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ABSTRACT

It is well known that rank deficiency occurs in BEM
for degenerate boundary. The conventional BEM is
difficult to solve the problem which contains degenerate
boundary without decomposing the domain to
multi-regions. Therefore, the hypersingular integral
equation is used to ensure a unique solution for the
problem containing a degenerate boundary. By
combining the singular and hypersingular equations it’s
termed dual BEM due to its dual frame. By employing
the SVD technique to the four influence matrices, it is
interesting to find that true information in physics due to
rigid body mode is found in the right unitary vector with
respect to the corresponding zero singular value while the
degenerate boundary information in mathematics is
imbedded in the left unitary vector. In this paper, we use
the dual BEM to determine the torsional rigidity of an
elliptic bar containing a double-edge crack. The role of
the right and left unitary vectors of SVD in the dual BEM
is also discussed in this work.
Keywords: degenerate boundary, dual BEM, null-field
integral equation, SVD, torsional rigidity.

1. INTRODUCTION

In 1956, Kinoshita and Mura [1] derived the singular
boundary integral equation for elasticity. Later, the
boundary element method (BEM), or sometimes called
boundary integral equation method (BIEM), has been
used efficiently since Rizzo [2] discretized the integral
equation for elastostatics in 1967. Over twenty years, the
main applications were limited in boundary value
problems (BVPs) without degenerate boundary, because
the degenerate boundary caused the rank deficiency of
influence matrices ([U] and [T]) in the conventional
BEM. Traditionally, the multi-domain BEM was
presented to solve the nonunique solution by employing
an artificial boundary in the two decades (1960-1988). In
other words, we must decompose the domain to
sub-domains for solving this kind of problems [3]
However, the main spirit and merit of BEM is that we
only need to deal with the real boundary of the problem.
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Figure 1 The dual frame of [U] ~ [T] ~ [L] and [M]

Obviously, domain decomposition of problems has
disobeyed the main object.

In order to solve the problems containing a
degenerate boundary (e.g., crack problems [3-8], sheet
pile problems [9-11] and thin airfoil problems [12-14])
directly, Hong and Chen [16] presented the dual
boundary integral equations to solve fracture mechanic
problems. This dual system incorporates the
displacement and traction boundary integral equations.
The dual integral formulations have been applied
successfully. By introducing the hypersingular equation,
the influence matrices ([U]~[T] and [L]~ [M]) have a dual
framework as shown in Fig. 1. By using the dual integral
formulation, even the problem containing degenerate
boundary can be solved efficiently in a single domain. It
was not necessary to decompose the domain anymore by
discretizing the boundary of domain.

Torsion problems of a circular bar with a single edge
crack [16, 17], a circular bar with circular
holes/inclusions [18, 19] or an elliptic bar with elliptic
holes/ inclusions [20] had been solved in the past. Mi and
Aliabadi [21] even extended two-dimensional cases to
three-dimensional crack problems. But they did not
discuss the phenomenon of physics and mathematics in
the dual BEM to the authors’ best knowledge.

By employing singular value decomposition
technique [22] with respect to the four influence matrices
([U7 ~ [T] ~ [L]and[M]) in the dual BEM, the roles in the
right and left unitary vectors are examined. It is
interesting to discuss the unitary vectors correspond zero
singular value. Degenerate boundary and rigid-body
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Figure 2 A torsion bar with a noncircular cross

contributes the zero singular value in the four influence
matrices mathematically and physically. It was
discovered that the true information in physics due to
rigid-body mode is found in the right unitary vector, and
the spurious information in mathematics is imbedded in
the left unitary vector due to the degenerate boundary.

In this paper, the dual boundary element method is
employed to solve a torsion problem of an elliptic bar
containing a double-edge crack. We use the dual BEM to
determine the torsional rigidity. Rank-deficiency of the
four influence matrices was studied by using the SVD
technique. Several examples will be given in this paper.
Our results are compared with analytical solution derived
by Lebedev et.al. [23]. Besides, we supply the constraint
by putting the collocation point outside the domain
(null-field point) to solve the torsion problem and to
determine the torsional rigidity. Finally, the role in the
right and left unitary vectors correspond to the zero
singular value of SVD is also discussed in this article.

