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Abstract: In this paper, the dual integral formulation is derived for solving the scattering problem of normal incident wave passing a thin

vertical and inclined barrier with rigid boundary condition which is descending from the water surface to a depth. Absorbing and porous
boundary conditions are both considered. The breakwater thickness is assumed to be zero since it is negligible in comparison with th
water depth and the wavelength of the incident wave. Although the multidomain boundary element (B&hbtdcan solve boundary

value problems with degenerate boundaries by dividing the interesting domain into two subdomains, the hypersingular formulation
provides the key to solve the problem more efficiently in a single domain. To demonstrate the effects of the breakwater with rigid,
absorbing, and porous boundary conditions for the energy dissipation by the barrier, the transmission and reflection coefficients of the
scattering problem are determined by the developed dual BEM program. In addition, the results are obtained for the cases of wavi
scattering by the barrier with zero thickness in constant water depth and are compared with the analytical solutions, the multidomain BEN
solution, and the experimental data.
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Introduction problem in a single domaiitChen and Chen 1998The dual
) . BEM (DBEM) or so-called the dual BIEM developed by Hong
The boundary integral equation meth@IEM) or boundary el-  and Cher(1988, is becoming very popular for the problems with

ement methodBEM) is now establishing a position as an actual 4 gegenerate boundary. Aliabadi and his co-worker have extended
alternative to the finite element method in many fields of engi- {he DBEM applications and published many papétdiabadi
neering. Over the past 20 years, main applications of BIEM or 1997 Aliabadi and Saleh 20p2The drawback of the multido-
BEM were limited in boundary value problems without degener- main approach is obvious in that the artificial boundary is arbi-
ate boundaries. Since the degenerate boundary results in rank dec'rary and thus not qualified as an automatic scheme. For the
ficiency for the influence matrix by using the conventional BEM, .qmpytational efficiency, a larger system of equations is required
the multidomain BEM was utilized to solve the nonunique solu- gince the degrees of freedoms on the interface are put into the

tion by introducing an artificial poundqry in lthe last decade, e.g., system, and it takes more CPU time and memory space than the
cutoff wall (Lafe et al. 1980 thin barrier.(Liu and Abbaspour  ppEM method to solve the linear algebraic equation. Further-

1982, screen acoustic&Chen et al. 2008 and crack problems 510 the artificial boundary cannot be obtained for a half plane

(Blandford et al. 1981 Instgad of using the multldpmaln .BEM’ or infinite problem with degenerate boundary. The disadvantages

the hypersingular formulation plays a key role in solving the ¢y 1tigomain encourage researchers to deal with the degenerate

boundary problem by using the DBEM in a single domain with
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Editor. The manuscript for this paper was submitted for review and pos- ( 0 obtained an approximate solution by using the small am-
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Fig. 1. Definition sketch for two types of thin barrier and their
boundary conditions(a) Floating barrierb) submerged breakwater;
and(c) boundary conditions of thin barrier

tion expansion method for the case with a vertical thin barrier.

The diffraction of water waves by a thin porous breakwater 1

(degenerate boundarys considered initially by Yu(1995 and
has been widely studied by Losada et(4P97), Yip and Chwang

height in Fig. 1b), and the rigid, permeable, and absorbing
boundary conditions of a thin barrier in Fig(cL After discretiz-

ing the dual integral equations, a dual BEM program will be
developed to solve wave scattering problems for a zero-thickness
breakwater. The results will be compared with those of numerical
solutions by using the multidomain BENLiu and Abbaspour
1982, the experimental data and the analytical solutidussell
1974; Losada et al. 1992; Tsaur et al. 2D00

Mathematical Formulation

The boundary value problem for the scattering of small amplitude
waves by a fixed thin barrier is summarized bel@wu and Ab-
baspour 1982; Chen et al. 2002 thin barrier parallel to the

axis is shown in Figs. (& and B. A wave train with a frequency

o propagates towards the barrier in a constant water depth
Assuming inviscid, incompressible fluid and irrotational flow, the
wave field may be represented by the velocity potermbigt,y,t)
everywhere in the interested domain that satisfies the Laplace
equation as

V2d(x,y,t)=0 (1)

According to the uniformity of the water depth in taeaxis and
the periodicity in time, the potentid(x,y,t) of fluid motion can
be expressed as

