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1. Introduction

It is well known that the boundary integral equation methods
(BIEMs) have been used to solve radiation and scattering problems
for many years. Theoretically and practically speaking, the impor-
tance of the integral equation in the solution for certain types of
boundary value problems is universally recognized. One of the
problems frequently addressed in BIEM/BEM is the problem of
irregular frequencies in boundary integral formulations for exterior
acoustics and water wave problems. These frequencies are not
physically realizable but are due to the numerical method, which
has non-uniqueness solutions at characteristic frequencies associ-
ated with the eigenfrequency of the interior problem. Burton and
Miller approach [1] as well as CHIEF technique [2] have been em-
ployed to deal with these problems.

Regarding the irregular frequency, a large amount of papers on
acoustics have been published. For example, numerical examples
for non-uniform radiation and scattering problems by using the
dual BEM were provided and the irregular frequencies were
detected and suppressed [3]. The non-uniqueness solution of
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radiation and scattering problems are numerically manifested in
a rank deficiency of the influence coefficient matrix in BEM [1].
In order to obtain the unique solution, several integral equation
formulations that provide additional constraints to the original
system of equations have been proposed. Burton and Miller [1]
proposed an integral equation that was valid for all wave numbers
by forming a linear combination of the singular integral equation
and its normal derivative. However, the calculation for the hyper-
singular integration is required. To avoid the computation of
hypersingularity, Schenck [2] used an alternative method, the
CHIEF method, which employs the boundary integral equations
by collocating the interior point as an auxiliary condition to make
up deficient constraint condition. Many researchers [4-6] applied
the CHIEF method to deal with the problem of fictitious frequen-
cies. If the chosen point locates on the nodal line of the associated
interior eigenproblem, then this method may fail. To overcome
this difficulty, Seybert and Rengarajan [4] and Wu and Seybert
[5] employed a CHIEF-block method using the weighted residual
formulation for acoustic problems. On the contrary, only a few pa-
pers on water wave for the non-uniqueness problem can be
found. Ohmatsu [7] presented a combined integral equation
method (CIEM), which was similar to the CHIEF-block method
for acoustics proposed by Wu and Seybert [5]. In the CIEM, two
additional constraints for one interior point result in an overdeter-
mined system to insure the removal of irregular frequencies. An
enhanced CHIEF method was also proposed by Lee and Wu [6].
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The main concern of the CHIEF method is how many numbers of
interior points are required and where the positions should be
located.

Recently, the appearance of irregular frequency in the method
of fundamental solutions was also theoretically proved and
numerically implemented [8]. However, as far as the present
authors are aware, only a few papers have been published to
date reporting on the efficacy of these methods in radiation
and scattering problems involving more than one vibrating body.
By this way, Dokumaci and Sarigiil [9] discussed the fictitious
frequency of radiation problem of two spheres. They used the
surface Helmholtz integral equation (SHIE) and the CHIEF meth-
od to examine the position of fictitious frequency. However,
some irregular frequencies were not suppressed by using the
CHIEF technique and further investigation was required in their
paper. In our formulation, we are also concerned with the ficti-
tious frequency especially for the multiple spheres of scatterers
and radiators. We will employ the Burton and Miller approach
to avoid the CHIEF risk since hypersingularity can be tackled
easily.

For three-dimensional radiation and scattering problems, many
researchers have paid attention to solve the problems by using var-
ious approaches. Waterman [10] presented the T-matrix formula-
tion for acoustic scattering problem. Peterson and Strém [11]
extended the T-matrix approach to solve the problem with arbi-
trary number of scatterers. Liang and Lo [12] used the wave func-
tion method or so-called eigenfunction expansion method to
analyze the electromagnetic wave scattering with two spheres.
The wave function was expanded by the multipole expansion (or
called addition theorem) and a series-form solution was repre-
sented. Gaunaurd and Huang [13] also used the multipole expan-
sion to solve the problem, more detailed discussions were made
due to the use of asymptotic approximations. Rao and Raju [14]
used the method of moment to formulate the problem. The method
was based on the potential theory and can be seen as one kind of
indirect methods.

