently free of boundary-layer effect.

Convergence rate

Undoubtedly, BEM is very popular for boundary value problems with general
geometries since it requires discretization on the boundary only. Regarding to
constant, linear and quadratic elements, the discretization scheme does not take the
special geometry into consideration. It leads to the slow convergence rate. For
problems with special geometries, one can propose the special function to
approximate the boundary density on the specific geometry. For example, Fourier

series is suitable for boundary densities on circular boundaries while the spherical



harmonic function is always employed to approximate the boundary density on
surface of sphere. Legendre and Chebyshev polynomials are suited to approximate
the boundary densities on the regular and degenerate straight boundaries,
respectively. Methieu function is taken to describe the boundary densities of elliptic
boundaries. Figure 1-2 shows randomly distribution holes and/or inclusions with
square, elliptic and circular shapes, etc. in the two-dimensional region. Bird and
Steele [11, 12] have proposed a solution procedure for Laplace and biharmonic
problems with circular holes of arbitrary size, position and number. Their method
can be seen as one kind of the Trefftz method of interior and exterior problems. The
T-complete function can be found in the degenerate kernel of fundamental solution.
The equivalence between the method of fundamental solution (MFS) and Trefftz
method was recently constructed although both methods have histories of more than
sixty years [40]. Boundary densities can be expanded in terms of truncated Fourier
series. Caulk and Barone [4, 5, 6, 7, 16, 17, 18, 19] have solved the Laplace
problem in two-dimensional region with circular holes by using the special
boundary integral equations. In their approach, the boundary potential and its
normal derivative are approximated by using Fourier series on each hole.
Mogilevskaya and Crouch [44, 71, 87] presented a method for solving problems
with randomly distributed circular elastic inclusions with arbitrary properties. They
combined the series expansion technique with a complex boundary integral
equation method. Although previous researchers have employed the Fourier series
expansion, no one has ever introduced the degenerate kernel in boundary integral
equations to tackle their problems. Kress has proved that the exponential
convergence instead of the algebraic convergence in the BEM can be achieved by
using the degenerate kernel and Fourier expansion [64]. This thesis will take
advantage of this higher convergence rate to deal with problems with circular
boundaries using Fourier series in conjunction with degenerate kernels. Moreover,
the present method can be directly applied to problems with general boundaries
without any difficulty once the fundamental solution can be separated in the other

coordinate, e.g. Cartesian coordinate or elliptic coordinate.



(4) HI-posed model
As mentioned previously in the first issue, to avoid directly calculating the singular
and hypersingular integrals by using null-field approach or fictitious BEM vyields an
ill-condition system. The influence matrix is not diagonally dominated and needs
preconditioning. To approach the fictitious boundary to the real boundary or to
move the null-field point to the real boundary can make the system well-posed.
However, singularity appears in the meantime. We may wonder is it possible to
push the null-field point on the real boundary but free of facing the singular or
hypersingular integrals. The answer is yes and the key idea is to describe the jump
behavior of potential distribution in the separate region using degenerate (separate)
kernels for fundamental solutions. The details will be addressed in this study.
In this thesis, we develop a semi-analytical approach for boundary value problems with
circular boundaries by using the null-field integral equation in conjunction with the
degenerate kernel and Fourier series. To fully capture the geometry of circular boundary,
the fundamental solution and boundary densities are expanded into the degenerate form
and Fourier series in the polar coordinate, respectively. Four intermediate advantages
are obtained, (1) singularity free, (2) boundary-layer effect free, (3) exponential
convergence, (4) well-posed model. The adaptive observer system is proposed to fully
employ the property of degenerate kernel. All the boundary integrals are analytically
determined through the orthogonal property between the degenerate kernel and Fourier
series. Therefore, improper integrals are transformed to series sums instead of the sense
of principal values. A linear algebraic equation is formulated to determine the unknown
Fourier coefficients after collocating the null-field point on the boundary and matching
the boundary condition. For the calculation of potential gradient, the Hadamard
principal value for hypersingularity is not required and can be easily calculated by using
series sums and by adapting the vector decomposition technique for eccentric cases. In
addition, the boundary-layer effect for stress calculations near the boundary and the
convergence test with various terms of Fourier series are studied. Engineering
applications containing multiple circular inclusions are demonstrated to see the validity

of present method. The limiting case of cavities by setting zero modulus is tested to



compare previous results by our NTOU/MSV group. The extension to study on
coupling effect of electrical and mechanical loadings for piezoelectricity problems is

also done in this thesis.

1.2 Organization of the thesis

The frame of the thesis is shown in Fig. 1-3. In this thesis, the boundary value problems
with circular boundaries are studied by using the null-field approach conjunction with
degenerate kernels and Fourier series. Applications to anti-plane piezoelectricity
problems with circular piezoelectric inclusions subjected to the mechanical and
electrical loadings are investigated. Anti-plane elastic and in-plane electrostatic
problems can be treated as limiting cases of the piezoelectricity problems. Besides, the
boundary-layer effect for stress calculations and the convergence test are addressed. The
content of each chapter is summarized below.

In the chapter 2, we present a semi-analytical formulation using the null-field approach
in conjunction with degenerate kernel and Fourier series for solving boundary value
problems. The kernel function is separated into degenerate (separate) forms and the
boundary density is expanded into Fourier series to fully utilize the property of circular
geometry. Although the present formulation is suitable for the Laplacian, Helmholtz,
biharmonic and biHelmholtz operators in one, two and three dimensional problems,
only two-dimensional Laplace problems is adopted here.

In the chapter 3, the application to anti-plane piezoelectricity problems with arbitrary
piezoelectric circular inclusions under remote anti-plane shears and in-plane electric
fields is considered. Contour plots for the stresses and electric potential are illustrated to
see the interaction of piezoelectric inclusions. The distributions of stresses, electric
displacements and electric fields along various paths, e.g. the interface between the
matrix and inclusion, the contour near the circular boundary and the x axis, are
calculated. The two piezoelectric circular inclusions problems with different geometries,
material constants and magnitudes of mechanical and electromechanical loadings are
considered to test our program. Besides, the decoupling electrostatic problems are

solved as an uncoupling case. Numerical results are compared with the exact solution



and those of previous researchers by using various methods.

In the chapter 4, we derive the null-field approach for an elastic infinite medium
containing elastic circular inclusions with arbitrary radii, positions and material
constants under the remote anti-plane shears. It can be seen as a limiting case of
anti-plane piezoelectricity problems. The boundary-layer effect for the stress calculation
is examined. The exact solution for a single elastic inclusion is also re-derived by using
the present formulation. Several problems of two holes, two inclusions, one cavity
surrounded by two inclusions and three inclusions are revisited to demonstrate the
generality and validity of our method. Regardless of the number, size and the position
of circular inclusions and cavities, the proposed method is tested for its generality and
validity. Finally, we draw out some concluding remarks item by item and exhibit some

further issues in the chapter 5.



Domain point Null-field point

b
T

I m

Figure 1-1 (a) Bump contour

a

I w

@)
Figure 1-1 (b) Limiting process
X" =(p",¢") X =(p,¢)
P P
s=(R,0) / s=(R,0) /
B B
X =(p ,¢) X" =(p"¢")

Figure 1-1 (c) Present method



Regular boundary —1

Figure 1-2 A two-dimensional problem with holes, inclusions and cracks



Chapter 1 Introduction

Chapter 2 Basic formulation of null-field approach for
boundary value problems with circular inclusions

Chapter 3 Applications to anti-plane piezoelectricity and
in-plane electrostatic problems with circular inclusions

Chapter 4 Applications to anti-plane elasticity problems
with circular inclusions

Chapter 5 Conclusions and further research

R T e T O T
~———  —  ——  J )

Figure 1-3 The frame of the thesis

10



Chapter 2 Basic formulation of null-field
approach for boundary value problems with
circular inclusions

Summary

In this chapter, the boundary value problem with circular boundaries is formulated by
using the null-field integral equation. Degenerate kernels for fundamental solutions and
Fourier series for unknown boundary densities are introduced to derive the formulation
analytically. Intermediate advantages are obtained: (1) well-posed model, (2) singularity
free, (3) boundary-layer effect free and (4) exponential convergence. The method is
basically a numerical approach, and because of its semi-analytical nature, it possesses
certain advantages over the conventional boundary element method. The null-field
approach employing degenerate kernels can be applied to solve boundary value
problems which are governed by the Laplace, Helmholtz, biharmonic and biHelmholtz
equations. Inclusion problems for anti-plane elasticity as well as the piezoelectricity

study are our main concern.

2.1 Introduction

Many engineering problems can be described by using mathematical models of the
Laplace, Helmholtz, biharmonic and biHelmholtz equations. For example, anti-plane
piezoelectricity, in-plane electrostatic, anti-plane elasticity, steady state heat conduction,
ideal steady flow problems are the classical problems which are always simulated by the
Laplace equation. Membrane vibration, water wave and acoustic problems are often
modeled by the Helmholtz problems. Plate vibration problems are governed by the
biHelmholtz equation. Plate problems in solid mechanics and Stokes’ flow in fluid
mechanics can be formulated by the biharmonic equation through the Airy stress
function and streamfunction, respectively.

Engineers often have the opportunity to apply circular components to engineering

structures. Although these structures are rather simple, the analytical solutions for their
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engineering system are difficult to obtain. To the author’s best knowledge, special
mapping technique or bipolar coordinate were always used to derive the analytical
solution for two circular holes and/or inclusions, respectively. However, conformal
mapping or bipolar coordinate is limited to doubly connected regions even to conforcal
connected regions; most efforts have concentrated on special solution representations.
Alternative methods have been adopted to solve problems with multiple circular holes
[48, 49]. Numerical approaches, e.g. finite difference method (FDM), finite element
method (FEM), boundary element method (BEM), boundary integral equation method
(BIEM) and meshless method, etc., are always resorted to handle the problems. Among
diverse numerical approaches, FEM and BEM have become the popular research tools
for engineers. In the past decade, FEM has been widely applied to carry out many
engineering problems, but one deficiency is that discretizations are time-consuming to
generate the mesh. Unlike FEM, the discretizations are restricted only to the boundary
when using BEM. The main advantage is one-dimension reduction in mesh generation
and particularly convenient for unbounded domain and stress concentration problems.
BEM is also ideally suited to the analysis of external problems where domains extend to
infinity, since discretizations are confined to the internal boundaries with no need to
truncate the domain at a finite distance. There is no doubt that BEM has been
appreciated as an alternative numerical method which has been extensively used.
Practical engineers and academic researchers paid attention to theoretical study and
applications of BEM in the recent decades. Although BEM is recognized as an
acceptable tool, some pitfalls still exist, e.g. degenerate scale for potential problems,
fictitious frequency for exterior acoustics and boundary-layer effect for stress
calculations near the boundary. Detailed discussions for the pitfalls of BEM can consult
with the three lectures by Chen et al. [28, 33, 34].

For problems with circular boundaries, the BIEM can be utilized instead of BEM to
improve the convergence rate by introducing Fourier series. The Fourier series
expansion is specially tailored to problems with circular geometry. Early attempts to
solve problems involving circular boundaries using series expansions were reported by

Mogilevskaya and Crouch [44, 71], Barone and Caulk [4-7] and Bird and Steele [11, 12].
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Barone and Caulk explored the use of special BIEM for solving Laplace’s equation in
two-dimensional regions with circular holes. Based on his idea, the boundary potential
and its normal derivative were expressed in a finite series of circular harmonics on each
hole. Unlike other approaches, the unknown coefficients in each hole are determined by
a new set of integral equations with special kernel functions. However, the explicit
equations in [16] were limited to the case when a constant potential is specified on the
boundary of each hole. Steele and his coworkers [11, 12] have adopted the Fourier
series for harmonic and biharmonic problems with circular holes. In their numerical
results, only six terms of Fourier series on each hole were sufficient to yield error of less
than 0.05 percent. Recently, Mogilevskaya and Crouch [71] also presented a method by
employing the Fourier series expansion technique and used the Galerkin method for
solving problems with randomly distributed circular elastic inclusions with arbitrary
properties. They combined the series expansion technique with a direct BIEM. However,
all of previous studies didn’t employ the null-field integral equation and degenerate
kernels in polar coordinate to fully capture the circular boundary to the author’s best
knowledge although they have employed the Fourier series. Degenerate kernels play an
important role not only for mathematical analysis [39] but also for numerical
implementation [64]. For example, the spurious eigenvalue [31], fictitious frequency
[30] and degenerate scale [32] have been mathematically and numerically studied by
using degenerate kernels for problems with circular boundaries. One gain is that the
exponential convergence instead of the algebraic convergence in BEM can be achieved
by using the degenerate kernel and Fourier expansion [64].

In the chapter, we focus on the boundary value problems with circular inclusions and
propose a semi-analytical approach. A major benefit of using degenerate kernels for the
fundamental solution and the Fourier expansion for circular boundaries is that all
integrations can be performed analytically instead of calculations using senses of
principal values. Besides, the degenerate kernels for fundamental solutions and Fourier
series for boundary densities lead to the exponential convergence [64]. After expanding
the boundary density along each circular boundary by using the Fourier series

expansion, the null-field integral equation yields a system of linear algebraic equations
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for unknown coefficients of Fourier series. To match the interface condition between
the matrix and each inclusion, additional constraints are provided to determine the
unknown Fourier coefficients by the resulted linear algebraic system. A general-purpose
program for solving boundary value problems containing circular inclusions with

different radii, various center positions and arbitrary material properties is developed.