D(x,y,H)=d(x,y)e ! )
whereo satisfies the dispersion relation
a?=gktant(kh), (3)

in which k=wave number; andj=acceleration of gravity. The
unknown functiond (x,y) describes the fluctuation of the poten-
tial on thexy plane. Substitution of E(2) into Eq. (1) yields the
two-dimensional Laplace equation as follows:

V2$(x,y)=0, (x,y) in D (4)

where D=domain of interest. The boundary conditions of the
interested domain are summarized as follows:

The linearized free water surface boundary conditidaan
and Dalrymple 1984

(1998, Mclver (1999, Wu et al.(1999, Lee and Chwan¢2000,
and Linton and Mclve2000 by using analytical methods. This

boundary condition on the breakwater assumes that the normalp

derivative of the potential of the flow through the breakwater is
proportional to the difference in potential across the breakwater.
The scattering problem with the finite thickness of the permeable
breakwater has been treated by adopting the conventional BEM
(Hsu and Wu 199P The absorbing boundary with different ab-

sorbing parameters on the front and back sides of the breakwater3.

has been studied by using the eigenfunction expansion method
(Tsaur et al. 2000 To the best of the authors’ knowledge, DBEM
was never utilized to treat scattering problems of a tfzero-
thicknes$ breakwater with porous or absorbing boundary condi-
tion.

In this paper, we will construct the dual integral formulation in
a single domain instead of using the multidomain BEM for solv-
ing the problem of normal incident wave passing a thin vertical
and inclined barrier with a rigid boundary condition which is
descending from the water surface to a depth in Fig), -and a
thin vertical submerged breakwater with absorbing and porous
boundary condition which is extending from the seabed to a

b b
——=0 5
FYR ®)
Seabed boundary conditions
o
o0 (6)

wheren=boundary normal vector. The bottom is imperme-
able.

Breakwater boundary conditions.

« Rigid boundary conditiotias shown in Fig. (c)]

by Ib,
on  on )
where subscripts 1 and 2 denote the front and back sides of
the breakwater, respectively. The normal velocity is zero on
the barrier.
» Porous boundary conditidras shown in Fig. (c)]

ddy dby

e an iKG(bo—db1) 8

whereG=complex porous-wall-effect parametefu 1995,
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and indicates that the fluid velocity normal to the barrier is
proportional to the pressure difference across the barrier. The
real part ofG is the resistance of the barrier and the imagi-
nary part is the phase differences between the velocity and
the pressure due to inertial effects. The resistance may be
related with a friction coefficient or a head loss coefficient.
Inertial effects may be related with an added mass coefficient
or effective bore diameter.

» Absorbing boundary conditiofas shown in Fig. ()]

by
= =ikGiby ©)
i)

ai;fzikem (10)

where G; and G,=absorbing parameters of the front and
back sides of the breakwater. This barrier can reduce kinetic
energy of incident water wave by placing armor unit with
different absorbing parameters on the front side and back
side of the breakwater

Radiation condition at infinitySommerfeld 1964

limr/2

r—oo

b

(W—Ikd))—o (11)
wherer = \X?>+y?. Eq. (11) indicates that the behavior of
scattered water wave must be outgoing away from the break-
water structure.

5. The boundary conditions on the fictitious interfaces.

For the infinite strip problem, the domain can be divided into

three regions after introducing two pseudoboundaries on both

sides of the barrierx=*1, as shown in Figs. (& and b. The

potential in Region | without energy loss can be expressed as

igA

. . cosiik(h+vy))
(1) = 20 (ak(x+1) ik(x+hy 2  J77
dH(x,y) o (eCrh 4 Re ko)

coshkh)
(12)

where the superscripl) denotes the region numberd
=amplitude of incident wave; an@=reflection coefficient. The
potential in Region Il without energy loss which needs to satisfy
the radiation B.C. in Eq(11) can be expressed as

costik(h+y)) |g_A

_ T aik(x=1)
Te coshkh)

o (xy)= (13)

whereT=transmission coefficient.
The boundary conditions on the fictitious interfaces are

dW(=1Ly)=¢?(=1y) (14)
PPRER 92

ax | _ ., ax | _ (15)
$3(1,y)=62(l,y) (16)
96 @)

ax =|: x|, 17

According to Egs.(12), (13), (14), and (16), we can derive the
reflection and transmission coefficients as follows:

k 0
Re—1+ s | 0= Ly)costik(h+y)ay
(18)
k 0
= ng sinh(kh) ffh(b@(l ycostkieymdy: (9
where
1 2kh
”O_E(“ sinr(zkh))