In the recent years, Chen and his group used the null-field inte-
gral equation formulation in conjunction with degenerate kernels
and Fourier series to deal with many engineering problems with
circular boundaries, such as torsion bar [15], water wave [16],
Stokes flow [17], plate vibrations [18] and piezoelectricity prob-
lems [19]. They claimed that their approach has high accuracy of
exponential convergence and is one kind of semi-analytical
approaches. However, their applications only focused on two-
dimensional problems. A review article can be found in [20]. In this
paper, we would like to extend this idea to three-dimensional
problems.

In this paper, a systematic approach using the null-field inte-
gral equation method in conjunction with the degenerate kernels
is employed to solve the radiation and scattering problems of
multiple spheres. By using the null-field integral equation instead
of the boundary integral equation, we can avoid calculating the
principal values of singular and hypersingular integrals. To fully
utilize the spherical geometry, the fundamental solutions and
the boundary densities are expanded by using degenerate kernels
and spherical harmonics, respectively. Although the concept of
null-field integral equation is used, the collocation point can be
exactly located on the real boundary after introducing the degen-
erate kernel. At the same time, the singular and hypersingular
integrals are transformed to series sum free of calculation using
the principal value sense. The proposed approach is seen as one
kind of semi-analytical methods, since the error only stems from
the truncation of spherical harmonics. Regarding the nonunique
problem (fictitious frequency), the Burton and Miller method in-
stead of the CHIEF approach is used to eliminate the irregular fre-
quency. Finally, not only one-sphere but also two-spheres

radiation and scattering problems are given to verify the validity
of the proposed approach.

2. Problem statement and the present approach
2.1. Problem statement

The problem considered in this paper is the acoustic scattering
and radiation problems with multiple spheres. The problem is gov-
erned by the Helmholtz equation as follows:

(V2 +k)u(x) =0, xeD, (1)

where u(x) is the scalar velocity potential, V2 is the Lapalacian
operator, k and D denote the wave number and the domain of
interest, respectively. The sketch of multiple spheres is shown in
Fig. 1.

2.2. Dual boundary integral equation formulation—the conventional
version

The dual boundary integral formulation for the domain point is
shown below:

u(x) = / T(s, X)u(s) dS(s) — / U(s,X)t(s)dS(s), xeD, 2)
S S

((x) = / M(s, x)u(s) dS(s) — / L(s,X)t(s)dS(s), x €D, 3)
S S

where x and s are the field and source points, respectively, “S” is the
spherical surface, t(s) is the normal derivative on the source point,
and the kernel function U(s,x) is the fundamental solution which
satisfies

(V> +K)U(s,X) = —0(x —5), 4)

where é is the Dirac-delta function. The other kernel functions can
be obtained as

Tis.x) = 202, 5)

Lsi) = 20, 8
2

Misx) = 000, )

where n, and n; denote the outward normal vector at the field point
and the source point, respectively. If the collocation point x is on the
boundary, the dual boundary integral equations for the boundary
point can be obtained as follows:

Fig. 1. Sketch of multiple spheres.
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1
S0 =

X€B, (8)

CP.V. / T(s,x)u(s)dS(s) — RP.V. / U(s, X)t(s) dS(s),
S

%t(x) —HPV. /S M(s, x)u(s)dS(s) — C.P.V. /s L(s, X)t(s)dS(s),

X €B, 9

where R.P.V, C.P.V and H.P.V are the Riemann principal value, the
Cauchy principal value and the Hadamard (or called Mangler) prin-
cipal value, respectively. By collocating x outside the domain, we
obtain the null-field integral equation as shown below:

- /S U(s,x)t(s)dS(s), x D", (10)
—/SL(s7x)t(s)dS(s)7 x e D, (11)
where D¢ denotes the complementary domain.