2.2 Dual boundary integral equations and dual null-field
integral equations

Suppose there are N randomly distributed circular inclusions bounded to the contours

B, (k=0,1,2,---, N)asshown in Fig. 2-1. We define
N
B=JB,. (2-1)
k=0

In mathematical physics, many engineering problems can be modeled by the governing

equation,
Le(xX)=0, xeDb, (2-2)

where Z may be the Laplacian, Helmholtz, biharmonic or biHelmholtz operators,
©(x) is the potential function and D is the domain of interest. For the
two-dimensional second-order operators of Laplacian and Helmholtz, the boundary
integral equation for the domain point can be derived from the third Green’s identity
[27], we have

27p(X) = fBT(S,x)go(s)dB(s)— fB U (s, X)e(s)dB(s), xeD, (2-3)

zﬁ_agoé?z [ M )0(s)dB(s) — [ Lis,\)¥(s)dB(s), x €D, (2-4)

where s and x are the source and field points, respectively, (s)=0¢(s)/on,, B

is the boundary, n_ denotes the outward normal vector at the field point x and the

X

kernel function U (s,x) is the fundamental solution which satisfies
ZU(s,X) =27m6(x—5), (2-5)

in which 6(x—s) denotes the Dirac-delta function. The other kernel functions, T(s,X),
L(s,x) and M(s,x), are defined by

14



oU (s, X) _0U(s,x) ~0°U(s,X)

, L(s,x)= o M(s,X) =——— (2-6)

T(s,X)= = ,
5:%) on,on,

S X

where n, is the outward normal vector at the source point s. By moving the field

point to the boundary, Egs. (2-3) and (2-4) reduce to

mo(X) = C.PV. fB T (s, X)¢(s)dB(s) — R.PV. fB U@ X)(S)dBE), XeB,  (2-7)

W—agrfx):H.P.V.fBM(s,x)go(s)dB(s)—C.P.\/.L L(s,X)¢(s)dB(s), XEB,  (2-8)

X

where C.PV., RPV. and H.PV. denote the Cauchy principal value, Riemann
principal value and Hadamard principal value, respectively. Once the field point X
locates outside the domain, the null-field integral equation of the direct method in Egs.
(2-7) and (2-8) yield

0= fBT(S,X)so(S)dB(S)— fB U (s,X)¥(s)dB(s), x € D", (2-9)

0= fBM (s, X)o(s)dB(s) fB L(s, X)¥(s)dB(s), x €D, (2-10)

where D° is the complementary domain. Note that the conventional null-field integral
equations are not singular since s and x never coincide. If the kernel function in Egs.
(2-3), (2-4), (2-9) and (2-10) can be described as degenerate (separate) forms for the

inside D oroutside D° domain, we have

2mp(X) = fB T (s, X)0(s)dB(s) — fB U (s, X)¥(s)dB(s), x € DUB, (2-11)
27850—3: | ME200()dBE)— [ L, )¥%(E)dB(s), xeDUB, (2-12)
0= fB T (s, X)¢(5)dB(s) — fBU(s,x)zp(s)dB(s), x€D°UB, (2-13)
0= fBM(s,x)go(s)dB(s)— fB L(s, X)¥(s)dB(s), x € D°UB. (2-14)

It is noted that the boundary integral equation for the domain point and the null-field
integral equation for the null-field point can include the collocation point on the real
boundary since the appropriate kernel can be used as elaborated on later in the following

section.
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2.3 Expansions of fundamental solution and boundary density

Now, we adopt the mathematical tools, degenerate kernels and Fourier series, for the
purpose of analytical study. The combination of degenerate kernels and Fourier series
plays the major role in handling problems with circular boundaries. Instead of directly
calculating the C.PV., R.PV. and H.PV. in Egs. (2-7) and (2-8), we obtain the
linear algebraic system from the null-field integral equation of Egs. (2-13) and (2-14)
through the kernel expansion by “exactly” collocating the point on the real boundary.
Based on the separable property, the kernel function U (s,x) can be expanded into the

separable form by dividing the source and field points:

U'(s,x) = Z A, (3)B;(X), |s| >|x|
U(s,X) = ’ (2-15)

Ue(s,x) = Z A, (¥)B;(5), [x|>1s]

where the bases of A() and B() can be found for the Laplacian, Helmholtz,
biharmonic and biHelmholtz operators and the superscripts “i” and “e” denote the
interior (|s|>|x|) and exterior (|x|>s|) cases, respectively. To classify the interior (left,
1-D) and exterior (right, 1-D) regions, Figure 2-2 shows for one, two and three
dimensional cases. For the degenerate form of T, L and M kernels, they can be
derived according to their definitions in Eq. (2-6). For simplicity, Table 2-1 summarizes
the main difference between the present formulation and conventional BEM for
simply-connected domain problems. Regarding the multiply-connected domain
problems, the interior “i” and exterior “e” expansions for the kernel should be taken
with care. Although the mathematical tools of degenerate kernels, are suitable for the
Laplacian, Helmholtz, biharmonic and biHelmholtz operators in one, two and three
dimensional problems, we focus on the two-dimensional Laplace problems in this thesis

as explained below.

Degenerate kernels for fundamental solutions:
Based on the separable property, the kernel function U(s,x)=Inr, (rz|x—s|), IS

expanded into the degenerate form by separating the source point and field point in the
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polar coordinate [25]:

U'(R.0:p,6) = IR =D (L) cosm(p—6), R
U(s,x) = i L R : (2-16)
Ue(R,G;p,cb):Inp—Za(;)mcosm(H—cb), p>R

where the superscripts “i” and “e” denote the interior (R > p) and exterior (p>R)
cases, respectively. The origin of the observer system for the degenerate kernel is (0,0).
Figure 2-3 shows the graph of separate expressions of fundamental solutions where
source point s located at R=10.0 and 6= /3. By setting the origin at o for the
observer system, a circle with radius R from the origin o to the source point s is
plotted. If the field point X is situated inside the circular region, the degenerate kernel
belongs to the interior expression of U'; otherwise, it is the exterior case. It is noted
that the leading term and numerator term in Eq. (2-16) involve the larger argument to
ensure the log singularity and series convergence, respectively. After taking the normal

derivative 0/0R with respect to Eq. (2-16), the T(s,x) kernel yields

Ti(R,H;Wﬁ)Z%Jri(R'(;H)cosm(e—qb), R>p
T(s,x) = N m:F:m-l : (2-17)
T*(R,0;p.0) =—> ( o yeosm(d—¢), p>R

and the higher-order kernel functions, L(s,x) and M (s,Xx), are shown below

-1

mm Ycosm(0—¢), R>p
= R
L(s,x) = : (2-18)

m

Le(R,G;p,qb)=%+i(pl?n+l)cosm(9—¢), p>R

LROpd)=-3 (2

MY (R.0:p,6) = (Fo)cosm(9—0), R

M (s, X) = (2-19)

m-1

M (R 050.0) = Y (D) cosm ), p>R

Since the potentials resulted from T(s,x) and L(s,x) kernels are discontinuous

across the boundary, the potentials of T(s,x) and L(s,x) for R— p™ and R— p~
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are different. This is the reason why R = p is not included for degenerate kernels of

T(s,x) and L(s,x) inEgs. (2-17) and (2-18).

Fourier series expansions for unknown boundary densities
For problems with circular boundaries, we apply the Fourier series expansions to

approximate the potential ¢ and its normal derivative ¢ on the boundary B, as

L

p(s)=a5 + > (akcosnd, +blsinng,), s, €B,, k=012, N, (2-20)
n=1
L

W(s)=ps+ > (pscosng, +qssinng), s €B,, k=012 N,  (2-21)
n=1

where (s, ) =0p(s,)/on,, a*, b*, p* and g (n=0,12,---,L) are the Fourier

coefficients and 6, is the polar angle. In the real computation, only 2L+1 finite

terms are considered where L indicates the truncated terms of Fourier series.

2.4 Mathematical formulation and solution procedure

2.4.1 Adaptive observer system

By using the collocation method, the null-field integral equation becomes a set of
algebraic equations for the Fourier coefficients. To ensure the stability of algebraic
equations, one has to choose collocation points throughout all the circular boundaries of
inclusions. Since the boundary integral equation is derived from the reciprocal theorem
of energy concept, the boundary integral equation is frame indifferent due to the
objectivity rule. This is the reason why the observer system is adaptively to locate the
origin at the center of circle in the boundary integration. The adaptive observer system
is chosen to fully employ the property of degenerate kernels. Figures 2-4 (a) and 2-4 (b)
show the boundary integration for the circular boundary in the adaptive observer system.
It is worth noting that the origin of the observer system is located on the center of the
corresponding circle under integration to entirely utilize the geometry of circular
boundary for the expansion of degenerate kernels and boundary densities. The dummy

variable in the circular integration is the angle () instead of the radial coordinate (R ).
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2.4.2 Linear algebraic equation
By moving the null-field point X to the kth circular boundary in the limit sense for
Eq. (2-13) in Fig. 2-4 (a), we have
N N
O:Zfs TR, 0; P P )p(Re . 6, )R D6, _Zfs U R, 0 P 0 ) V(R O )R A6,
k=0~ K k=0~ K

» X(p:#,) € D°UB,

(2-22)

where N is the number of circular inclusions and B, denotes the outer boundary for
the bounded domain. In case of the infinite problem, B, becomes B_. Note that the
kernels U(s,x) and T(s,x) are shown in the degenerate form given by Egs. (2-16)
and (2-17), respectively, while the boundary densities ¢ and 1) are expressed in
terms of the Fourier series expansion forms given by Egs. (2-20) and (2-21),
respectively. Then, the integrals multiplied by separate expansion coefficients in Eqg.
(2-22) are non-singular and the limit of the null-field point to the boundary is easily
implemented by using appropriate forms of degenerate kernels. Through such an idea,
all the singular and hypersingular integrals are well captured. Thus, the collocation point
X(p,:¢,,) In the discretized Eq. (2-22) can be considered on the boundary B, , as well
as the null-field point. Along each circular boundary, 2L+1 collocation points are
required to match 2L +1 terms of Fourier series for constructing a square influence
matrix with the dimension of 2L+1 by 2L +1. In contrast to the standard discretized
boundary integral equation formulation with nodal unknowns of the physical boundary
densities ¢ and 1 . Now the degrees of freedom are transformed to Fourier
coefficients employed in expansion of boundary densities. It is found that the
compatible relationship of the boundary unknowns is equivalent by moving either the
null-field point or the domain point to the boundary in different directions using various
degenerate kernels as shown in Fig. 2-4 (a) and 2-4 (b). Both approaches yield the same
linear algebraic equation due to the Wronskian property (see the Appendix in [36]). In
the B, integration, we set the origin of the observer system to collocate at the center
c, to fully utilize the degenerate kernels and Fourier series. By collocating the

null-field point on the boundary, the linear algebraic system is obtained

(UHv}=[Tl{e}, (2-23)
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where [U] and [T] are the influence matrices with a dimension of (N +1)(2L+1)
by (N+1)(2L+1), {¢} and {«} denote the column vectors of Fourier coefficients
with a dimension of (N +1)(2L+1) by 1 in which those are defined as follows:

Uoo U01 UON Too T01 TON
u]= U}“ U:“ U}N [T]= Tf° Tfl T, (2-24)
UNO UNl UNN TNO TNl TNN
%o P,
1 P,
{50}:‘902” {":b}: Y, 1, (2-25)
P | Py

where {p,} and {i,} are in the form of {af af b - af bf }T and
{pg e gt - P qt}T, respectively; the first subscript “j” (j=0,12,---,N)
in [U; ] and [T, ] denotes the index of the jth circle where the collocation point is
located and the second subscript “k” (k =0,1, 2,---, N ) denotes the index of the kth
circle when integrating on each boundary data {¢,} and {4}, N is the number of
circular inclusions in the domain and the number L indicates the truncated terms of
Fourier series. The coefficient matrix of the linear algebraic system is partitioned into
blocks, and each off-diagonal block corresponds to the influence matrices between two
different circular boundaries. The diagonal blocks are the influence matrices due to
themselves in each individual circle. After uniformly collocating the points along the

kth circular boundary, the submatrix can be written as

U kac (¢1) U }E (¢1) U }E (¢1) T U ijC (¢1) U JI'_kS (¢1)
U?kc(ﬁbz) U}lf((bz) U}E(qﬁz) U:If((ﬁz) UJL|<S(¢2)
U?kc((ﬁs) U}E(%) U}E (¢3) U,’\:C(¢3) UJL|<S(¢3)