Dual Boundary Integral Equations for Wave
Scattering by Thin Barrier

The first equation of the dual boundary integral equations for the
domain point can be derived from the Green’s third identity
(Chen and Hong 1993

9 (3)

2mdh (%) = fBT(§,7()¢(§)dB(~s)— Lurssoa—nsdsrs),

XeD (20)

whereX=field point X=(x,y)); S=source point; andJ(3,X)
andT(3,X) are

UGEX)=In(3-%|)
o aUGx)
T(EX)= T (22)

in which nz denotes the normal vector at the boundary p8int
and U (5,X) is the fundamental solution which satisfies

V2U(X3)=8(X—7), XeD (22)

whered (X—) = Dirac-delta function. After taking normal deriva-
tive with respect to Eq(20) for a thin barrier problem, the second
equation of the dual boundary integral formulation for the domain
point is derived

ad (X IE
11' jr:;():JBM(NS,?)d)(Ns)dB(“é)—fBL(§,Y) jrf)dB(Ts),
XeD (23)
where

e JUGBX)

L(3,X) = o (24)
UGB

M(3%)= oA (25)

in which n; represents the normal vector ®f By moving the
field pointX in Egs. (20) and (23) to the boundary, the dual
boundary integral equations for the boundary point can be ob-
tained as follows:

wdh(X)= CPVJ T(E,X)d(35)dB(S)
B

I (S)

ang

—RPV f U(ZX) dB(3),
B

%eB (26)

JOURNAL OF WATERWAY, PORT, COASTAL AND OCEAN ENGINEERING © ASCE / JUL/AUG 2004 / 181



T 86 (X) = HPVJ M (3,X) b (3)dB(3)
ang B
o 0005
—CPVLL(S,X) Fre dB(3)

XeB (27)

where RPV, CPV, and HP¥Riemann principal value, Cauchy
principal value, and Hadamardanglep principal values, re-
spectively.

It should be noted that Eq27) can be derived simply by
applying a normal derivative operator with respect to Ezf).
Differentiation of the Cauchy principal value should be carried
out carefully by using Leibnitz’s rulé€Chen and Hong 1999The
commutative property provides us with two alternatives for cal-
culating the Hadamard principal value in a similar way used for
crack problemgHong and Chen 1988nd acoustic§Chen and
Chen 1998 For the problem including an ordinary bound&y
and degenerate boundari@$ andC~ on the both sides of a thin
barrier as shown in Figs.(4 and b, i.e.,,B=S+C*+C~, Egs.
(26) and(27) can be reformulated as follows:

ForXe S, Egs.(26) and(27) become

md(X)=CPV f T(EX)d(F)dB(R)
S

I ()

ang

—RPV f UGEX) dB(3)
S

+ f TEX)AP(X)dB(3)
C+

I (5)

- f VX = dB(E) (28)

dd(X)

ang

iy

—HPV f M (3X) b (3)dB(3)
S

I (5)

ang

—CPV f L(ZX) dB(3)
S

+ f M(EX)A(3)AB(S)
C

.

I (3)

LEXI— —dB() (29)

where

Ad(3)=d(3")—db(37) (30)

¢

b _ b b
E%(S)=

T (8) (31)

ForkxeC™*, Egs.(26) and(27) reduce to

UT Method (ordinary boundary) + LM (degenerate boundary)

uT uT

LM (UT) \ UT (LM)

uT

LM Method (ordinary boundary) + UT (degenerate boundary)

LM M
UT M) \ LM (UT)
LM LM
M
— ordinary boundary

= degenerate boundary

Fig. 2. Two alternative approaches for degenerate-boundary using
dual formulation

T2d(X)= CPVJ T(EX)AG(S)dB(3)
C+

L 0D
—RPVIC+U(S,X)Ea—n§dB(S)
f~~ N - f __ 0b()
+ | TEX)H(3)dB(S)— | U(BX) dB(3)
s s ang
(32)
b (X) f . — ~
A —HPV| MEX)A6R)AB®)
N c*
L 0B
—CPVJC+L(S,X)Ea—n§dB(S)
f o f~~6¢(§) ~
+ | MEX)d(3)dB(3)— | L(3,X) 3 dB(3)
S S s
(33)
where
36B)=d(EN)+d(3) (34)
b 0b b
A—s @)= -5, 67) (35)

Egs. (30), (31), (34), and (35) indicate that the boundary un-
knowns on the degenerate boundary double, and that the addi-
tional hypersingular integral equation, E@®3), is correspond-
ingly necessary, i.e., the dual boundary integral equations can
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Fig. 3. Chebyshev nodes on thin barrier

provide us with sufficient constraints for the doubled boundary
unknowns on the degenerate boundary.