2.3. Dual null-field integral equation formulation—the present version

By introducing the degenerate kernels for the fundamental
solution, the collocation points can be located on the real boundary
free of facing singularity. Therefore, the representations of integral
equations including the boundary point can be written as

x):/ST“’(s,x)u(s)dSs —/SUE(s,x)t(s)dS(s), xeDus, (12)

X) :/SMe(s,x)u(s)dS(s) -

and

0— / Ti(s, X)u(s) dS(s) —
S

0= / Mi(s, x)u(s) dS(s) —
S

“wm

once the interior “i” or exterior “e” kernel is expressed in terms of
an appropriate degenerate form. It is found that the collocation
point is categorized to three positions, domain (Egs. (2) and (3)),
boundary (Egs. (8) and (9)) and complementary domain (Egs. (10)
and (11)) in the conventional formulation. After using the degener-
ate kernel for the null-field BIEM, both Egs. (12) and (13) and Egs.
(14) and (15) can contain the boundary point.

/L‘-’(s,x)t(s)dS(s), xeDUS, (13)
S

/ Ui(s, x)t(s)dS(s), xeDUS,  (14)
S

/ L(s,x)t(s)dS(s), x €D US, (15)
JS

2.4. Expansions of the fundamental solution and boundary density

The fundamental solution as previously mentioned in Eq. (4) is

e ikr

U(s,x) = (16)

4anr’
where r = |s — x| is the distance between the source point and the
field point and i is the imaginary number with i* = —1. To fully uti-
lize the property of spherical geometry, the mathematical tools,
degenerate (separable or finite rank) kernel and spherical harmon-
ics, are utilized for the analytical calculation of boundary integrals.

2.4.1. Degenerate (separable) kernel for fundamental solutions

In the spherical coordinate, the field point, x, and source point, s,
can be expressed as x = (p,0,$) and s = (p,0, $) in the spherical
coordinates, respectively. By employing the addition theorem for
separating the source point and field point, the kernel functions,
U(s,x), T(s,x), L(s,x) and M(s,x), are expanded in terms of degen-
erate kernel as shown below:

) o o0 n
U'(p.0.9:p.0.0) =4 S22+ 1) 3 i =

=0

Py (cos 0)Py (cos 0)j,(kp)h” (kp) cos[m(d — ¢)],

=3

_) ez
U(s,x) = N \ (17)
US(p.0.0:p.0.0) = 4 S-(2n+1) 33 ém i

Py (cos 0)Py (cos 0)j,(kp)h” (kp) cos[m(d — ¢)],

p<p,
T(p.0.5:p.0.0) = 3 @n+1) Y- e i
P (cos 0)P}(cos D), (kp)h? (kp) cosm(@ — ¢)]
Tex={ P7P (18)

T(0.0.9:p.0.6) = & S +1) 5 en iy

n=0
P} (cos 0)P} (cos )y, (kp)hy” (kp) cos[m(e — ¢)],

L(p.0.9:p.0.9) = 1 > (2n-+1) izogm o
P} (cos 0)P} (cos O)jy, (kp)hy? (kp) cosm(e — ¢)],

=
S
Q%
=
S
%
3
b‘,\,
JNgL:
~
=
JF
_
™

Py (cos 0)Py (cos 0)j, (k /3)

p<p,
M (p,0,¢;p,0,) = ﬁg{)(ZnH) > gl
P} (cos 0)P} (cos O)jy, (kp)hy® (kp) cos[m( — ¢)],
M ={ PZP ) , (20)
M°(p,0,¢:p.0.0) =1 Y- (2n+1) 3 ém i
n=0
P™(cos 0)P™ (cos 0)j, (kp)h.® (kp) cos[m(¢ — ¢))],
p<p,

u ” “o”

where the superscripts and denote the interior and exterior
regions, j, and hff are the nth order spherical Bessel function of the
first kind and the nth order spherical Hankel function of the second
kind, respectively, P; is the associated Lengendre polynomial and
&m 1s the Neumann factor,

17
8m:{2,

It is noted that U and M kernels in Egs. (17) and (20) contain the
equal sign of p = p while T and L kernels do not include the equal
sign due to discontinuity.

m =0,

21
m=1,2,...,00 e

2.4.2. Spherical harmonics expansion for boundary densities

We apply the spherical harmonics expansion to approximate
the boundary density and its normal derivative on the surface of
sphere. Therefore, the following expressions can be obtained:

Z ZAZWPVVV (cos 0) cos(w¢), s € B, (22)
=0 w=l
=Y ZB‘ P"(cos0) cos(we), s e B;, (23)
v=0 w=0

where A, and B!, are the unknown spherical coefficients on

Bi(i=1,2,...). However, only M finite number of truncated terms
for v is used in the real implementation.
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Fig. 2. Adaptive observer system.