2. FORMULATION OF THE TORSION
PROBLEM

2.1 Derivation of torsion function

The torsion problem of a bar with arbitrary cross is
considered as depicted in Fig. 2. Following the theory of
Saint-Venant torsion [24], we assume the displacement
field (u, v, w) in the form

U=-ayz, V=axz,

w=ag(xy), €

where (X, y, z) denote Cartesian coordinates, « is angle
of twist per unit length along the z-axis and ¢(x,y) is
the warping function. The relationship between the

displacement field and the strain components is as
follows

ou ov oW
& =7 &y =~ &, =7
OxX oy oz @
LML v ow
Xy ay ax' 7)’2_62 ay’ j/zx_ax 62

By substituting Eq.(1) into Eq.(2), we can derive the
strain components as

5X=5y=gZ:7Xy:0,

7yz :a(—6¢f;; y)+X]a 7zx:a[a_¢(a))((, y)_y]! (3)

and the stress components can be obtained by applying
Hooke’s law as follows

Q
I

X Uy =0,
0

T, = Ga(

=7, =0,

(Ky)+x} qsza[&Mqu—yJ, )

oy OX

where G is the shear modulus. If the body force is zero,
the equilibrium equations are
ao—x + aTXy + 6sz

ox oy oz

or,, 0o, Or,
Yy + y + Y: =O, (5)

OX oy oz

or, 07, do

X

ox oy oz

By substituting Eq.(4) into Eq.(5), we can find the
governing equation as shown below

Vip(x,y)=0, (xy)eQ, (6)

where V? is the Laplacian operator and Q is the
domain of interest. Since there is no traction on the
surface of bar (traction free), the traction in direction z
(t,) must be zero. Thus

t, =z,n, +7,n, =0, (x,y)eoQ. )

By substituting Eq.(4) into Eg.(7), the boundary
condition is
%nx +%n =yn, —Xn =%,
ox oy ’ Y on
Accordingly, the solution of the torsion problem in the

form of the warping function with Neumann boundary
condition as follows

(x,y)eoQ. (8

Vip(x,y)=0, (x,y)eQ,
a¢(6)r(1, ) =yn -xn, (xy)eoQ. ©)

Since ¢(x,y) is a harmonic function, there exists a
function ¢(x,y) which is relating to ¢(x,y) by the
Cauchy-Riemann equations

9 _%  dp_ 09

ox oy OX oy

where o(x,y) is called the conjugate harmonic

(10)

function of ¢(x, y) . The boundary condition can also be
expressed in term of ¢(x,y) from ¢(x,y) as

o_00, 0,

on  ox oy "’
za_wﬂ_@_wﬁzd_‘ﬂzii(quz),
oyds oxds ds 2ds

(11)
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thus the boundary condition is

(X y)= (x +y)

where K is a constant, it can be set to zero. Therefore, we
can obtain a solution of the torsion problem in the form
of the conjugate harmonic function with the Dirichlet
boundary condition as follows

Vip(x, y)=0,
p(xy)= (x +y )

Now we introduce a function ®(x,y) relating to
p(xy) by

(x,y)eoQ, (12)

(x,y)eQ,

(x,y)e o (13)

D(x,y)=gp(x, y)—%(x2+yz). (14)

Then, we have

20 (x,y)=-2, (x,y)eQ, (15)
®(x,y)=0, (x,y) e o (16)
Since
o0 _d¢ _ o0 _Jd¢

X1 - ¥
OX  OX oy oy y (17)

where @(x,y) isthe Prandtl function. In this paper, the

torsion problem can be formulated as a Poisson equation
as given in Eq.(15). The geometric shape of problem is
shown in Fig. 3, where a is the length of semi-major axis
and b is the length of semi-minor axis. Since Eq.(15)
contains the body source term, the governing equation in
Eqg.(15) and boundary condition in Eq.(16) can be
reformulated as