Dual Boundary Element Method for Wave Scattering
by Thin Barrier

By discretizing Eqs(26) and (27) into boundary elements, we
can obtain the equations as follows:

[ﬂ]{¢;}=[ui11[<%)j}

[Mﬂ{@}ﬂﬁﬂ(%ﬂ

where the elements of the four influence matrices are

Uij=RPVfBjU(§j %) dB(%) (36)
ﬂ:—wsij+cpvJBjT(§j X)dB(3)) (37)
Ej:ﬂaij+cpvaj|_(~sj X)dB(3)) (38)

Mij:HPvajlvlrsj %) dB(3) (39)

in which X;=ith collocation point;,dB(S;) =jth integration ele-
ment; andB; denotes thgth boundary element. After combining
the dual equations on the degenerate boundary whesilocates
onC™ or C™, the singular system of the four influence matrices
are desingularized. Since either one of the two equatidiisor
LM, for the ordinary boundar$ can be selected, two alternative
approachesJ T+LM andLM+UT in Fig. 2, are proposed.

The UT+LM method employs the following equation:

Tigs  Tiger  Tide | [ o,

Ticiis Tictier Tigrie- |4 Pier
icts igticr gt bj-
( 34) \
an
. o o Is
U'sls U'slc+ U'slc’ 9
= Uic*js Uic*ic* Uic*ic’ an, (40)
C+
Lic+js Lic+jc+ LiC*iC’ a¢
aon; _
\ )

whereig andic+ denote the collocation points on tisandC*
boundaries, respectively, and and .+ denote the element I.D.

on the S and C* boundaries, respectively. Besides, thi
+UT method can solve the degenerate boundary problem by
using

Misjs Misjc+ Misjc’ d)js
Tic+jS Tic+jc+ TiCJ’jC* d)jc+
ictis Migijer Migije bj-

( 84) A

anj

Li§s Lisic+ Lisic‘ °

b

Uic*is Uic*jc* Uic*jc’ anj (41)

C+

Lic+j3 Lic+jc+ LiCJ’jC* 6(1)

an;, _

\ o)

The main difference between Ed40) and(41) is the constraint
obtained by collocating the points on the ordinary bound&)y (
using theUT and LM equations, respectively.

In the numerical implementation, the velocity field is singular
at the tip of the barrier which needs fine mesh. To put more nodes
on the near tip of the barriey& —d) for Egs. (20) and (23) of
the dual boundary integral equations, the Chebyshev mesh is
adopted by

™
Si:—ldCOii—l)n—, i=l,...,nd+l (42)
d

wheres; = coordinate of boundary node on the barrier; npdnd
ng=length and total numbers of elements on the barrier. The
Chebyshev mesh accumulates nodes near the end of the barrier as
shown in Fig. 3, and allocation of the mesh points is an adaptive
scheme on the barrier.

lllustrative Examples

To demonstrate the validity of the dual boundary integral formu-
lation and the developed DBEM program, four examples are
given as follows.

Case 1: Floating Vertical Barrier with Rigid Boundary

The boundary element mesh of the scattering water wave problem
is shown in Fig. 4. To compare the accuracy of the DBEM results
(UT+LM or LM+UT) with the analytical solution of the deep
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] . ] T
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Fig. 4. Boundary element mesh o5 - |
: |
water theorem by Urse(ll974) and the multidomain BEM results e =
(Liu and Abbaspour 1982under the deep water condition, the , i
transmission coefficienfE and reflection coefficient® againstd ' | ‘ ’ ‘ | ' 1 ’ ‘
are plotted in Fig. 5 fokh=>5, in whichd is the submerged depth 0 02 04 - 06 o8 !