2.5. Adaptive observer system

Since the boundary integral equations are frame indifferent, i.e.
rule of objectivity is obeyed. Adaptive observer system is chosen to
fully employ the property of degenerate kernels. Fig. 2 shows the
boundary integration for the spherical boundaries. It is worthy of
noting that the origin of the observer system can be adaptively lo-
cated on the center of the corresponding circle under integration to
fully utilize the geometry of sphere. The dummy variable in the
integration on the surface are the angles (6 and ¢). By using the
adaptive observer system, all the boundary integrals can be deter-
mined analytically through series sum instead of using the concept
of principal values.

2.6. Linear algebraic equation

In order to calculate the P(P = (M + 2)(M + 1)/2) unknown
spherical harmonics, P boundary points on each spherical surface
are needed to be collocated. By collocating the null-field point ex-
actly on the kth spherical surface for Eqs. (14) and (15), we have

N . ; N . i
O:j:zl/sz(ﬁXk)u(s)dS(S)*;/SjU(S,Xk)t(s)dS(s),

X €D US, (24)
N . N .
OZE;AM@MWM%M—g;éMwmmﬁw
Xk GDCUS7 (25)

where N is the number of spheres. For the S; boundary integral of
the spherical surface, the kernels of U(s,x), T(s,x), L(s,x) and
M(s,x) are respectively expressed in terms of degenerate kernels
of Egs. (17) and (20) with respect to the observer origin at the cen-
ter of S; . The boundary densities of u(s) and t(s) are substituted by
using the spherical boundary harmonics of Eqs. (22) and (23),
respectively. In the dS(s) integration, we set the origin of the obser-
ver system to collocate at the center O; of boundary S; to fully utilize
the degenerate kernel and spherical harmonics. By locating the
null-field point on the real surface S, from outside of the domain
D° in the numerical implementation, linear algebraic systems are
obtained as

[U[{t} = [T|{u}, (26)
[Li{t} = Mi{u}, 27)

where [U], [T], [L] and [M] are the influence matrices with a dimen-
sion of (N x P) by (N x P), and {t} and {u} denote the vectors for (s)
and u(s) of the spherical harmonics coefficients with a dimension of
(N x P) by 1, in which, [U], [T], [L], [M], {u} and {t} can be defined as
follows:

Uy Up - Uy
Uy Uy - Uy
== (28)
Uvi Uy -+ Uw
[Tin Tz -+ Tin
Tor Tz - Ty
m=ma=| . 29)
LTvi Tnz - Taw
[Lin Lz -+ Ly
Ly Lp - Ly
U-ma-| . 30)
[Lvi Lve oo+ Lww
M;; M - My
M;; My -~ My
Mm-S (1)
My My, -0 My
uy t
u 5]
{ll} = . ) {t} = . ) (32)
Uy ty

where the vectors {u,} and {t;} are in Tthe form of { Ak AK
Ak .. AR 3T and {B’So B, B, B, } ; the first subscript “a”
(x=1,2,...,N) in the [U,s] denotes the index of the ath sphere
where the collocation point is located and the second subscript
“B" (B=1,2,...,N) denotes the index of the pth sphere in which
the boundary data {u,} or {t;} are specified. The coefficient matrix
of the linear algebraic system is partitioned into blocks, and each
diagonal block (Up,) corresponds to the influence matrices due to
the same sphere of collocation and spherical harmonics expansion.
After collocating the point along the ath spherical surface, the ele-
ments of [U,s], [T.s], [Lys) and [M,;] are defined as

Uy = /Sk / U (St ) 7% A B, (33)

Top = /5k / T(e, %m) P b O, (34)

Ly — /s /L(sk,xm)pzd@dék., (35)
Js,

My = /S’ / M(s, %) 2 dbi A (36)

where ¢, and 0,(k=1,2,...,N) are the spherical angles of the
spherical coordinates. After obtaining the unknown spherical har-
monics, interior potentials can be obtained by using Eq. (12).