[U jk] = : : : ' : : ,  (2-26)
U?kc(ﬁsz) U}IS(¢2L) U}E(¢2L) U]!_I<C(¢2L) UJ!_I<S(¢2L)
U ;ch (¢2L+1) U }li (¢2 |.+1) U }E (¢2 |_+1) - U ijC (¢2 |.+1) U ijS (¢2 |_+1)
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TOC(¢1) Tlc(¢1) T15(¢1) TLC(¢1) TLS(¢1)
TOC(¢2) Tlo(¢2) Tls(¢2) TLC(¢2) TLS(¢2)
[Tjk]: T (¢3) T (¢3) T (¢3) T (¢3) T (¢3) ’ (2_27)
TOC(¢2L) Tlc(¢2|_) Tls(¢2|_) TLC(¢2L) TLS(¢2L)
T - (¢2L+1) Tlc (¢2 L+1) Tls (¢2L+1) U T o (¢2L+1) T (¢2 |_+1)

where ¢, m=12,---,2L+1, is the angle of collocation point along the circular
boundary. Although both the matrices in Egs. (2-26) and (2-27) are not sparse, it is
found that the higher order harmonics are considered, the lower influence coefficients in
numerical experiments are obtained. It is noted that the superscript “0s” in Egs. (2-26)
and (2-27) disappears since sinnd=0 (n=0). The element of [U, | and |T,] are

defined respectively as

U5 () =, U(sx,) cos(nt) R,

(2-28)
n=012--,L, m=12,---,2L+1,

UGk (8) = [, Us,.x,) sin(nd,) R, 2.29)
n=12,---,L, m=12,---,2L+1,

T () = kaT(sk,xm)cos(an) R.d6, , -30)
n=02,2--L, m=12--,2L+1,

T (6, )_kaT(sk,xm)sin(nHk)deek, -3

n=12--,L, m=12,---,2L+1,

where k is no sum, s, =(R,,6,), and ¢, is the angle of collocation point X,

along the boundary. The influence coefficient of Uj’(¢,) in Eq. (2-28) denotes the
response at X, due to the cosnd distribution as shown in Fig. 2-5. Equation (2-22)
can be calculated by employing the orthogonal property of trigonometric function in the
real computation. Only the finite L terms are used in the summation of Egs. (2-20)
and (2-21). The explicit forms of all the boundary integrals for U, T, L and M
kernels are listed in the Table 2-2. Finite values of singular and hypersingular integrals
are well captured after introducing the degenerate kernel. Besides, the limiting case

across the boundary (R~ — p— R") is also addressed. The continuous and jump
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behavior across the boundary is well described. After introducing the Wronskian
property of two bases p™, p " in Eq. (2-16), the jump behavior across the boundary
for the double layer potential T and the normal derivative of singular layer potential

L is well captured by

L/;Zﬂﬁi —T*]cos(nd)Rd6 = 27 cos(ng) , (2-32)
[ -1 sin(ne)Rd9 = 2w sin(ng). 233
j;zw[l-i — L*Jcos(nf)RdO = —27 cos(ng), (2-34)
[T~ Clsin(e)R6 = —2rsin(ng). (2-35)

The term of 27 depends on the Wronskian of two bases. Reader can consult the 1-D
case. Besides, the continuous and pseudo-continuous behavior across the boundary for
the singular layer potential U and the normal derivative of double layer potential M

is well described as

[ U —U*]cos(nd)RdO =0, (2-36)
j:”[ui _U*]sin(nd)RdA =0, (2-37)
J:”[M‘—Me]cos(ne)Rdezo, (2-38)
foz”[Mi—Me]sin(ne)Rdezo. (2-39)

Instead of using nodal values for boundary densities in the BEM, the Fourier
coefficients become the new unknown degrees of freedom in the formulation.

Regarding the circular inclusion problems in the infinite domain, it can be decomposed
to one exterior and many interior Laplace problems with circular boundaries after taking
free body along the interface of matrix and each inclusion. Two kinds of problems can
be formulated in a unified manner as shown in Eq. (2-23) after superimposing remote
loadings:

(1) One bounded problem of the circular domain becomes the interior problem for each

inclusion as the only boundary B, in Fig. 2-4 (a) exists.
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(2) The other is unbounded, i.e. the outer boundary B, in Fig. 2-4 (a) is B_ . Itis the
exterior problem for the matrix.

The direction of contour integration should be taken care, i.e. counterclockwise and
clockwise directions are for the interior and exterior problems, respectively. To match
the interface condition between the matrix and each inclusion, additional constraints are
provided. Matrix form for the constraints will be elaborated on later in Chapters 3 and
Chapter 4. The unknown Fourier coefficients can be determined by the resulted linear
algebraic system. Then the potential field is obtained after employing Eq. (2-11). The
differences between the present formulation and the conventional BEM are listed in
Table 2-3.

2.4.3 Vector decomposition technique for the potential gradient in the hyper-
singular equation
In order to determine the field of potential gradient, the normal and tangential
derivatives should be calculated with care. Also Eq. (2-12) shows the normal derivative
of potential for domain points. For the nonconcentric cases, special treatment for the
potential gradient should be considered as the source point and field point locate on
different circular boundaries. As shown in Fig. 2-6, the normal direction on the
boundary (1, 1°) should be superimposed by those of the radial derivative (3, 3”) and
angular derivative (4, 4’) through the vector decomposition technique. According to the
concept of vector decomposition technique, the kernel functions of Egs. (2-18) and
(2-19) can be modified to

Li(R,e;p,@:—i_(”;m cosm(8— &) cos(C —£)

-1

_i(Pij )sin m(e—qb)cos(g—@rg), R>p

Hex)= N . (2-40)
C(R.0:p,0) ==+ D ) cosm(— ) cos(C )
—i(;:l)sinm(9—¢)cos(§—<+§), p>R
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r;pmrill) cosm(f —¢)cos(C —&)

MR, 0:p.6) = S (

—f:(’gﬂll)sinm(9—¢)cos(g—g+g), R>p
M (s, X) = m , (2-41)

00

M (R.0:9,6) =S ( ) cosm(e—6) cos(c )

00

-2 rr;)RTill)Sin m(—6)cos(z~C+£), p>R

m=1

where ¢ and £ are shown in Fig. 2-6. For the special case of confocal, the potential

gradient is derived free of special treatment since ¢ =¢.

2.5 Concluding remarks

For boundary value problems with circular boundaries, the null-field approach by using
the null-field integral equation, degenerate kernels and Fourier series in the adaptive
observer system was proposed. The singularity and hypersingularity were avoided after
introducing the concept of degenerate kernels for interior and exterior regions. Besides,
the boundary-layer effect for the potential gradient calculation is expected to be
eliminated since the degenerate kernel can describe the jump behavior for interior and
exterior domains, respectively. The generality and versatility for the problems with
multiple circular inclusions of arbitrary radii, positions and properties will be examined
in the following chapters. Both the efficiency and accuracy will be investigated.
Moreover, the presented method here can be applied to Laplace problems with circular
boundaries, e.g. piezoelectricity, electrostatic, magnetic, torsion, elasticity, heat
conduction and hydrodynamic problems. Besides, extensions to the Helmholtz,
biharmonic and biHelmholtz operators as well as 3-D problems are straightforward once
the corresponding degenerate kernels and bases for boundary densities can be found. In

this thesis, our main concern is only the Laplace problem.
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Table 2-1 Comparison of formulation between the present approach and conventional BEM for simply-connected domain problems

Conventional BEM Present formulation

o é 27mp(X) = fBT(s,x)go(s)dB(s)— fBU(s,x)l/;(s)dB(s), x €D | |
= E 27rg0(x):LT'(S,X)go(S)dB(S)—LU'(s,x)zp(s)dB(s), xeDUB
&S mp(x)=CPV. fB T (s, X)2(s)dB(s) — R.PV. fB U (s, X)¢(s)dB(s), X € B
ET O:fBTe(s,x)go(s)dB(s)—fBUe(s,x)z/)(s)dB(s), x €D UB
o5 O:IT(s,x)go(s)dB(s)—fU(s,x)w(s)dB(s), x € D°

E B B
o % o 890(X) f M (s, X)o(s)dB(s) — f L(s, X)(s)dB(s), X € D &p(x) f f
=3 27 M'(s,X)¢(s)dB(s) — | L'(s,x)(s)dB(s), xc DUB
E E wa(;p—rfx): H.P.V.fBM (S,x)gp(s)dB(s)—C.P.V.fB L(s, X)¥(s)dB(s), X € B
5 T x 0= fB M€ (s, X)¢(s)dB(s) — fB L°(s, X)1b(s)dB(s), x € D UB
8 3 0= [ M(X)0()dBE) - [ L(s,)u(s)dB(S), x € D°
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Table 2-2 Influence coefficients for the singularity distribution on the circular boundary

A

U (s, X)

p<R p>R

(0]
]

g E i . = 1 P m e . = 1 R m

e £ U'(R,0;p,¢)=INR=> "= ()" cosm(f—¢), R>p U*(R,0;p.0)=Inp—> =(=)"cosm(f—¢), p >R
(TR —/mR ma M p
0

g 2w . 27 e

§ fo [U'[IJRdO =27InR,R>p j; [U°]I[LRdO =27 Inp, p >R

S n+1

Q 27 . 1 pn 2m e 1 +

T i S U°][cosnf]RdO = 7= cosng, p >R

: fo [U'][cosnd]Rd 6 T cosng, R>p j; U1l ] T b, p

[@)]

o 2m 1 p" . ar 1R™ |

§ fo [U'][sin n0]Rd0:7rH R’i_lsm no,R>p fo [U*][sin n0]Rd0:7rH —sinng, p >R
o

>

c U lim2rInR=27InR ImZWInpzzwlnR

% g p—R P .
n . n+:

g % limrL ’Onflcosmb:vrchosngb Continuous limzm=—— cosn¢:wchosn¢
o S ~R nR n (R-—R—R") P n p n
-E o n ] n+1 ] 1 ]

E 3B Iim7rE 'Onflsinngb:wleinngb lim7————sinn¢ = 7—Rsinn¢
3J 5 ~R nR n /—~RoN op n

@©
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R o
X

p<R p>R

(0]
g © i 1 0 pm 0 Rm71

% g TI(Rve;p!¢):E+Z(Rm+1)cosm(‘9—¢)v R>p Te(R!97p1¢):_Z( ,Om )Cosm(€_¢)! :0>R
é‘J < m=1 m=1

: TR G = 2T fZﬁ[I'e][l]RdQ—O >R

: JmmRrde =5 R> p : =0.p

o 27 . 2 e R n

Tgﬂ j; [T'][coan]Rdezw(é)”cosn¢>,R>p fo [T ][COSHQ]RdQZ—W(E) cosng, p >R

T(s,Xx) =) 2
" S Ry, .

= f2 [T'][sin nd]Rd6 = =(2)" sinng, R > p [ e lisinngIRde = (") sinng, p > R

o ° R ’ p
>

8 E |imz_7T:2_7T lim0=0
g 3 ER g

g © : Jump lim— 7 (—)" cosng = —m cos ¢
P limr(£)" cosng = mcosn -
g5 rHRW(R) p=meosng (R" —=R—R") R g
FERENT)
E 2 im ()" sin né = rsi lim—7(—=)"sinng = —7sinn
£ e Ipmw(R) sinng = 7sin ng lim (p) ¢ ¢

@©
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X
p<R p>R
: T - = L°(R,0; ¢):3+i(Rm)cosm(9—¢), p>R
8 E LI(R,9|p1¢):_Z( Rm )Cosm(9_¢), R>p ' lp) p i pm+1
:’.J) i) m=1
[m)]
? P fZW[Le][l]RdQZZ_W'p>R
@ f [L'I[RdO=0,R> p 0 p
o 0
[ 27 R 1
1 2r P \n_ e 0]RdO = 7(—)"" cosng, p >R
e fo [L]cos n0JRd0 = —(£)"* cosng, R> p L [L*][cos né] 7r(p)
L(s,X) 5 _— Dins o Ry inne oo R
g fo [L'][SlnnG]Rdez—ﬂ(E) ‘sinng, R>p j; [L][smn9]Rd9—7r(p) sinng, p
(@]
lim 27 — 27
5 lim0=0 7R p R
S (5} p—R
% 5 g li 2y cosng = —mcosng Iimn(E)”“cosn(b:wcosnd)
_gj g _§ pl—r:llq?_ﬂ- R (RiﬁR—>R+) rmROp
£ ¢ © . .
£ ” lim—7(£)™*sinng = —rsinng lim (2)"sin ng = wsinng
3 p—R R p—R 14
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p<R

p>R

M (s, X)

Degenerate
kernel

Mi(R,e;p,@:i(

m
R

m-1
pmH )Cosm(e_(b)! R 2 1Y

m-1

mR

M°(R,0;,6) =3 ( TSm0 —6), >R

0 2w
[4)] 27 . R _
8 [ M ILRdO =0, R> p [ M IRdO =0, p> R
: i o M *J[cos nA]Rd0 = - R
g j; [M][cosnf]RdA = nxr = cosng, R>p J; [M*®][cosné]Rd6 = nm pE cosng, p >
g 27 i A pn_l . 2m eTr.: d R" .
g j; [M'][sinnd]RdO = nm o sinng, R>p L/; [M*][sinnd]Rd6 = nr——sinng, p > R
S lim0=0 lim0=0
> ) p—R p—
% s g pn—l 1 Pseudo- _ R" 1
; g ¢ limnr£—-cosng = nr—cosng continuous !,L”F}”W—pm cosng = N CoSNG
[ o _
5 ¢ o _ L _ (R"—=R—R") : R" . 1.
E ° lim nr£—sin n¢:n7rlsm ng limnm ——sinng = nm—sin ng
J p—R R" R p—R p R
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Table 2-3 Comparisons of the present method and the conventional BEM