of the vertical barrier. The agreement among the present numeri-
cal results, the multidomain BEM result and the theoretical solu- Fig. 6. Transmission coefficients obtained by using different meth-
tions is good. The DBEM program is also applied to the cases of ods(case 1kh=4.272)

intermediate water depth where Wiegdl960Q presented some
experimental data. Figs. 6, 7, and 8 show the transmission coef-
ficients T versusd/h for different water depthskh=4.272,
2.1362, and 1.06, respectively. When the solved problem cuts
apart into two different domains fat=L, the DBEM method is

not required wheml=L. The analytical solution of eigenfunction
expansion method by Losada et @992, Wiegel's approximate
theoretical solution, and the numerical solution of the multido-
main BEM are also shown for comparison. It is found that the
solution of DBEM is closer to that of the eigenfunction expansion
method than the solution of multidomain BEM. Wiegel's approxi-
mate solutior(1960 does not work well for the deep water region

in Fig. 6. The present numerical results agree well with the results
of experimental data and the multidomain BEM well for the cases
of intermediate water depth in Figs. 7 and 8. The power transmis- 0

the intermediate and shallow water depth cases in Figs. 7 and 8.
But the others are closer to the experiments in the deep water
situation in Fig. 6. The result is difficult to converge a more
reasonable solution wheahgets very close th. We need a more
refined mesh to make the grid convergence for the singular be-
havior of the local area. Therefore, a more reasonable result is
obtained by adding more elements in Fig. 8.

sion theory is the one that captures the trend of the experiments in .
N |
.
/é
02 — * 31
B kh=5 e .
o Multi-domain BEM (Liu and Abbaspour, 1982) PN 3
Deep water theory (Ursell, 1974) — xRk % Ce -
120 — . UT method of DBEM (Combined LM, 320 elements) _ - e
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/
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/ . s} Multi-domain BEM (Liu and Abbaspour, 1982)
. B 9// Power ission theory (Wiegel, 1960)
7 * S Eigenfunction expansion method (Losada et al., 1992)
e * Experimental results (Wiegel, 1960)
0.00 IA T J T T 1 T T T T
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kd I

Fig. 5. Transmission and reflection coefficients for different Fig. 7. Transmission coefficients obtained by using different meth-
submerged lengths of thin vertical breakwatesise 1kh=5) ods(case 1kh=2.1362)
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Case 2: Floating Inclined Barrier with Rigid Boundary

Numerical experiments were performed to examine the efficiency (b)
of an inclined barrier as compared with a vertical barrier. The
numerical results of the multidomain BEM are also shown for T TR R
comparison. The transmission coeffici@nversusd/h is plotted 1.20 —
for different angles of inclination okh=2.075,6=0° in Fig. .
9(a), 6=25° in Fig. 9b), and6=45° in Fig. 9c). The two solu- * I jb&
tions,UT+LM andLM+UT approaches, match well with the 0.80 — petm [R
multidomain BEM solution in Figs. @—9. In fact, the barrier is E . 1
extremely effective ati/h=0.285 for6=45° in Fig. 9c). The

transmission coefficient is plotted againsé for kh=2.075, as 040 — cs -
shown in Figs. 1( and b, one is for fixed length of the barrier ] I Y
(I4/h=0.4), in whichl is the length of the barrier; the other is o Coug
for a fixed gap ¢/h=0.4). Therefore, the two cases are the same  ° T — T T T T T T
when0=0°. The present numerical results agree well with those o.00 0.20 040 a4 O 0.80 1oo

of the multidomain BEM for the cases in Figs.(atand B. The ©

numerical results show that the transmission coefficiens a

symmetric function ob. The barrier acts as a beach witers a Fig. 9. Transmission coefficients versus submerged depths of thin
negative value in the real world. The wave breaking could occur preakwaters with various angle&) 6=0°, (b) 6 =25°, (c) 6 =45°

and it could reduce the transmitted wave energy. The free surfacecase 2kh=2.075)

profiles on the left side of the barrier are shown in Figalfor
0=0°, Fig. 14b) for 6=45°, and Fig. 1(c) for 6 = —45°. The
present numerical results agree well with those of the multido- lem. To verify the accuracy, the results of the eigenfunction ex-
main BEM for the cases in Figs. (@-9. For the case of =0° pansion method(Tsaur etal. 2000 are also shown for
(vertical barriey in Fig. 11(a), the surface profile is similar to a  comparison. According to numerical experiments, the length of
standing wave. The wave runup phenomenon is clearly revealedeach pseudoboundary is adopted by the double of water depth. In
for 6=—45° in Fig. 11c). this case, the submergence ratiti{) is 0.75. By using the dual
formulations(UT or LM method, the reflection and transmission
coefficients are plotted againkh in Figs. 12 and 13 foG=0.5