2.7. Potential gradient

Since the fictitious frequencies exist in the radiation and scat-
tering problems, some remedies are used to overcome the prob-
lems. Therefore, the LM formulation is to play an important role.
The potential gradient on the boundary is required to calculate.
For the multiple radiation or scattering, the field point and source
point may not be located on the same spherical boundary. The nor-
mal derivative should be taken special care as the source and field
points are located on different spherical boundaries. As shown in
Fig. 3 where collocation point is located on the spherical boundary
Si and the integration path is on the spherical boundary S;, the ori-
gin is set at the center of the jth sphere under integration. The true
normal direction with respect to the collocation point x is é; . The
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Boundary integral

Fig. 3. Decomposition of potential gradient.

incorrect vector for the normal derivative, é,, is obtained when the
L and M kernels are directly used. Therefore, it needs modification.
According to the definition of normal derivative in the Cartesian
coordinates, we obtain

_ou(x)
t(x) = an, Vu - ny, (37)
where
ou~ ou- ouy
Vu:az+a—y1+&k. (38)

Based on the chain rule, we have

ou_oudp oudld oude

X opox o0 op ox’ 39)
ou _oudp oudld oudd
oy “opay a0y 9p oy’ (40)
u_oudp w0 ooy a)
0z 0pdz 000z 0¢ 9z

Potential gradients can be expanded into
ou . Ou cosfcos¢ du  sing ou
ax ~ SIOCOS g T 0 psind 99 (42)
ou . ., OQu cosfsing du cos¢ Ou
@_smesmd)apqt 0 80+psin98¢’ (43)
ou du  sinf ou

According to Eq. (37), the right normal derivative of the poten-
tial can be obtained by considering n, = é; . The flowchart of the
present method is shown in Fig. 4.

3. Numerical examples

Here, four cases including radiation and scattering problems for
single and double spheres are given to demonstrate the validity of
proposed approach. Case 1 is the one-sphere radiation problem
subject to various boundary conditions. The analytical solution is
derived and is compared with others. Two-spheres radiation prob-
lem is considered in Case 2. The numerical solution in [9] is given
to compare with the solution of the present approach. Case 3 is a
scattering problem of a single sphere subject to an incident wave.
The final case of a two-spheres scattering problem solved by Peter-
son and Strom [11] is revisited to verify the validity of our ap-
proach. It is noted that the fundamental solution of the second
kind spherical Hankel function is chosen for radiation problems
(Cases 1 and 2) and the first kind spherical Hankel function for
scattering problems (Cases 3 and 4) in order to compare with other
results in the literature.

Radiation and scattering problem with N spheres

Null-field integral equation

Degenerate kernel for Spherical harmonics expansion

fundamental solution for surface density

L

Adaptive observer system in

the boundary integrations

Collocating points on the boundary and

matching boundary conditions

Linear algebraic system

4

Obtain the unknown spherical harmonics coefficients

Boundary integral equation for the domain point

Potential field

Acoustic pressure

Fig. 4. Flowchart of the present method.