Boundary density

- ] . . Boundary-layer
Auxiliary system Formulation Observer system Singularity Convergence
discretization effect
- Fourier series
—C -
B . i Disappear after i
£ Null-field integral ~ Adaptive observer . . Exponential .
o Degenerate kernel ) introducing the Eliminate
S equation system convergence
0 degenerate kernel
SL_’
_ Constant element
@ . .
5 \ i i Principal values i i
5 |illl , Fundamental Boundary integral Fixed observer Linear algebraic
s N T _ _ (C.PV., RPV, Appear
=0 T solution equation system convergence
g LLMJ‘ W and H.PV.)

where C.PV., RPV. and H.PV. arethe Cauchy, Riemann and Hadamard principal values, respectively.
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Figure 2-1 Randomly distributed circular inclusions bounded to the contour B,
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Figure 2-2 Degenerate kernels for one, two and three dimensional problems
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Figure 2-3 Graph of the degenerate kernel for the fundamental solution
s=(10,7/3)
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Figure 2-4 (a) Sketch of the null-field integral equation for a null-field point in
conjunction with the adaptive observer system (x ¢ D, x — B, )

B,*

“+_. Domain point
™o P

Figure 2-4 (b) Sketch of the boundary integral equation for a domain point in
conjunction with the adaptive observer system (x € D, x — B, )
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Figure 2-5 Physical meaning of influence coefficients U (¢,), Ui (#,): the
responses for the X, pointof the jth boundary due to the cosné, sinné
boundary distributions of the kth circular boundary
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Figure 2-6 Vector decomposition for the potential gradient in the hypersingular
equation
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Chapter 3 Applications to anti-plane
piezoelectricity and in-plane electrostatic
problems with circular inclusions

Summary

In this chapter, piezoelectricity problems with arbitrary number of circular inclusions
under remote anti-plane shears and in-plane electric fields are studied. Piezoelectric
problems with two piezoelectric circular inclusions are revisited and compared with the
solutions by previous researchers to demonstrate the validity of our method. The
limiting case shows that the two inclusions separating far away leads to the Pak’s exact
solution of a single inclusion. Stress and electric field concentrations are calculated and
are dependent on the distance between the two inclusions, the mismatch in the material
constants and the magnitude of mechanical and electromechanical loadings. Besides, the

uncoupling case for in-plane electrostatic problems in electric fields is also addressed.

3.1 Introduction

The recent technological developments and the increasing market demand have opened
promising research opportunities and engineering priorities in the field of
micromechanics. Coupled electro-elastic analysis in smart composites and
micro-electro-mechanical systems (MEMS) receives much attention. Due to the
intrinsic coupling effect of electrical and mechanical fields, the piezoelectric material is
widely applied to intelligent structures. Regarding the piezoelectric circular inclusions,
an exact solution of a single piezoelectric inclusion was derived by Pak [74] under
remote anti-plane shear and in-plane electric loadings. For the two piezoelectric
inclusions, Honein et al. [58] employed the Mdobius transformation to derive the
electromechanical field. Based upon the complex variable theory and the method of
successive approximations, Chao and Chang [20] revisited the problem of two
piezoelectric inclusions in terms of explicit series form. Wu and Funami [95] also

solved this problem by using the conformal mapping and the theorem of analytical
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continuation. Wang and Shen [88] considered the shear and electric loadings in two
directions. In addition, Chen and Chiang [41] employed conformal mapping techniques
to analyze this kind of boundary value problems and specific results were given for
elliptical, polygonal and star-shape inclusions. For the decoupling problems, Emets and
Onofrichuk [46] presented an analytic solution for two dielectric cylinders in electric
fields.

This chapter aims the first attempt to employ the null-field formulation to solve
piezoelectricity problems with multiple circular inclusions. By introducing a
multi-domain approach, an inclusion problem can be decomposed into two parts. One is
the piezoelectric infinite medium with circular holes and the other is the problem with
each piezoelectric circular inclusion. After considering the continuity and equilibrium
conditions on the interface for electrical and mechanical fields, a linear algebraic system
can be obtained and the unknown Fourier coefficients in the algebraic system can be
determined. Then the displacement field and electric potential are obtained. Furthermore,
an arbitrary number of piezoelectric circular inclusions are treated by using the present
method without any difficulty. The calculation of potential gradient must be determined
with care by using the vector decomposition and the adaptive observer system for the
nonconfocal case. Also the boundary stress and electric fields can be easily determined
by using series sums instead of employing the sense of Hadamard principal value. A
general-purpose program for arbitrary number of piezoelectric circular inclusions with
various radii, arbitrary positions and different material constants was developed. Several
examples solved previously by other researchers [20, 46, 74, 88, 95] were revisited to
see the accuracy and efficiency of the present formulation. The Pak’s solution of a

single inclusion is designed as a limiting case when two inclusions dispart far away.

3.2 Problem statements and mathematical formulation

The physical problem to be considered is shown in Fig. 3-1, where multiple
piezoelectric circular inclusions are imbedded in an infinite piezoelectric medium under
the far-field antiplane shear o, o, and the far-field inplane electric field E*, E.

X ! 7y X !

Bleustein [13] has found that if one takes the plane normal to the poling direction as the
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plane of interest, only the anti-plane displacement w couples with the in-plane electric
field E, and E,. Therefore, we only consider the anti-plane displacement and the
in-plane electric field such that

u=v=0, w=w(r,0); E =E(r,0), E,=E,(r,0), E,=0, (3-1)
where u, v and E, are the vanishing components of displacements and electric field,
respectively. The governing equation for anti-plane elasticity w and in-plane

electrostatics &, in the absence of body forces and body charges, can be decoupled and

simplified to
V'w=0, V*®=0, (3-2)
where V? is the two-dimensional Laplacian operator
o 10 1 0

V2= (3-3)

— o=t
o’ ror  r’o
and & is the in-plane electric potential. The coupling between the elastic field and the

electrical field occurs only through the constitutive equations
Oy =CoVar —CsErs 05 =Cuvyy —€sEy s (3-4)

D, =e5v, +eukr, Dy =857, T4y, (3-5)
where c,, is the elastic modulus, e, is the piezoelectric constant, ¢, is the

dielectric constant, o; and D; are respectively the anti-plane shear stress and

in-plane electric displacement, ~; and E; are respectively the anti-plane shear strain
and in-plane electric field, which are defined as
ow  low 0P 109

o, oW e 0% g 102 3.6
ar’ T 90 o’ ' Yoo (3-6)

,YZI’ =
The analogy between the anti-plane shear deformation and in-plane electrostatics for
anti-plane piezoelectric problems is listed in Table 3-1. For the stress fields o, , o,
and electric displacement fields D,, D, , they are found in Table 3-1 or can be
superimposed by o, , o, INEq.(3-4)and D,, D, inEq. (3-5)as

)

0, =0,C08¢—0,SiNg, (3-7)
0, =0,8IN¢+0,C080, (3-8)
D, =D, cos¢—D,sin¢, (3-9)
D, =D, sing + D, cos¢. (3-10)
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By taking free body along the interface between the matrix and inclusions, the problem
can be decomposed into two systems. One is an infinite medium with N circular holes
under remote anti-plane shear and in-plane electric loadings as shown in Fig. 3-2 (a).
The other is N circular inclusions bounded by the B, contour which satisfies the
Laplace equation as shown in Fig. 3-2 (b). From the numerical point of view, this is the
so-called multi-domain approach. For the problem in Fig. 3-2 (a), it can be
superimposed by two parts. One is an infinite medium under remote shear and electric
loadings and the other is an infinite medium with N circular holes which satisfies the
Laplace equation as shown in Figs. 3-2 (c) and 3-2 (d), respectively. Therefore, one
exterior problem for the matrix is shown in Fig. 3-2 (d) and several interior problems
for nonoverlapping inclusions are shown in Fig. 3-2 (b). The two problems in Figs. 3-2
(d) and 3-2 (b) can be solved in a unified manner by the null-field integral formulation
since they both satisfy the Laplace equation.

When the coupled effect between the mechanical and electrical fields is absent or the
piezoelectric constant are equal to zero, the expressions of the electro-elastic field in the
present formulation reduces to the results given by Emets and Onofrichuk [46] and

Honein et al. [56], respectively.

3.3 Matching of interface conditions and solution procedures

In the present application, both anti-plane mechanical and in-plane electrical fields are
modeled by using the null-field formulation. Since both the displacement field w and
the electric potential @ satisfy the Laplace equation, the variables ¢ and
Y(S)=0p(s)/dn, formulated in Chapter 2, can be replaced by w, t(s)=ow(s)/on,
for anti-plane elasticity and @ , W(s)=0®(s)/dn, for in-plane electrostatics,
respectively. By collocating the null-field point on the boundary, the linear algebraic
system is obtained from Eq. (2-22):

For the exterior problem of matrix in Fig. 3-2 (d), we have

(UM J{e" =t} = [T [{w" —w ), (3-11)
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For the interior problem of each inclusion in Fig. 3-2 (b), we have

U'f{e'}=[T"]iw'} (3-13)
U [} =T [{e'}, (3-14)
where the superscripts “M ” and “1 ” denote the matrix and inclusion, respectively. The

matrix due to degenerate kernels [U™ |, [T"|, [U'| and |T'| and vectors for Fourier
series {w'}, (), (W), (0], (@), (v}, {or), () W {0),
{@'} and {¥'} employed in the null-field equation can be found in Chapter 2. It is
noted that {w‘w}, {tm} {fl)”} and {‘I”O} in Fig. 3-2 (c) are the displacement and
traction fields due to the remote shear and electric loadings, respectively.

According to the continuity of displacement and equilibrium of traction along the kth

interface, we have the four compatible relationships for boundary data on the interface.

For the stress field, the interface condition yields
w" =w' on B, (3-15)
oM =0l on B,. (3-16)
For the electric field, the interface condition gives
oM =a' on B, (3-17)

DM =D! on B,. (3-18)

Invoking the governing equation of piezoelectricity with proper continuity conditions,
fully coupled equations are obtained. By assembling the matrices in Egs. (3-11) ~(3-14)
and (3-15) ~(3-18), we have
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a
o o T -U'" 0o 0 0 t™ 0
0O 0 o ™ -u“ w' b
0O 0 0 o o T -U J t' _|9| (3-19)
I 0 I 0 0 o0 0| 0|
0 ¢ 0 ¢, 0 ef 0 e|lP" 0
0o 0 o I 0 I 0| o 0
0 e 0 e 0 -g 0 -g Y| [0

where {a} and {b} are the forcing terms due to the far-field antiplane shears and the
far-field inplane electric fields as shown in Appendix 3-1, |cl;|, [cl|, |els], [els],

el | and [g},] are defined as follows:

ca O 0 ¢, O 0
0 ¢y - O oy
A O A , (3-20)
0 0 e 0 0 Cus
ee 0 - 0 e, 0 - 0
ey 0 0 ¢ 0
lels | = 15 1 [els]= 1 , (3-21)
0 0 ey 0 0 e
gl 0 0 g, 0 0
0 & 0 0 ¢ 0
)= ¥ I A - (3-22)
0 0 - g 0 0 - g

The matrix [I] is an identity matrix. After obtaining the unknown Fourier coefficients
in Eq. (3-19), the origin of observer system is set to c, in the B, integration as
shown in Fig. 2-4 (b) to obtain the field potential by employing Eq. (2-11). In
determining the stress and electric fields, the gradient of potential should be determined
with care as shown in Section 2.4.3. The flowchart of the present method for anti-plane

piezoelectricity problems is shown in Table 3-2.
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3.4 Illustrative examples and discussions

The exact solution for a single piezoelectric inclusion, which was obtained by Pak [74],
can be derived by using the present formulation. Although our formulation is general for
multiple inclusions, we consider two piezoelectric circular inclusions perfectly bonded
to a matrix which is subjected to the remote shear and electric field as shown in Fig. 3-3.
For the purpose of comparison, the applied loadings and material properties of the
matrix and inclusions are assumed as the same of Pak [74], Chao and Chang [20], Wang
and Shen [88], Wu and Funami [95] and Emets and Onofrichuk [46]. All the numerical
results are given below by using only twenty terms of Fourier series (L =20) since
those are checked to achieve good accuracy under acceptable error tolerance as

compared to those by using the thirty terms.

Case 1: Two piezoelectric circular inclusions parallel to the applied loadings solved by
Chao and Chang

We consider two piezoelectric circular inclusions of radii r, =2r, perfectly bonded to
a piezoelectric matrix which is subjected to the remote shear o =7 and electric
field E” =E_ as shown in Fig. 3-3. In the following discussion, the material
constants of the matrix and two inclusions are assumed as the same of Chao and Chang
[20] by wusing c; =c,, =353x10°Nm~? , g =¢| =151x10°CV*m™ ,
e, =10Cm~* and other values are stated specifically.