V20" (x,y)=0, (xy)eQ, (18)

2 2
d>*(x,y)=x ;y ,

where the torsion function ®(x,y) can be obtained

(x,y)eoQ, (19)

from @®"(x,y) by superimposing 5(x, y) as follows

2

2
O =d+d and q):%. (20)

NG

Figure 3 The geometry shape of problem

X

2.2 Derivation of torsional rigidity
The torsional rigidity C can be determined by

.. M J:[ (XTyZ —yrxz)dxdy

H [X—+ y—]dxdy,

(21)

where M is the torque, z,, and rz,, are the shear
stresses determined as follows
o oD
=-Ga—, 7, =Go—. (22)
OX oy

By employing the Green’s second identity and Eq.(15),
the area integral in Eq.(21) can be transformed into a
boundary integral and an area integral as follows

c- G” [xai)+ y—]dxdy

= GH vq> -vq>)dxdy

~oJ[ 7
:-G@S cD—daQ+” (2 +y? dxdyj

The induced area integral of the second term on the right
hand side of the equal sign in Eq.(23) can be
reformulated into a boundary integral again by using the
Gauss theorem as follows

H x +y? dXdy_lﬁ.” {x +y }dxdy
:% mv{(x2+y2)2}-nda(2.

Then the formula of torsional rigidity in a form of
boundary integral can be shown as

=00 . G 2, 2\
m(b ™ dB 16 aQV{(X +y )} ndoQ. (25)

(23)
CDVCD dxdy +G J'J' DV 2Ddxdy

(24)

C=-G

3. METHOD OF SOLUTION

3.1 Dual boundary element method

By using the Green’s identity, the singular boundary
integral equation for the domain point x can be derived as
follows

27" (X) = [, T (5, X)®"(s)d0Q(s)

U602 D ga06), xea, @
) on,
where
U (s, x) =In(r), (27)
_0U(s,x)
T(s,X) = ! (28)

S
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in which r is the distance between the field point x and
the source point s. After taking the normal derivative
from EQq.(26), the hypersingular boundary integral
equation for the domain point x can be derived

27 ad(;;(x) = [, M (5, )" (5)daq(s)
* . (29)
L6022 D gane), xen,
on,
where
L(S,X) :M, (30)
a X
_9%U(s,x)
M= o (31)

in which n, is the normal vector for the field point x.

Eq.(26) and Eq.(29) are termed dual boundary integral
equation for the domain point x. The explicit form of the
kernel functions can be found in [14]. By tracing the field
point x to the boundary, the singular and hypersingular
boundary integral equations for the boundary point x can
be derived

20" () = C.PV [, T (s, X)D" (s)daQ(s)

-RPV.[L,U(s, x)&g—;(s)daQ(s), X € 0Q), (32)

S

a0 ()

=H.PV.[,M (s, )@ (s)doQ(s)
on

X

oD (s) (33)
-C.PV.[,L(s, X)Tdaﬂ(s), X € 0Q,

S

where R.P.V. is the Riemann principal value, C.P.V. is the
Cauchy principal value and H.P.V. denote the Hadamard
principal value. The boundary integral equations in
Eq.(32) and Eq.(33) can be discretized by using constant
elements, and the linear algebraic system can be obtained
as

M0} -, (34)

M, 0, =LY, (35)

where [ ] denotes a square influence matrix, { } is a
column vector and the elements of the square matrices
are

U, = RPV.[U(s,,x)dB(s,), (36)
T, =78, +C.PV [T (s, % )dB(s,), 37)
L, = 78, +C.PV.JL(s;, % )dB(s,), (38)
M, = H.PV.[M(s; X )dB(s,). (39)

4. DERIVATION OF THE MECHANISM

OF DEGENERATE BOUNDARY

In the above analysis, we find that the degenerate
boundary stems from a singular influence matrix. The
degenerate boundary mode and the rigid-body mode will
be studied mathematically and numerically in this paper.