Case 1 A sphere pulsating with uniform radial velocity or
oscillating with non-uniform radial velocity

In the first case, we concerned with the two situations of a
sphere. One is the sphere pulsating with uniform radial velocity
and another is the sphere oscillating with non-uniform radial
velocity. When a sphere is pulsating with uniform radial velocity
Uy, the exact solution of the problem can be found in [21] as shown
below:

_a izoka —ik(p—a)
P(p) = <1 + ika) Yoe 0 ®

where 7, is the characteristic impedance of the medium z, = p,c in
which p, is the density of the medium at rest and c is the sound
velocity, and p is the sound pressure which is defined as

p(p) = ~ipgeu(p) = ~izoku(p), (46)

in which w is the angular frequency and k is the wave number that
equals to the angular frequency over sound velocity. After expand-
ing the surface density by using spherical harmonics, we have

Boo = Uy, (47)

and the other coefficients are zero. Then, the unknown coefficient
can be obtained as follows:
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1 kY (ka)
0= ki) (48)
by using Eq. (14). After obtaining the unknown coefficient, we have
he? (kp)
= —izoU . 49
p(p) 0 Ohéz)(ka) ( )

The expression of Eq. (49) seems to look different from the exact
solution in Eq. (43). However, the spherical Hankel function can be
represented by using the series form found in [22] as shown
below:

(n+m)!

(2) n+l 7 712
o' (2) = Zm'l‘n—m+1)

(=2iz)™™. (50)

After substituting Eq. (50) into Eq. (49), the result of our ap-
proach looks neater and yields the same exact solution of Eq.
(45). For the numerical implementation, M is chosen to be 6 and
28 nodes are distributed on the spherical surface as shown in
Fig. 5. Fig. 6a and b show the real and imaginary parts of non-
dimensional pressure on the surface by using the numerical proce-
dure. In Fig. 6a and b, irregular frequency does not appear due to
the analytical cancellation of zero divided by zero in our formula-
tion. However, Seybert et al. [21] needed to improve their result by
using the CHIEF method. For this point, we can claim that our ap-
proach is more accurate than that of Seybert et al. [21].

In another situation for the oscillating surface with radial veloc-
ity, Ug cos 0, the exact solution is also found in [21] as

p(p,0) = (%)

After expanding the boundary density by using the spherical
harmonics, we have

By = Uy, (52)

and the other coefficients are zero. Then, the unknown coefficient
can be obtained as follows:

_izoka(l £ k) | (1 cos g)e-iko-o), (51)
2(1 + ika) — k“a?

1 h{? (ka)
Ao =~ 15 e U (53)
by using Eq. (14). After obtaining the unknown coefficient, we have
ht? (kp)
,0) = —izgUg—L cos 0. 54
p(p,0) oUo h’z(z)(ka) (54)

t-

Fig. 5. Distribution of collocation points for a sphere (M = 6).

Similarly, the present solution of Eq. (54) seems to be not equiv-
alent to the exact solution of Eq. (51) for the first glance. After
substituting series form of the spherical Hankel function, we can
prove the mathematical equivalence between Eqgs. (54) and (51).

Case 2 Two-spheres vibrating from uniform radial velocity

After successfully solving one-sphere case, we extend our ap-
proach to deal with the two-spheres radiation problem [9]. As
shown in Fig. 7, the two spheres vibrate with uniform radial veloc-
ity Up. In the real calculation, we choose M to be 10. Sixty-six nodes
are distributed on each sphere as shown in Fig. 8. Figs. 9-11a show
the pressure contours of two dilating spherical sources at the hor-

Present appraoch
[} Exact solution

Re(p/zyU,)

Fig. 6a. Real part of non-dimensional pressure on the surface.

0.6

Present approach
[ J Exact solution

Im(plz,U,)

Fig. 6b. Imaginary part of non-dimensional pressure on the surface.
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izontal plane of z =0 for ka = 1,2 and 0.1, respectively, by using
the SHIE [9]. Figs. 9-11b are the corresponding results by using
the present approach. After comparing our results with those of
SHIE [9], good agreement is observed. For the spherical geometry
problem, the symmetry property results in high degeneracy. The
number of degenerate eigenvalues at the characteristic frequency
becomes large. Therefore, the risk of CHIEF point becomes possible.
How to choose the location of CHIEF point and how many the
CHIEF points are sufficient to overcome the irregular problem plays
an important role. Therefore, we adopt the Burton and Miller
method to remedy the irregular frequency. It is not free of
worrying about the calculation of hypersingular integrals since
the singular and hypersingular integrals are determined in an
alternative way. Fig. 12a and b shows the potentials on the nearest
point and furthest point, respectively. It is observed that the irreg-
ular frequencies are successfully suppressed.