In order to examine the accuracy of the present formulation, the stress concentration
factor o, /7 in the matrix at #=0° under remote loadings of 7_=5x10"Nm~
and E_=10°% 0,10 °Vm™ is plotted in Fig. 3-4 (a) as a function of the ratio of
piezoelectric constants e} /e, where the two circular inclusions are arrayed parallel to
the applied loadings (5 =90°) and the distance between two circular inclusions
d/r,=10. It is found that the results displayed in Fig. 3-4 (a) agree very well with
Chao and Chang’s results [20] and approach the Pak’s solution of a single inclusion [74].
The electric field concentration E,/E_ in the matrix at §=0° with E_=10°Vm™
and 7_=5x10", 0, —5x10" Nm~ is plotted in Fig. 3-4 (b) as a function of the ratio

of piezoelectric constants. It is also found that the results in Fig. 3-4 (b) leads to the
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Pak’s solution of a single inclusion [74] since the two inclusions displace far away
(d/r,=10). The electric field concentration E,/E_ occurring at §=0° is plotted in
Fig. 3-5 as a function of the ratio of dielectric constants & /¢, while letting
iy =C,, =3.53x10° Nm™2, e} =e,, =17Cm™? and g, =151x10°CV ' m™. Itis
shown that the electric field concentration approaches two for a large value of <) /¢,
as d/r, =10 which is consistent with Chao and Chang’s results [20] and reduces to
the Pak’s solution of a single inclusion [74]. When the two inclusions approach each
other, both the tangential stress o,, and tangential electric field E, in the matrix
along the boundary of the smaller inclusion are plotted in Figs. 3-6 (a) and 3-6 (b),
respectively, as the piezoelectric constants are fixed at e /e, = 3. Furthermore, we
adopted the Parseval’s theorem to study the convergence rate with different terms of
Fourier series since the boundary densities are continuous on [0, 27 ]. The Parseval’s

theorem are defined as below

27 L
[ TE O do = 2ma + (@), (3-23)
where
L
f(9)=a,+) (a,cosnd+b,sinng). (3-24)
n=1

According to Eqg. (3-23), we have the Parseval’s sum versus various terms of Fourier
series for boundary densities of each circular boundary in anti-plane elastic and in-plane
electric fields as plotted in Figs. 3-7 (a) ~3-7 (h). It is found that no more than 20 terms
can yield convergence. Figures 3-8 (a) and 3-8 (b) respectively show the tangential
stress and tangential electric field distribution that the matrix is subjected to the reversal
of the poling direction as compared to the inclusion due to the negative ratio of
piezoelectric constants e} /e, =—5. The two figures show the consistency between
the present data and those of Chao and Chang in ranges of 8 =0 ~180° except near
0 =90°. It is open for discussions why our results are different from those of Chao and
Chang near #=90°. The tangential stress and tangential electric field are continuous
across #=290° using our formulation while the results of Chao and Chang seems to
have a jump at #=90° for the case of d/r,=0.010.02. For the negative ratio of

ey /e, =—5, the Parseval’s sum versus various terms of Fourier series for boundary
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densities of each circular boundary in anti-plane elastic and in-plane electric fields is
also done in Figs. 3-9 (a) ~3-9 (h). From the convergence test using the Parseval’s
theorem, it is also observed that only few terms of Fourier series can yield convergence

for boundary densities.

Case 2: Two piezoelectric circular inclusions perpendicular to the applied loadings
solved by Chao and Chang

As the two circular inclusions are arrayed perpendicular to the applied loadings
(8=0°), both the stress and electric field concentrations and distributions are also
experienced. When the two inclusions approach each other, both the tangential stress
o,, and tangential electric field E, in the matrix along the boundary of the smaller
inclusion are plotted in Figs. 3-10 (a) and 3-10 (b), respectively, as the piezoelectric
constants are fixed at e\ /e, =—5. After comparing with the results of Chao and
Chang [20], agreement is made except near § =0° and 180°. Variations of stress and
electric field concentrations appear at # =0° with the ratio of piezoelectric constants
as shown in Figs. 3-11 (a) and 3-11 (b). It is seen that, from Figs. 3-11 (a) ~3-12 (b),
both the stress and electric field concentrations are equal to one as € /e), =1 which
are reasonable results due to homogeneity. The stress and electric field concentrations
are plotted in Figs. 3-12 (a) and 3-12 (b) under loadings of various magnitude for a

far-field inplane electric load E_ and a far-field antiplane shear 7_, respectively.

After comparing with the results of Chao and Chang [20], agreement is made except for
the negative value of €[ /e, . However, our results are smoother as shown in Figs. 3-11
(@) ~3-12 (b) which are different from the oscillation behavior in the Chao and Chang’s
paper [20]. To reconfirm our validity of formulation, we choose other cases by others

for comparison.

Case 3: Two piezoelectric circular inclusions under two-direction loadings solved by
Wang and Shen
In this case, the radii of two piezoelectric circular inclusions are r, and r, with

r,=1.5r, and the magnitude of remote loadings are o =7_/2=25x10" Nm?,
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Oy =Ty =5x10"Nm?, E*=E_/2=05x10°Vm and ES=E, =10°Vm. The
distance between the two inclusions is d =0.01r, and the orientation is 3=0°. The
material constants of the matrix and two inclusions are assumed as the same of Wang
and Shen [88] by using cj; =3.53x10° Nm~, c,, =1.00x10° Nm~?, e} =10Cm?,
e, =20Cm~?, & =¢, =151x10°CV'm™.

Figure 3-13 shows that the stress and electric displacement distribution along the x
axis. It is observed that o, and D, are continuous while o, and D, are
discontinuous across the interface between the matrix and inclusions. We also note that
the stress and electric displacement are not uniform within the two inclusions. Figure
3-14 shows the distribution of stress and electric displacement along the interface
between the matrix and the smaller inclusion. Figure 3-15 shows the distribution of
stress and electric displacement along the interface between the matrix and the larger
inclusion. According to these curves, it is found that the normal stress o, and electric
displacement D, in the matrix and inclusion are continuous through the interface due
to the equilibrium and continuity requirement, respectively. Figure 3-16 illustrates the
case when the larger inclusion and the matrix have the same material property. It
indicates that the stress and electric displacement are uniform within the only inclusion.
Figure 3-17 shows the case when the two inclusions are separated far away (d /r, =10).
In this case, the stress and electric displacement are uniform in both of the two
inclusions. Figures 3-18 (a) ~3-18 (c) respectively show the contours of shear stresses

o,l7., o,/7,_ and electric potential ®/E_ subjected to the loadings o, =0,

X 00! 7y

o0

oy =T, E. =0, EF=E_. It reveals that o, and & are anti-symmetric with
respect to the x axis and o, is symmetric with respect to the x axis. There exists
serious amplification at the point where the two inclusions are nearly in contact with
each other. The electric potential is continuous across the interface between the matrix
and each inclusion. The present results agree very well with Wang and Shen’s results

[88].

Case 4: Two piezoelectric circular inclusions with different geometries and material

constants subjected to various loadings solved by Wu and Funami
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In order to analyze the interaction between two piezoelectric circular inclusions
centered on the x axis (3 =0°), we consider the variations of components of stresses
and electric displacements along two different paths, the x axis and the contour
(1.01,0). In Figs. 3-19 (a) ~3-20 (b), the inhomogeneous medium is comprised of the
polymer matrix and two PZT-7A circular inclusions. In Figs. 3-21 (a) ~3-22 (b), PZT-7A
is still chosen as two inclusions and PZT-5 is taken as the matrix to show the interaction
of different piezoelectric media. The material constants used in the numerical
calculation are shown in Table 3-3. Figures 3-19 (a) ~3-19 (c) illustrate the stress and
electric displacement distributions along the x axis when the distance d between
two inclusions is equal to 0.05, 0.5 and 1.5, respectively and only the remote shear
stress o, =7 is applied. From these three figures, it is observed that the varying
gradients of stress and electric displacement components inside two piezoelectric
circular inclusions along the x axis become larger when the distance d decreases. It
means that the interaction of two piezoelectric circular inclusions becomes more
prominent when the distance d tends towards zero. Since the polymer is taken as the
matrix that has no piezoelectric properties, the stress o, and electric displacement
D, tendto 7 and zero, respectively, when the variable x tends to infinity.

To show the effect of the geometric size of the piezoelectric circular inclusion on the
distribution of stress and electric displacement, the radii of two inclusions are taken as
r, =2r, in Fig. 3-20 (a). After comparing with Fig. 3-19 (b), the symmetry of the stress
and electric displacement distributions on the point x =1.25 is broken. The stress field
in the left inclusion is slightly lower while it is relatively higher in the right inclusion. It
indicates a smooth variation when the right inclusion becomes larger. This implies that

the uniform shear stress o,y =7_ at infinity is borne more by the larger inclusion than

the smaller one. For the electric displacement component, a similar variation to the
stress field is found in Fig. 3-20 (a). Figure 3-20 (b) shows the stress and electric
displacement distributions along the contour (1.01,6 ) when only the remote shear stress
o, =T, isapplied. It is seen that the stress o, and electric displacement D, have
an asymmetric distribution and the electro-elastic field o,, and D, have a symmetric

distribution on 6= . The value of stress component o, is relatively low in
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comparison with o, .

To show the interaction of different piezoelectric media and different loadings applied at
infinity, we choose PZT-5 as the matrix and different loadings are applied at infinity in
Figs. 3-21 (a) ~3-22 (b). Figures 3-21 (a) ~3-21 (c) illustrate the stress and electric
displacement distributions along the x axis subjected to the applied loading

E”=E,_ and o, =7_ at infinity, respectively. From Fig. 3-21 (a), it

oo ! X

ES=E
indicates that the stress field o, in two piezoelectric circular inclusions has a different
sign from one in the matrix. Particularly, the stress o, between two inclusions has a
larger varying gradient. In comparison with the stress field, the electric displacement
field has a smooth tendency. From Figs. 3-21 (b) and 3-21 (c), it is seen that the
distributions of stress o, and electric displacement D, are continuous across the
interface between the matrix and inclusions. In comparison with Fig. 3-21 (c), the stress
component between the matrix and right inclusion in Fig. 3-21 (b) has a larger varying
gradient. This means that the electric field intensity E_ has a more important impact
on the distribution of the stress field than the shear stress 7__ .

Figures 3-22 (a) and 3-22 (b) show the stress and electric displacement distributions
along the x axis when two piezoelectric circular inclusions are tangent to each other.
Since two piezoelectric circular inclusions have the same material properties, the stress
component o, and electric displacement component D, at the point x=1 are
continuous. From Fig. 3-22 (a), it is found that the stress field near the tangent point of
two piezoelectric circular inclusions has a larger varying gradient when the electric field
E,” =E_ atinfinity is applied. In comparison with the stress field of Fig. 3-22 (a), the
stress field of Fig. 3-22 (b) has a relatively smooth variation. The present results in Figs.

3-19 (a) ~3-22 (b) agree very well with those solved by Wu and Funami [95].

Case 5: Uncoupling case of in-plane electrostatic problems

As mentioned previously, the present solution on the mechanical and electrical fields
can reduce to the uncoupling case of Emets and Onofrichuk [46] when the coupling
effect between the mechanical and electrical fields of the piezoelectric medium is absent.

Figure 3-23 shows that two dielectric circular inclusions with radii of r, =0.8r,
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imbedded in an infinite dielectric medium are in various uniform electric fields

EX =E.. (E7 Ef)=(E.cos45’, E sind5) and EF =E

X e e}

. applied at infinity,
respectively. The distance between two inclusions is d =0.1r, and dielectric constants
for matrix and each inclusion are ¢,, ¢, and ¢,. lllustrations of the patterns of the
electric field are shown in Figures 3-24 (a) and 3-24 (b) for different compositions of
the dielectric constant, e.g. ¢,=3, =9, ¢,=5 and ¢,=2, =9, ¢ =1.
From these patterns of the electric field, it is observed that the electric field is
continuous across the interface between the matrix and inclusions and agrees well with

those of Emets and Onofrichuk [46].