4.1 Degenerate boundary mode
The equation [H]{u}={f} has a unique solution if

and only if the only continuous solution to the
homogeneous equation

[H}{u} =10} (40)

is {u} ={0} . Alternatively, the homogeneous equation

has at least one solution if the homogeneous adjoint
equation

[H] {¢} =10} (41)
has a nontrivial solution {¢} , where [H]T is the
transpose conjugate matrix of [H] and {¢} must

satisfy the constraint ({ f }T {¢} = 0). If the matrix [H ]

is real, the transpose conjugate of a matrix is equal to
transpose only, i.e., [H]T:[H]T. By using the UT
formulation, we have

(Ut} =[TJ{u} ={f}. (42)
According to the Fredholm alternative theorem, Eq. (42)
has at least one solution for {t} if the homogeneous

adjoint equation
[T {4} ={o} (43)
has a nontrivial solution {¢}, in which the constraint
(74 =0) must be satisfied. By substituting Eq.(40) to
{f }T {#}, =0, we obtain
[l [TT {1} =10} (44)

since {u} is an arbitrary vector for the Dirichlet
problem, we have

[T] {4} ={0}. (45)

Based on Eq.(43) and Eq.(45), we have
[[“] }{m:m} or {4 [V] [T]-10 @)

where EQ.(46) indicates that there is a common left
unitary vector in both [U] and [T] matrices from concept
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of the SVD updating document.

4.2 Rigid-body mode
Since a rigid body motion is imbedded in the Neuman
problem, we have

1

[T]y: (47)
1
1

[M]§: (48)
1

where Eq.(47) and Eq.(48) reveal that [T] and [M] have
common right unitary vector of {1....1}T for the zero
singular value.

5. NUMERICAL EXAMPLES

5.1 Dual BEM for determination of torsional
rigidity

In this section, the case is designed to examine the
accuracy of the dual BEM. Here we use 994 boundary
elements to discretize the boundary. There are 200
elements on a single-edge crack, and 594 elements are
distributed on the elliptic boundary. Different ratios
between minor and major axes, b/a=1/4, 1/2 and 3/4, are
considered. Our results are compared with the analytical
solution derived by Lebedev et.al. [23]. The analytical
formula of torsional rigidity C, is given below:

C, l+(b2 /az) 32 b2 b
P l__ Q__ 1
Co b/a 72| a? 2a

[(2n—1)sinh(2n+3)a0 +(2n+3)sinh(2n-1) o
2(2n+1)

(49)

-sinh(2n +1)a0} (50)

(1-4n2)(2n-1)(2n+3)2 cosh(2n+1)

oy = tanh'lg, (51)

and C, is the analytical solution of torsional rigidity for
an elliptic bar with a double edge crack extending to its
foci, C, is torsional rigidity of single elliptic bar

without crack, a and b are the semi-axes of the ellipse.
The analytical torsional rigidity of an elliptic bar without
a crack is

za’p®
a2 +b?
The numerical solutions are shown in Table 1. The

relative error of the numerical solution decreases by
increasing the number of element as shown in Fig. 4.

C, =G (52)

Tarsianal rigidity of UT

Relative eror (%)

a L L N L t t
100 200 300 400 500 500 700 s00 900 1000
Mumber of elements

Tarsional rigidity of L

Relative eror (%)

a L L L L L L L n
100 200 300 400 500 600 700 800 900

1000

Mumber of elements

Figure 4 Relative errors by using the UT/LM
approach versus number of elements

5.2 Singular value decomposition technique

By employing the singular value decomposition (SVD)
to the four influence matrices in the dual BEM (U] ~
[T] ~ [L] and [M]), the information of physics and
mathematics can be found in the right and left unitary
vectors. We consider an elliptic torsion bar containing a
degenerate boundary (e.g. crack) as shown in Table 2.
The rank of matrices [U] and [L] is deficient due to the
degenerate boundary, and the rank of matrices [T] and [M]
is deficient due to both the degenerate boundary and rigid
body motion. By using the SVD technique, the four
influence matrices [U], [T], [L] and [M] can be
decomposed as