Fig. 7. Sketch of two spheres.

L

Fig. 8. Distribution of collocation points for two spheres (M = 10).
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Fig. 9a. Pressure contours by using the SHIE (z =0 and ka = 1).
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Fig. 10b. Pressure contours by using the present approach (z = 0 and ka = 2).
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Fig. 11a. Pressure contours by using the SHIE (z =0 and ka = 0.1).
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Fig. 11b. Pressure contours by using the present approach (z =0 and ka = 0.1).

In the case 1, it is found that the analytical solution for the sim-
ple case (one-sphere) can be derived by using our approach. For
more than two-spheres case, the boundary density representation
is truncated to a finite number of terms. The collocation points are
located on the real boundary to match boundary conditions and
the unknown spherical harmonics coefficients can be easily deter-
mined. Since the error is attributed from the truncated finite num-
ber of terms of spherical harmonics coefficients, our approach can
be seen as one kind of semi-analytical methods.

Case 3 Acoustic scattering by a sphere

In this case, the scattering problem of a sphere subject to an
incident plane wave [23] is considered. Not only hard sphere (Neu-
mann type) but also soft sphere (Dirichlet type) is considered. The
plane wave incidence is given as

uinc _ eik[zcosdo+sin00(xcos do+y singg))

_ i(Zv )i Z &, % 7, (kp)P"(cos 0p)P” (cos 0)
w=0 :

v=0
X COSW(P — ¢y), (35)

Nearest point
— Real part
————— Imaginary part

Re(p/zgUyg)

ka

Fig. 12a. The potential on the nearest point versus the wave number ka.

1.6

Furthest point
— Real part
————— Imaginary part

Re(p/zgUg)

ka

Fig. 12b. The potential on the furthest point versus the wave number ka.

where (0o, ¢y) defines the angle of the plane wave in the spherical
coordinates as shown in Fig. 13. When 6, is equal to 0 or 7, it de-
notes the plane wave coming from +z or -z axis, and w is equal to
zero. The total potential velocity is superimposed by

u=u" 4, (56)

where u" denotes the scattering field and it is solved by using the
proposed approach. For the soft sphere (u = 0), we obtain

U= —u, (57)

and the spherical coefficients are
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-=> Yy

Incident wave

Fig. 13. A scatterer and the incident wave.

—w)

Apw = —i"ew(20 + 1)%1)";@% 00)], (ka) cos(wi), (58)
After using the null-field integral equation in Eq. (14), the un-

known boundary coefficients are obtained

h'? (ka)

. v—w)! _, .
Byw =ki"e,2v + ])EUTW;!P”(COS 00)j,(ka) b7 (ka)

X COS(Wey), (39)

Then, the analytical form of the total field is

v=0 w=0

(v-w) (. - B k) W
X wrw (]Z,(kp) +j,(ka) b7 (ka) P7 (cos 0p)P}, (cos 0)
X COSW(¢ — ¢y)

(60)

For the same procedure, the hard sphere (t = 0) is considered
and the analytical solution is obtained as

u=>» > i'en2v+1)
0

=0 w=l
(v=—w)! W . . h®(kp)
X (y+w)!PV (cos6;)P;, (cos0) (]v(kp) Hv(ka)h'f)(ka) cos(we;)

X COS(We).

(61)
For the numerical implementation, M is given 10 and 66 collo-
cation points are needed. Fig. 14a and b show the scattering
parameter S versus the polar angle (0) for ka =1 and 2, respec-

tively, where the scattering parameter S is defined by
e—ikp
kp

p’(p) =——S(p — o). (62)

Good agreement is observed after comparing with the result of
Chandrasekhar and Rao [23].

Case 4 Acoustic scattering by two spheres
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Fig. 14a. Scattering parameter S versus the polar angle 6 for ka = 1.
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Fig. 14b. Scattering parameter S versus the polar angle 6 for ka = 2.