3.5 Concluding remarks

The present work not only demonstrated an elegant method for solving boundary value
problems but also understood the interesting coupling behaviors between mechanical
and electrical fields that have not been studied previously by using BIE. It was shown
that the concentration behavior of stress and electric fields depends on the distance
between two piezoelectric inclusions, the mismatch in the material constants and the
magnitude of mechanical and electromechanical loadings. In addition, the interaction
between two piezoelectric circular inclusions has a more important effect on the
distributions of stress and electric displacement when the distance between two
inclusions approaches zero or even touches each other. The uncoupling case reduces to
either anti-plane elastic or in-plane electrostatic problems. Singularity free and
boundary-layer effect free are the main gains using the present formulation as well as
the exponential convergence. The present study is useful in designing piezoelectric

composites and in understanding the coupling effects of two inclusions.
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Table 3-1 Analogy between the anti-plane shear deformation and in-plane

electrostatics for anti-plane piezoelectric problems

Anti-plane shear
deformation

Constitutive equations
for anti-plane
piezoelectricity

In-plane electrostatics

Z -displacement W

Electric potential ¢

Strain

Electric field E,

Stress o,

Shear modulus p

Body force f

Shear modulus c,,
Dielectric constant ¢,

Piezoelectric constant e,

Electric displacement D,

Dielectric constant

Charge density p*

Strain-disp. relationship Coupling effect Electricity
Vai = W; _ _e.E E = _CI),i
— 04 = CaVzi —€sE —
Constitutive law Constitutive law
_ D, =esv, +e,E D —cE
O = M7 i —ch
Governing equation of Governing equation of
equilibrium Maxwell
Ojij = — f, Di’i =p
Poisson equation Poisson equation
Vw=—f/u V®=—ple

(134

* Here, p 1is the charge density. The subscript “,” refers to partial differentiation with

respect to the subsequent spatial coordinate

€63 9
1.
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Analytical

Table 3-2 Flowchart of the present method for anti-plane piezoelectricity problems

Laplace problem with circular boundaries

(anti-plane elastic and in-plane electric fields)

Null-field integral equation in Eq. (2-22)

1
|
1
1
| I
part y N !
4 N\ - ) :
! ) Boundary densities for I
! Fundamental solution . , I
! circular boundaries I
| [Degenerate kernels are ) o I
| i i [Fourier series in Eqs. I
| listed in Table 2-2] I
| (2-20) and (2-21)] I
I - AN J !
I e /) |
: ! |
I
: Adaptive observer system in the boundary integrations ;
|

ren et ittt b b b b b b bl i bl 680l e 1

( )

Collocating the null-field point to construct the compatible
relationship among boundary data in Egs. (3-11)~ (3-14)
\ J
Constructing influence coefficients in Table 2-2
|
( )

Numerical
Part

Continuity and equilibrium

conditions of anti-plane elastic
field using Eq. (3-15) and (3-16)

Continuity and equilibrium
conditions of in-plane electric
field using Eq. (3-17) and (3-18)

J

Linear algebraic system in Eq. (3-19)

Obtain the unknown Fourier coefficients in Eq. (3-19)

Boundary integral equation for the domain point in Eq. (2-11)

Vector decomposition technique

Potential gradient for stress and electric fields
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Table 3-3 Electro-elastic material properties

Cy (GPa) e;(Cm~?) £ /&
PZT-7A 25.4 9.2 460
PZT-5 21.1 12.3 916
Polymer 0.64 0 9

Note: permittivity of free space ¢, =8.85x10""> C*N'm™*
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Figure 3-1 Infinite anti-plane piezoelectricity problem with arbitrary number of
circular inclusions under remote shear and electric loadings
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Figure 3-3 Two piezoelectric circular inclusions embedded in a piezoelectric matrix
under remote shear and electric loadings
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Figure 3-10 (a) Tangential stress distributions for different ratios d/r, with
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Figure 3-10 (b) Tangential electric field distributions for different ratios d/r; with
ey /e, =-50 and 3=0°
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Figure 3-13 Stress and electric displacement distributions along the x axis
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Figure 3-14 Stress and electric displacement distributions along the interface between the
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Figure 3-15 Stress and electric displacement distributions along the interface between
the matrix and the larger inclusion
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Figure 3-16 Stress and electric displacement distributions along the x axis for the
case when the larger inclusion and the matrix have the same material property
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Figure 3-17 Stress and electric displacement distributions along the x axis for the
case when the two inclusions are separated far away (d /r, =10)
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Figure 3-18 (b) Contour of shear stress o, /7, when d/r =0.01
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Figure 3-18 (c) Contour of electric potential ®/E_ when d/r, =0.01
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Figure 3-19 (b) Stress and electric displacement distributions along the x axis when
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Figure 3-19 (c) Stress and electric displacement distributions along the x axis when
rn=r, and d=1.5r,
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Figure 3-20 (a) Stress and electric displacement distributions along the x axis when
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Figure 3-22 (b) Stress and electric displacement distributions along the x axis when
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Figure 3-23 The dielectric system of two inclusions in the applied electric field
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Chapter 4 Applications to anti-plane elasticity
problems with circular inclusions

Summary

In this chapter, we apply the null-field integral equation to solve an infinite medium
containing circular holes and/or inclusions with arbitrary radii and positions under the
remote anti-plane shear. The method is basically a numerical method, and because of its
semi-analytical nature, it possesses certain advantages over the conventional boundary
element method. The exact solution for a single inclusion is revisited using the present
formulation and matches well with the Honein et al.’s solution by using the
complex-variable formulation. Several problems of two holes, two inclusions, one
cavity surrounded by two inclusions and three inclusions are examined to demonstrate
the validity of our method. Besides, the convergence test and boundary-layer effect for
the present method and conventional boundary element method are also addressed to
show the validity of the present approach. The proposed formulation can be generalized
to multiple circular inclusions and cavities in a straightforward way without any

difficulty.

4.1 Introduction

The distribution of stress in an infinite medium containing circular holes and/or
inclusions under the remote anti-plane shear has been studied by many investigators.
However, analytical solutions are rather limited except for simple cases. To the author’s
best knowledge, an exact solution of a single inclusion was derived by Honein et al. [56]
using the complex potential formulation. Besides, analytical solutions for two identical
holes and inclusions were obtained by Stief [82] and by Budiansky and Carrier [15],
respectively. Zimmerman [98] employed the Schwartz alternative method for plane
problems with two holes or inclusions to obtain a closed-form solution. In addition,
Sendeckyj [76] proposed an iterative scheme for solving problems of multiple

inclusions. However, the approach is rather complicated and explicit solutions were not
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provided. Numerical solutions for problems with two unequal holes and/or inclusions
were provided by Honein et al. [56] using the Mobius transformations involving the
complex potential. Not only anti-plane shears but also screw dislocations were
considered. Numerical results were presented by Goree and Wilson [50] for an infinite
medium containing two inclusions under the remote shear. Bird and Steele [12] used a
Fourier series procedure to revisit the anti-plane elasticity problems of Honein et al.’s
paper [56]. To approximate the Honein et al.’s problem of infinite domain, an
equivalent bounded-domain approach with the stress applied on the outer boundary was
utilized. A shear stress o, on the outer boundary is used in place of a stress o, at
infinity to approach the Honein et al.’s results as the radius becomes large. Wu [94]
solved the analytical solution for two inclusions under the remote shear in two
directions by using the conformal mapping and the theorem of analytic continuation.
Based on the technique of analytical continuity and the method of successive
approximation, Chao and Young [22] studied the stress concentration on a hole
surrounded by two inclusions. For a triangle pattern of three inclusions, Gong [48]
employed the complex potential and Laurent series expansion to calculate the stress
concentration. Complex variable boundary element method (CVBEM) was utilized to
deal with the problem of two circular holes by Chou [43] and Ang and Kang [1],
independently. To provide a general solution to the anti-plane interaction among
multiple circular inclusions with arbitrary radii, shear moduli and location is not trivial.
Mathematically speaking, only circular boundaries in an infinite domain are concerned
here. Mogilevskaya and Crouch [71] have also employed Fourier series expansion
technique and used the Galerkin method instead of collocation technique to solve the
problem of circular inclusions in 2-D elasticity. The advantage of their method is that
one can tackle a lot of inclusions even inclusions touching one another. However, they
did not expand a fundamental solution into a degenerate kernel in the polar coordinate.
Another disadvantage is that their method can not reduce to cavity problems using the
formulation for inclusions, as quoted by Mogilevskaya’s Group, “This approach,
however, could not simply treat a hole as a limiting case of an inclusion with zero

elastic properties. This is because, for the problem of a hole, the tractions are usually
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prescribed on the hole boundary and, this problem is therefore governed by a different
boundary integral equation - a complex hypersingular equation written in terms of
unknown displacement.” Our formulation can treat cavity problems as a limiting case of
inclusion problems with zero elastic properties. Chen and his coworkers [36, 38] have
successfully solved the anti-plane problem with circular holes and/or inclusions using
the null-field integral equation in conjunction with the degenerate kernel and Fourier
series. The extension to biharmonic problems was also implemented [29].

By introducing a multi-domain approach, an inclusion problem can be decomposed into
two parts. One is the infinite medium with circular holes and the other is the problem
with each circular inclusion. After considering the continuity and equilibrium conditions
on the interface between the matrix and inclusion, a linear algebraic system is obtained
and the unknown Fourier coefficients can be determined. Then, the field potential and
stress are easily obtained. Furthermore, an arbitrary number of circular inclusions can be
treated by using the present method without any difficulty. One must take care the
vector decomposition in using the adaptive observer system for the nonconfocal case.
Also, the boundary stress is easily determined by using series sums instead of
employing the sense of Hadamard principal value. A general-purpose program for
arbitrary number of circular inclusions with various radii, arbitrary positions and shear
moduli was developed. The infinite medium with multiple circular holes [36] can be
solved as a limiting case of zero shear modulus of inclusions by using the developed
program. Several examples solved previously by other researchers [15, 22, 48, 50, 56,
82, 94] were revisited to see the accuracy and efficiency of the present formulation. In
addition, the test of convergence is done and the boundary-layer effect for the

calculations of stresses is also addressed.

4.2 Problem statements and mathematical formulation

The displacement field of the anti-plane deformation is defined as:
UZVZOv W:W(va)’ (4_1)
where w is the only nonvanishing component of displacement with respect to the

Cartesian coordinate which is a function of x and y. For a linear elastic body, the

82



stress components are

ow
=pu—, 4-2
T = M (4-2)
L 43
zy H ay’ ( - )
where 4 is the shear modulus. The equilibrium equation can be simplified to
Oo 0o
g Y0, 4-4
OX oy (4-4)
Thus, we have
’w  *w  _,
—+—=V'w=0. 4-5
ox> oy’ (4-5)

Equation (4-5) indicates that the governing equation of this problem is the Laplace
equation. For the stress field described in the polar coordinate, it also follows the
anti-plane shear deformation in Table 3-1 or can be superimposed by o, and o, in
Egs. (4-2) and (4-3) as

0, =0,C08¢+0,siNg, (4-6)

0,y =—0,SN¢p+0,C05¢, (4-7)

where o, and o, are the normal and tangential stresses, respectively. Here, we
consider an infinite medium subject to N circular inclusions bounded by the B,
contour (k=1,2,---, N) for either the matrix or inclusions under the anti-plane shear
o, and oy at infinity or equivalently under the displacement
W* =0, X/ p+oyylp atinfinity as shown in Fig. 4-1 (a). By taking the free body
along the interface between the matrix and inclusions, the problem can be decomposed
into two systems. One is an infinite medium with N circular holes under the remote
shear and the other is N circular inclusions bounded by the B, contour which
satisfies the Laplace equation as shown in Figs. 4-1 (b) and 4-1 (c), respectively. From
the numerical point of view, this is the so-called multi-domain approach. For the
problem in Fig. 4-1 (b), it can be superimposed by two parts. One is an infinite medium

under the remote shear and the other is an infinite medium with N circular holes

which satisfies the Laplace equation as shown in Figs. 4-1 (d) and 4-1 (e), respectively.
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This part was solved efficiently by Chen et al. [36] using the null-field equation
approach which is adapted here again. Therefore, one exterior problem for the matrix is
shown in Fig. 4-1 (e) and several interior problems for nonoverlapping inclusions are
shown in Fig. 4-1 (c). According to the null-field integral formulation, the two problems
in Figs. 4-1 (e) and 4-1 (c) can be solved in a unified manner since they both satisfy the

Laplace equation.

4.3 Matching of interface conditions and solution procedures

After decomposing the inclusion problems into two parts, we employ the null-field
approach to handle one exterior Laplace problem for the matrix as shown in Fig. 4-1 (e)
and several interior Laplace problems for nonoverlapping inclusions as shown in Fig.
4-1 (c). By collocating the null-field point on the boundary, the linear algebraic system
Is obtained from Eq. (2-22).

For the exterior problem of matrix in Fig. 4-1 (e), we have

UM — e} = [T [ —w (4-8)
For the interior problem of each inclusion in Fig. 4-1 (c), we have

U'{e =T [{w' ] (4-9)

where the superscripts “M ” and “1 ” denote the matrix and inclusion, respectively. The
degenerate kernels [UM ] [TM ] [U'] and [T'] and Fourier series {WM } {t“" }
{w=}, {e=}, {w'} and {'} employed in the null-field equation can be found in
Chapter 2. It is noted that {w>} and {t*} in Fig. 4-1 (d) are the displacement and
traction field due to the remote shear, respectively.

According to the continuity of displacement and equilibrium of traction along the kth

interface, we have the two constraints

{w"}={w'} on B, (4-10)

o {t" } =—[n,]{t'} on B, (4-11)

where [p,] and [, ]| are defined as follows:
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g O - 0 g 0 - 0
0 4, - O 0 4 - O

o] =] . Cd=l (4-12)
0 0 - g 0 0 - p
where g, and g, denote the shear modulus of the matrix and the kth inclusion,
respectively. By assembling the matrices in Egs. (4-8) ~(4-11), we have
™ U™ 0 o0 |[w"

, (4-13)

C
t 0
I 0 00 || w 0
0 n, 0 p |t 0
where {c} is the forcing term due to the remote shear stress and [I] is the identity
matrix. The calculation for the vector {c} is elaborated on later in Appendix 2. After
obtaining the unknown Fourier coefficients in Eq. (4-13), the origin of observer system
issetto c, inthe B, integration as shown in Fig. 2-4 (b) to obtain the field potential
by employing Eq. (2-11). In determining the stress and electric fields, the gradient of
potential should be determined with care as shown in Section 2.4.3. The flowchart of
the present method for anti-plane elasticity problems is shown in Table 4-1.
Except the foregoing formulation, one can also treat the anti-plane shear deformation as
a limiting case of the anti-plane piezoelectricity problems when the coupled effect
between the mechanical and electrical fields is absent or the piezoelectric constant are
equal to zero. It is obvious to observe that the resulted linear algebraic system in Eq.
(4-13) can be obtained from Eq. (3-19) after taking off the influence terms of the

coupling parts.