J=[ov][= 0w ]

CACALAt )
[0 ][] )

[T]
],
" [ = ]

Table 1 Torsional rigidity for cases of three different
ratios (b/a=1/4, 1/2 and 3/4)

b 1 1 3
a - - i
Item 4 2 4
Analytical solution
Eq.(49) 11.8155 4.8758 | 179.3633
DBEM 11.8137 | 4.8882 | 179.1036
UT-approach
DBEM 11.2511 4.8653 | 178.8932
LM-approach
Error-UT (%) 0.0001 0.0001 0.0006
Error-LM (%) 0.0478 0.0046 0.0005
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We consider a simple problem containing a degenerate
boundary as shown in Table 2. We plot the right and left
unitary vectors of [U] corresponding to the zero singular
value in a bar chart as shown in Fig. 5, where matrix [U]
contains two zero singular values caused by degenerate
boundary and matrix [T] contains three zero singular
values that include two due to degenerate boundary and
one due to rigid-body mode. In the same way, we plot the
bar chart of all four influence matrices [U], [T], [L] and
[M]. The bar charts are shown in Fig. 6, and Fig. 7 shows
the bar charts after superposing the unitary vector
corresponding zero singular values. Hence, we found that
the same fictitious information of mathematics comes
from the degenerate boundary and the same true
information of physics stems from the rigid body motion
as shown in Fig. 8. We also present a more complex case
which has 214 elements as shown in Fig. 9, and it shows
the same result as the case of 10 elements.

Table 2 Rank of four influence matrices (10 elements)
Rank of matrix [ ITI [LI IM]

TypeofBEM

10 10

G * Element
6 * Node

We (L [T M

Dual BEM

‘ Two zero singular values

|
B | —
V7 . A
[[f] — |:_§13_1U (32U . :| 0 |:Vf1U wl :|
€]

— -.1’7 7 i T
[T]—|:(31 ?‘32 fi’;

|:l'{/lT Tg; ?{IBT 2 :|

il
i T o R—1

0 T ™Y
et

‘ Three zero singular values ‘

Figure 5 Unitary vectors of [U] (two zero singular values) and [T] (three zero singular values) in bar charts

The left unitary vector The right unitary vector

-_—_-.-_-.-.._-
The left unitary vector The right unitary vector -_..___—-
BN E— “.l“‘__*ﬁf][T]“““.l* =T
The left unitary vector The right unitary vector
l.-_-.--_-‘

The left unitaryvector The right unitary vector

Figure 6 Bar charts of the right and left unitary vectors of [U], [T], [L] and [M]

left unitary of U fight unitary of U left unitary of T right unitary of T

left unitary of L left unitary of M

Figure 7 Bar charts of the right and left unitary vectors (10 elements)

vight unitary of L right unitary of M
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The same fictitious information of mathematics
(The degenerate boundary mode)

o |

The same true information of physics
(The rigid body mode)

7.
0 i
]

The same fictitious information of mathematics
(The degenerate boundary mode)

Figure 8 Relation of each matrix (10 elements)

The same fictitious information of mathematics
(The degenerate boundary mode)

0O

I
The same true information of physics
(The rigid body mode)

0 I

N

The same fictitious information of mathematics
(The degenerate boundary mode)

Figure 9 Relation of each matrix (214 elements)

6. CONCLUSIONS

The dual boundary element method was applied to
solve torsion problem of an elliptic bar containing a
double-edge crack. The results show that the dual BEM
has high accuracy. The dual BEM involves modeling
only on the boundary in a single domain free of
introducing the artificial boundary in the multi-domain
method. The results have been compared with analytical
solutions well. By employing the singular value
decomposition technique to the four influence matrices,
the degenerate boundary contributes the rank deficiency
in the common left unitary vector of the [U] and [T]
matrices. Rigid body modes are imbedded in the
common right unitary vector of [L] and [M] matrices.
The reason why dual BEM can solve the crack problem
is well understood in this paper.
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