After successfully verifying the scattering results of one-sphere,
we extend to deal with the two-spheres case subject to an incident
wave as shown in Fig. 15. The problem has been solved by Peterson
and Strém [11]. By using the null-field integral equation approach,
the M number of terms is taken 10 and 66 points are distributed on
each sphere. The radar cross section (RCS) is defined in the form

2 w1

GN(,D7 0, ¢; 0o, ¢0) = 472:'0 |uinc|2 W

(63)

It is noted that the normalized radar cross section is defined as

30,3 00, $0) = lim an(p, 0, ¢ 00, o). (64)
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when the observed radius p is at infinity. Figs. 16a and 16b show the
asymptotic backscattering cross section o4 (m/2,;/2,0) versus
the separation (2kd) for soft and hard spheres, respectively at
ka = 2. Since the real data of Peterson and Stroém are not easy to ob-
tain, we used the digitizing skill to reconstruct their solution.
Although a little deviation on digitalizing and transforming the data
may be present, it can be observed that the results of our approach
agree well with those of Peterson and Strém. Fig. 17 shows the
asymptotic backscattering cross section of(mw— 0, m;¢,0) for
ka = 2 and 2kd = 4.5 subject to hard and soft boundary conditions.
After comparing with the results of Peterson and Strém, good agree-

Incident wave

Fig. 15. A scattering problem of two spheres and the incident wave.

Present approach

Peterson and Strom

[ ' [ '
0 10 20 30 40
2kd

Fig. 16a. Asymptotic backscattering cross section oy (m/2,7;7/2,0) versus the
separation (2kd) for the soft spheres (ka = 2).

ment is made. Figs. 18a and 18b show the ox(10,0,0;7/2,0) and
04(0,0;/2,0) of soft and hard spheres for ka =2 and 2kd = 4.5,
respectively. It is found that our results match well with those of
Peterson and Strom when the distance is located at infinity. How-
ever, there also exists some discrepancy for oy at other places.
We wonder that the deviation stems from the numerical calcula-
tion. The accuracy of the digital number of the computer in the early
years is lower than that of the present one. At infinity, we can em-
ploy the asymptotic formulae of spherical Hankel function. This is
the reason why o4 agrees well, but oy has little deviation at other
places.

Present approach

] A Peterson and Strém

T | T | T | T
0 10 20 30 40
2kd

Fig. 16b. Asymptotic backscattering cross section of(7m/2,7;7/2,0) versus the
separation (2kd) for the hard spheres (ka = 2).

————— Soft spheres (Present approach)
Hard spheres (Present approach)

1@ [ ] @ Soft spheres (Peterson and Strém)
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A Hard spheres (Peterson and Strom)

Angle ©'

Fig. 17. Asymptotic backscattering cross section o/ (7 — ¢, 7;¢',0) for ka =2 and
2kd = 4.5 subject to hard and soft boundary conditions.
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Fig. 18a. The oy(10,0,0;7/2,0) and o4(0,0;/2,0) of the soft spheres for ka =2
and 2kd = 4.5.
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Fig. 18b. ay(10,0,0;7/2,0) and 64(0,0;7/2,0) of the hard spheres for ka = 2 and
2kd = 4.5.

4. Conclusions

For the three-dimensional radiation and scattering problems
with multiple spheres, we have proposed a null-field integral equa-
tion formulation by using degenerate kernels and spherical har-
monics in companion with adaptive observer systems. This
method is a semi-analytical approach for Helmholtz problems with
spherical boundaries since only truncation error in the spherical
harmonics is involved. Although cases of one and two spheres
are used, the present approach can be straightforward extended

to solve more general problems with radiators or scatters of arbi-
trary number, different radii and various positions without any dif-
ficulty. In addition, fictitious frequencies can be suppressed by
using the Burton and Miller approach. A general-purpose program
for solving radiation problem with arbitrary number, different size
and various locations of spheres was developed. Pressure contours
as well as RCS were compared well with the exact solution and
other numerical solutions.
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