4.4 Illustrative examples and discussions

First, we derive an exact solution for a single inclusion using the present formulation in
Appendix 3. Symbolic software of Mathematica is employed to solve a 2L+1 by
2L +1 sparse matrix by using the induction concept. Then, seven problems solved by

previous scholars are revisited by using the present method to show the generality and

85



validity of our formulation. Besides, we demonstrate the problem of interaction of two

cavities in Case 1 to compare the present method with the conventional BEM.

Case 1: Two equal-sized holes lying on the x axis (a limiting case)

Figure 4-2 (a) shows the geometry of two equal-sized holes in the infinite medium
under the remote shear o, =7 . The stress concentration of the problem is illustrated
in Fig. 4-2 (b). It indicates that the present result agrees well with the analytical solution
of Steif [82] and those obtained by Chao and Young [22] even though the two holes
approach each other. Figure 4-2 (c) shows that only few terms of Fourier series can
obtain good results. However, more nodes are required by using the conventional BEM
to achieve convergence. Our formulation is free of boundary-layer effect instead of
appearance by using the conventional BEM when the stress o,, near the boundary as
shown in Fig. 4-2 (d). Stress concentration factors and errors for various distances
between two holes by using the present method and the conventional BEM are listed in
Table 4-2. These results show that the present method is more accurate and effective
than those of the conventional BEM. Under the same error tolerance, the CPU time of
the present method is fewer than that of the conventional BEM. Besides, it is noted that
more terms of Fourier series are required to capture the singular behavior when the two

holes approach each other.

Case 2: Two identical inclusions locating on the x axis
We consider two identical elastic inclusions of radii r, =r, and shear moduli x, = s,

embedded in an infinite medium subjected to the remote shear o, = at infinity [15]

as shown in Fig. 4-3 (a). Figure 4-3 (b) shows that stress concentration factor
diminishes when the inclusion spacing increases. We note that the mathematical model
of rigid-inclusion problem is equivalent to that of uniform potential flow past two
parallel cylinders with no circulation around either cylinder. The remote shear

o, =7, Issimilar to the velocity V_ inthe x direction at infinity and the velocity

ZX

field is similar to the stress field [66].
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Case 3: Two circular inclusions locating on the x axis

Two inclusions with radii of r, and r, under the remote shear are considered in Fig.
4-4 (a). The stress distributions in the matrix including the radial component o, and
the tangential component o,, around the circular boundary of radius r, are plotted in
Figs. 4-4 (b) and 4-4 (c) for various inclusion spacings when the two inclusion radii are
equal-sized (r,=r, ). Two limiting cases are considered for rigid inclusions
( mlpg=p,lpy =00 , 10° in the real computation) and for cavities

(! pg = pip I 1ty =0.0). It can be found that o,, =0 or o, =0 for rigid inclusions

or cavities as predicted for the single inclusion or cavity, respectively. Moreover, the
nonzero stress components for these two cases are identical when the stress components
at infinity are interchanged, i.e. the stresses around the circular boundary o, in one
case equals to o,, for the other case due to the analogy of mathematical model. It can
be seen from Figs. 4-4 (b) and 4-4 (c) that unbounded stress apparently occurs at
¢ =180" under the condition of o, =7 for rigid inclusions or o =7 for
cavities when two inclusions approach closely or even touch each other. In Figs. 4-4 (d)
and 4-4 (e), the variation of stresses around the circular boundary of radius r; is shown
versus radius r, for a fixed separation of d =0.1r,. More terms of Fourier series are
required to capture the singular behavior when the two inclusions approach each other
as well as the two radii of inclusions are quite different. The present results match very

well with those by Goree and Wilson [50].

Case 4: Two circular inclusions locating on the y axis

The infinite medium with two elastic inclusions is under the uniform remote shear
o, =T, - The first inclusion centered at the origin of radius r, with the shear modulus
w, =2u,/3 and the other inclusion of radius r,=2r, centered on Yy axis at
rL+r,+d (d=0.1r) with the shear modulus ., =13,/7 are shown in Fig. 4-5 (a).
In order to be compared with the Honein et al.’s data obtained by using the Mdbius
transformations [56], the stresses along the boundary of radius r, is shown in Fig. 4-5
(b). It satisfies the equilibrium traction along the interface of circular boundary. The

stress concentration factor reaches maximum at 6 =0° in the matrix. Figure 4-5 (c)
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shows that only few terms of Fourier series can also yield acceptable results. Figures
4-5(d) and 4-5 (e) indicates that our formulation is free of boundary-layer effect since
stresses o, and o,, near the boundary can be smoothly predicted, respectively. The
key to eliminate the boundary-layer effect is that we introduce the degenerate kernel to
describe the jump behavior for potential in interior and exterior regions as shown in

Table 2-2.

Case 5: Two inclusions locating on the x axis under the two-direction shears

In Fig. 4-6 (a), the parameters used in the calculation are taken as r =r,,

OC_

O-ZX

Oy =Ty My=0185 and p, =pu, =4.344 . Figure 4-6 (b) shows stress
distributions o, and o, along the x axis when d=0.1. It can be seen that the
stress component o, is continuous across the interface between two different
materials and has a peak value between two inclusions. The stress component o, is
discontinuous across the interface of two different materials. Figures 4-6 (c) and 4-6 (d)
illustrate stress distributions of o, and o, along the x axis when d=0.4 and

X

d =1.0, respectively. Both figures indicate that stress components of o, and o,

2
have similar changing curves to those of Fig. 4-6 (b). However, it should be noted that
the maximum value of stress component o, drops when the distance d between the
two inclusions increases. Figure 4-6 (e) illustrates the normal stress distributions o,
along the contour (1.001,6) for various cases of d =0.1, 0.5 and 1.0. It shows that
the shear stress o, increases as the distance d between the two inclusions decreases
at the point where two inclusions approach each other. However, the distance d has a
slight effect on o, when the angle is in the range of 90° < < 320°. Figure 4-6 (f)
illustrates the tangential stress o,, distributions along the contour (1.001,6 ) for
various distances of d =0.1, 0.5 and 1.0. It should be noted that the absolute value
of tangential stress o,, is very small in comparison with that of o, . Figure 4-6 (g)
illustrates the variation of stress components o, and o, in the matrix at the point
(1.001,0°) versus the distance d between the two inclusions. From the figure, it can be

seen that stress components o, and o, become larger when the two inclusions

approach each other. However, stress components o, and o, tend smoothly to the
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constant when the two inclusions separate away. Figure 4-6 (h) shows stress
distributions o, and o, alongthe x axis when the two inclusions touch each other.
It can be seen that the shear stress o,  has a peak value at the touched point. For the
increasing value of x, o, tends to match the remote shear 7. Besides, the stress
component o, is continuous at the tangent point (x/r, =1.0) and has a discontinuous
jump on the interface between the matrix and inclusion (x/r, =3.0). The present results
in Figs. 4-6 (b) ~4-6 (h) agree very well with the Wu’s data [94]. Only the stress
component o, at the touched point is lower than the Wu’s data as shown in Fig. 4-6
(h), since separate Fourier expansions on the two boundaries are described for the

touched inclusions in our formulation.

Case 6: One hole surrounded by two circular inclusions

Figure 4-7 (a) shows that a circular hole centered at the origin of radius r, is
surrounded by two circular inclusions (d/r, =1.0) with the equal radius r,=r, =2r,
and equal shear modulus p, = p, under the remote shear o, =7_. We solved the
distribution of the tangential stress along the circular hole influenced by the surrounding
inclusions when they are arrayed in parallel (5 =0°) or perpendicular (8 =90") to the
direction of uniform shear as shown in Figs. 4-7 (b) and 4-7 (c). It is found that, when a
hole and two inclusions are arrayed parallel to the applied load (3 =0"), the stress
concentration factor, reaching maximum at 6 =90° along a circular hole, increases (or
decreases) as the neighboring hard (or soft) inclusions approach a circular hole as
shown in Figs. 4-7 (b) and 4-7 (d). On the contrary, when a hole and two inclusions are
perpendicular to the applied load (5 =90"), the stress concentration factor, reaching
maximum at 6 =90, decreases (or increases) as the neighboring hard (or soft)
inclusions approach a circular hole as shown in Figs. 4-7 (c) and 4-7 (e). Our numerical

results match very well with those of Chao and Young’s [22].
Case 7: Three identical inclusions forming an equilateral triangle

Figure 4-8 (a) shows that three identical inclusions (r,=r, =r;) subjected to the

uniform shear stress o, =7 at infinity. The three inclusions form an equilateral
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triangle and are placed at a distance 4r, apart. Besides, the distance between each two
inclusions is d =2r,. We evaluate the hoop stress o,, in the matrix around the
boundary of the inclusion located at the origin as shown in Fig. 4-8 (b). Good agreement
is obtained between the Gong’s results [48] and ours. It is obvious that the limiting case
of circular holes ( g /py =,/ 1ty =3/ 1y =0.0) leads to the maximum stress
concentration at 6 =0°, which is larger than 2 of a single hole due to the interaction
effect. It is also interesting to note that the stress component o,, vanishes in the case of
rigid inclusions (/g = 1,/ 11y = 15/ 1y = 00, 10° in the real computation), which
can be explained by a general analogy between solutions for traction-free holes and

those involving rigid inclusions.

4.5 Concluding remarks

A semi-analytical formulation for multiple circular inclusions with arbitrary radii,
moduli and locations using degenerate kernels and Fourier series in the adaptive
observer system was developed to ensure the exponential convergence. Generally
speaking, only ten terms of Fourier series (L=10) can yield the acceptable and
accurate results. More terms of Fourier series are required to capture the singular
behavior when the two inclusions approach each other as well as the two radii of
inclusions are quite different. The singularity and hypersingularity were avoided after
introducing the concept of degenerate kernels for interior and exterior regions. Besides,
the boundary-layer effect for the stress calculation near the boundary is eliminated since
the degenerate kernel can clearly describe the jump behavior from interior to exterior
domains. The exact solution for a single inclusion was also re-derived by using the
present formulation. Several examples investigated by Steif, Budiansky and Carrier,
Goree and Wilson, Honein et al., Wu, Chao and Young, and Gong were revisited,
respectively. Good agreements were made after comparing with the previous results.
Regardless of the number, size and the position of circular inclusions and cavities, the
proposed method can offer good results. This “semi-analytical” result may provide a

datum for comparison when other numerical methods are used.
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Table 4-1 Flowchart of the present method for anti-plane elasticity problems

Analytical

[ Laplace problem with circular boundaries
[ Null-field integral equation in Eq. (2-22)
¥ R
4 Y4 )

Boundary densities for
circular boundaries
[Fourier series in Egs.
(2-20) and (2-21)]

Fundamental solution
[Degenerate kernels are
listed in Table 2-2]

o /

Adaptive observer system in the boundary integration

Numerical

Collocating the null-field point to construct the compatible
relationship among boundary data in Egs. (4-8) and (4-9)

Constructing influence coefficients in Table 2-2

Assembling Egs. (4-10) and (4-11) by using the continuity of
displacement and equilibrium of traction along the interface

Linear algebraic system in Eq. (4-13)

Obtain the unknown Fourier coefficients in Eq. (4-13)

Boundary integral equation for domain point in Eg. (2-11)

\ector decomposition technique

Potential gradient for the stress field
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Table 4-2 Stress concentration factors and errors for various distances between two holes using the present approach and BEM

d/r, 0.01 0.2 0.4 0.6 0.8 1.0

c Analytical solution [82] 14.2247 3.5349 2.7667 2.4758 2.3274 2.2400
9
© B 10.5096 3.5306 2.7664 2.4758 2.3274 2.2400
b L=10
L Present (26.12%) (0.12%) (0.01%) (0.00%) (0.00%) (0.00%
C
3 S method B 13.3275 3.5349 2.7667 2.4758 2.3274 2.2400
c L=20
Q E (6.31%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%)
@ node — 21 7.2500 3.4532 2.738 2.4639 2.3168 2.2366
® BEM o (49.03%) (2.31%) (1.04%) (0.48%) (0.46%) (0.15%)
5 BEPO2D node — 41 10.2008 3.5188 2.7619 2.4747 2.3312 2.2398

o (28.29%) (0.46%) (0.17%) (0.04%) (0.16%) (0.01%)

Data in parentheses denote error.
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Chapter 5 Conclusions and further research

5.1 Conclusions

In this thesis, we proposed a null-field integral equation approach for piezoelectricity
problems with circular inclusions under anti-plane condition. Apparently, this is a very
useful, semi-analytical and numerical method, and it can provide accurate solutions for
multi-inclusion interaction problems. Based on the proposed formulation for solving
boundary value problems involving circular holes and/or inclusions, some concluding

remarks are itemized as follows:

1. A unified formulation for solving boundary value problems with circular holes
and/or inclusions was proposed successfully in this thesis although our main
applications are limited to Laplace problems. Regarding the null-field approach,
degenerate kernels for fundamental solutions and Fourier expansions for boundary
densities were adopted in the adaptive observer system. Piezoelectricity problems
with circular inclusions as well as the uncoupling cases, in-plane electrostatic and
anti-plane elastic problems, were examined to verify the accuracy of the present
formulation for various sizes, locations, material constants and magnitudes of
applied loadings. All the numerical results match well with those of other

approaches and analytical solutions.

2. The singularity and hypersingularity were avoided due to the introduction of
degenerate kernels for interior and exterior regions separated by the circular
boundary. Instead of directly calculating principal values, all the boundary integrals
can be performed analytically by using the degenerate kernel and Fourier
expansion. Therefore, the present approach is seen as a “semi-analytical” approach

since error only ascribes to the truncated Fourier series.

3. Boundary-layer effect for the calculation of stress near the boundary was

eliminated since degenerate kernels can clearly describe the jump behavior of
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potential from interior to exterior domains, respectively. Numerical results indicate
that the stress across the near boundary stress can be described smoothly by using
the present approach without any treatments of regularization, transformation or

other techniques. Boundary-layer effect free is inherent in the present approach.

The convergence study shows that only a few terms of Fourier series can yield
acceptable results and the convergence rate is fast. It is because that the use of
degenerate kernels for fundamental solutions and Fourier expansions for boundary

densities leads to the exponential convergence.

The influence matrix in the linear algebraic system using the present formulation is
well-posed since the jump behavior of potential distribution was separately
described in different regions by using the degenerate kernels for the representation

of fundamental solutions.

Four goals of singularity free, boundary-layer effect free, exponential convergence

and well-posed model are achieved.

Adaptive observer system and vector decomposition technique were employed to
efficiently calculate the invariant of direction derivative of potential gradient using

the hypersingular formulation.

To the author’s best knowledge, the studies of more than “two” circular inclusion
problems are very few. We have presented an approach for solving problems with
multiple circular inclusions. Since analytical solutions are not available, our

semi-analytical results may provide a datum for other researchers’ reference.
The results of two equal-sized holes, e.g. convergence test, boundary-layer effect

detection and error analysis, demonstrate the superiority of present method over

the conventional boundary element method on the basis of the same number of
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10.

degrees of freedom.

A general-purpose program for solving Laplace problems involving an infinite
domain with multiple circular inclusions of various radii, arbitrary positions and
different material constants was developed. Its possible applications in engineering

are very broad, not only limited in this thesis.

5.2 Further studies

In this thesis, our formulation has been applied to solve anti-plane piezoelectricity

problems with circular inclusions as well as in-plane electrostatic and anti-plane elastic

problems by using the degenerate kernels for representing fundamental solutions and

Fourier expansions for expanding boundary densities in the null-field integral equation.

However, several issues are worth to be further investigated as follows:

Although it seems that the applications is limited for circular holes and/or
inclusions, the idea and algorithm of the thesis can be extended to problems of
general boundaries. Once the degenerate kernel and expansion of boundary
densities are available. Therefore, three-dimensional problems with spherical

cavities and/or inclusions can be solved in a similar way.

For problems with straight (crack and regular) boundaries, our method can also be
applied by changing the dummy variable 6 into R.How to expand the boundary
density along the line is a challenge to ensure the orthogonal property with respect

to bases of degenerate kernels.

We have demonstrated our formulation through several engineering applications
which satisfy the Laplace equation. Engineering problems involving multiple
inclusions under various loading types, e.g. concentrated forces, screw dislocations,
edge dislocations, torques, in-plane shears and in-plane tensions, and with other

inhomogeneous types, e.g. coated fibers, inclusions with imperfect interfaces and
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composite bars, may be considered. The main difficulty of screw dislocation is that
the Green’s third identity can not be directly applied. On the other hand, we may
apply the same procedure to other fields, e.g. the heat transfer in finite tissue with

blood vessels in biomechanics.

The asymptotic behavior of 1/+/c for stresses near two approaching inclusions
can be numerically studied using the present formulation with higher number of

terms in Fourier series.

It is well known that the Green’s function can be derived by various methods.
Null-field approach also provides an alternative way to construct the Green’s

function.

Half plane and half space problems with multiple inclusions can be solved by using
the present approach in a straightforward way after introducing the image concept

to match our model.

The fundamental solution was expanded to degenerate kernels with respect to a
single center for the eccentric case by the separable technique. Hence, the adaptive
observer system was required to fully capture the geometry of each circle. The
bi-center expansion technique for the source and field systems may be suitable for
the eccentric case in a straightforward way such that adaptive observer system is

not required.

Mogilevskaya and Crouch have used the Galerkin method instead of collocation
technique for multiple circular elastic inclusions. The present approach can be
extended to the Galerkin formulation only for circular and annular cases. If

bi-center expansion is feasible, the Galerkin formulation can be directly applied.

According to the limit of computer hardware, it may be difficult for solving large
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scale problems. After employing the fast algorithm technique, large scale problems

can be solved easily. This is the hot topic of BEM research in recent years.

The phenomenon of degenerate scale using the proposed formulation for solving
Laplace problems containing multiple circular holes has been studies by Chen and
Shen. Whether the degenerate scale exists for Laplace problems containing
multiple circular inclusions needs further study. To deal with the problem of
degenerate scale, possible remedies including the method of adding a rigid body
term, dual formulation and SVD updating technique may be alternatives to

overcome the rank-deficiency problem.
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Appendix 1 Calculation for the forcing term in
the anti-plane piezoelectricity formulation

According to the constitutive equation due to the coupling behavior in Eq. (3-4), the
displacement and traction fields in the infinite medium due to the far-field shear o,

o, andelectric field E*, E* inFig.3-2(c) yield

M oo
> LenEX +eiE
Wf)C — O-ZX +M15 X X+ M15 y y’ (Al'l)
Cua C44
8W°° +eME™ +eME™
t>° — ( O % 15 X n, + M15 y ny)’ (A1-2)
an o c44

where the unit outward normal vector on the boundary is n=(n,,n ). By comparing

Eqg. (3-11) with the first row of Eq. (3-19), we have
fa) = [T }{u e} (A1)

For the circular boundary where the original system is located, the boundary conditions

due to the far-field shear and electric field are

% | aME® 0°°—|—eM EX .
we = et 5 poogg 1 T8 TS pging, (Al-4)
Cua Caa
e Exr oy tesEr
44 Caa

Considering the boundary condition, due to the far-field shear and electric field, on the

kth circular boundary with respect to the observer system, we have

" _—ZX 2 sk (e, + 1, cosf )+¢(€ +r.sind,), (A1-6)
44 44

t;fc _ ( O x ~ e 15 Ex COS@ +¢s|ng ) (Al-?)
44 44

where e, and e, respectively denote the eccentric distance of kth inclusion in the

x and y direction. By comparing Eq. (Al-5) with Eqg. (A1-7), we find that t> can
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be described in any observer system without any change, where 6, denotes the polar
angle in the adaptive observer coordinate system. For the forcing term {b} due to the
far-field electric field without the coupling behavior, it can be obtained in a similar way

as the forcing term {a}.
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Appendix 2 Calculation for the forcing term in
the anti-plane elasticity formulation

According to Egs. (4-2) and (4-3), the displacement and traction fields in the infinite

medium due to the remote shear o, and o, inFig.4-1(d)are

o0 [o¢]

o
we =Ty 20y (A2-1)
Ho Ky
ow 0°°
tOC ZX zy n ’ A2_2
3 n ( uo y) ( )

where the unit outward normal vector on the boundary is n=(n,,n ). By comparing

Eq. (4-8) with the first low of Eq. (4-13), we have
fo) =} [u" e} (A2-9)

For the circular boundary where the original system is located, the boundary conditions

due to the remote shear are

o0 oo

o g, .
WX =2, cosf, +—>r,sin6,, (A2-4)
Ho Ho
‘ o o, .
t* = —(—2cosf, +—2Lsind,). (A2-5)
Ho Ho

Considering the boundary condition, due to the remote shear, on the kth circular

boundary with respect to the observer system, we have

00 0_00 .
W =22 (e, + 1, c0s0,) +—2 (&, + 1, sind,), (A2-6)
My 0
t; =—(—*--cosb, + sing,), (A2-7)
oy Ko

where e, and e, respectively denote the eccentric distance of kth inclusion in the
x and y direction, and 6, is the polar angle in the adaptive observer coordinate

system. It is found that t> can be described in any observer system without changes.
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Appendix 3 Derivation of the exact solution for a
single elastic inclusion

We derive the exact solution for anti-plane problem with a single elastic inclusion under

the remote shear using the present formulation. The infinite medium under the shear

stress o, =0 and oy =7

(4-8) can be written as

o= |

) {tm}:‘ Ho [

T+«

T+«

at infinity is considered. The Fourier coefficients in Eq.

(A3-1)

where r, is the radius of the single inclusion. By substituting the appropriate

degenerate kernels in Egs. (2-16) and (2-17) into Egs. (4-8), (4-9) and employing the

continuity of displacement and the equilibrium of traction along the interface in Egs.

(4-10) and (4-11), the unknown boundary data in Eq. (4-13) can be obtained using the

symbolic software Mathematica as shown below:

0
0

R Wy
0
0

271,

(2L+1)x1

e}

125

0
0

_2Toc:u’l

to (to + 14y)

0
0

(2L+1)x1

, (A3-2)



0 0
0 0
271, 27
Wh=tm+rmt L {th = tmp (A3-3)
0 0
0 (2L+1)x1 0 (2L+1)x1

After substituting Egs. (A3-1) and (A3-2) into the boundary integral equation for the

domain point in Eq. (2-11), we obtain the total stress fields in the matrix
M

2
M 00 L
o, = +o, =27 ———=SINpCos¢,
° Ox P* o + 1y (A3-4)
n<p<oo, 0<¢<2m,
v W e R

% Ho — 4 2 . 2
Oy =lg——+ 0, =T, —5——=(COS"p—sin“ @) +1_,
ey T P° 1o+ 14 (A3-5)

L<p<oo, 0<¢<2r.
After substituting Eqg. (A3-10) into the boundary integral equation for the domain point

in Eq. (2-11), we have the total stress fields in the inclusion

I
Uzlx:ll’laaizoi OSpSI’l, 0<¢<2m, (A3'6)
X
[
az'y:,u,l—aw —or M

oy T o 1y

Finally, the stress components o, and o, in Egs. (4-6) and (4-7) can be

, 0<p<rn, 0<o<2r. (A3-7)

superimposed by using o, and o, asshown below:
2

oM =27 LM ging, r<p<oco, 0<o<2m, (A3-8)

P Mot iy
2

oM =27 Bt cosp, r<p<oo, 0<p<2n, (A3-9)
[

ol =27 —M sing, 0<p<r, 0<¢p<2m, (A3-10)
Ho =+ 1y

ol =2r 1 cosg, 0<p<r, 0<p<2r. (A3-11)
Ho =+ 1y

It is obvious to see that the maximum stress concentration occursat p=r, and ¢=0.
The stress concentration factor is reduced due to the inclusion in comparison with that

of cavity (1, =0) as shown in Eqg. (A3-9). Besides, it is noted that o coincides with
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! as required by the traction equilibrium on the interface between the matrix and

r

inclusion. The exact solution for a single elastic inclusion using the present formulation

o

matches well with the previous one obtained by employing the complex-variable

formulation [56].
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Wu and Funami’s data [95] for Figure 3-21 (a)
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Wu and Funami’s data [95] for Figure 3-21 (c)
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Wu and Funami’s data [95] for Figure 3-22 (a)
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Wu and Funami’s data [95] for Figure 3-22 (b)
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Emets and Onofrichuk’s data [46] for Emets and Onofrichuk’s data [46] for
Figure 3-24 (a) Figure 3-24 (b)
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Budiansky and Carrier’s data [15] for Figure 4-3 (b)
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Goree and Wilson’s data [50] for Figures 4-4 (b) and 4-4 (c)
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Goree and Wilson’s data [50] for Figures 4-4 (d) and 4-4 (e)
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Honein et al.’s data [56] for Figure 4-5 (b)
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Wu’s data [94] for Figure 4-6 (b) Wu’s data [94] for Figure 4-6 (e)
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Wu’s data [94] for Figure 4-6 (d) Wu’s data [94] for Figure 4-6 (Q)
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Wu’s data [94] for Figure 4-6 (h)

149



All the copyrights of figures belong to the corresponding
journals and authors listed in References.

4 —
. —mm e iy e L=
| .- e Ll T oy

P = =qU
fEm T
- = =0 5 W — =1

— e | [J bl

o 3 e = i}

———— =10

Taltg
=
|

-4
T T I T I T | L] | T I T I : | L J J I J | s |
@ L ] 180 240 A0 60 L €l 130 185 2411 3 LI
i (degree) & (degree)

Chao and Young’s data [22] for Figure 4-7 (b) Chao and Young’s data [22] for Figure 4-7 (c)
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Chao and Young’s data [22] for Figure 4-7 (d) Chao and Young’s data [22] for Figure 4-7 (e)
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Gong’s data [48] for Figure 4-8 (b)
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