and G=1.0 in Eq. (8), respectively. The results compare well
with the eigenfunction expansion method. To see the dissipation
Numerical experiments were performed to examine the efficiency efficiency due to porous parameters, transmission and reflection
of a thin (zero thickness submerged breakwater with porous coefficients with different porous coefficients=0, 0.5, and 1.0,
boundary condition by varying different porous coefficients. The versuskh by using the UT method (combined with theLM
barrier is modeled as zero thickness, i.e., the barrier is a degen-method are shown in Fig. 14. The physical phenomenon of
erate boundary. Dual formulation is the key to solving the prob- energy-loss dependency for different porous materials is clearly

X 14

° o

Case 3: Submerged Breakwater with Porous Boundary
Condition
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Fig. 10. Transmission coefficients versus different inclination angles
of thin breakwater{a) fixed lengthl ;/h=0.4 and(b) fixed gapd/h

=0.4 (case 2kh=2.075)

revealed. The energy-loss index, =1—(R?+T?), for the en-
ergy dissipation versukh with respect to the different porous
coefficients is plotted in Figs. 15=0.5) and 16 G=1.0),
respectively. Fig. 17 displays the energy-loss in@gxversuskh

0=0°
Multi-domain BEM (Liu and Abbaspour, 1982)
UT methoa (Ci i LM, 320
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Fig. 11. Wave amplitude on front side of thin breakwatés). 6
=0°, (b) 6=45°, and(c) 6 = —45° (case 2kh=2.075,d/h=0.4)

for G=0.5 and 1, to see the dissipation efficiency due to porous tation’s accuracy, the numerical results of the eigenfunction ex-

parameters. The results by usiblyl-DBEM, which are not good

pansion method are also shown for comparison. According to

enough for the higher wave number by using constant elements tonumerical experiments, the length of each pseudoboundary is also
capture hypersingularity, can be attributed to the same number ofadopted by double the water depth. In this case, the submergence
boundary elements for all cases of the different wave numbers.ratio (d/h) is also 0.75 the same as Case 3. By using the dual
Indeed, we need to refine the mesh to improve the better result offormulations(UT or LM methods, the reflection and transmission

to employ a higher-order element as shown in Fig. 12.

Case 4: Submerged Breakwater with Absorbing
Boundary Condition

coefficients are plotted againsth in Figs. 18 and 19 for
(G;,G,)=(0.5,0.0) and(1.0, 0.0 in Egs.(9) and(10). The re-
sults are compared well with those of the eigenfunction expansion
method. To see the dissipation efficiency due to a different ab-
sorbing instrument in the front side of the breakwater, transmis-

Numerical results were displayed to examine the validity of a thin sion and reflection coefficients for different absorbing coeffi-
submerged breakwater with absorbing boundary condition by cients, G,,G,)=(0.0,0.0), (0.5, 0.0, (1.0, 0.0, versuskh by

varying different absorbing coefficients on the front and back using theUT method are shown in Fig. 20. Fig. 21 indicates the
sides of the breakwater. To ensure the current numerical compu-reflection and transmission coefficients using the DBEM and
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Fig. 12. Transmission and reflection coefficients obtained by using Fig. 14. Transmission and reflection coefficients for different porous
different methodgcase 3h/d=0.75,G=0.5) coefficients obtained by usingT method(combinedLM) (case 3,
h/d=0.75,G=0,0.5,1.0

eigenfunction expansion method againkh with (G;,G,)
s:o(r%).ig’glé(ge’ff(i)(f:i;vr?tg tgﬁ dt\go 12222{?2 gﬁ:t;z)r:fgitg’efgrnéwt?ags " sorbing materials on the front or back sides of the breakwater is
sides of the breakwalter Th(ze’results agree well with those of theclearly revealed. The value of transmission coefficient is larger

. . o X oo .~ when the absorbing coefficie@, is larger. The energy-loss index
eigenfunction expansion method. To display the dissipation effi- E. of enerav dissipation versikh for the absorbing coefficient
ciency due to different absorbing instruments in the back side of (CLB G )=(glyo 1 O)p is olotted in Fig. 23. Fi 294 shows the
the breakwater, transmission and reflection coefficients for differ- * -1’2 S P 9. 23 F9.
ent absorbing coefficients Gy ,G,)=(1.0,0.0)(1.0, 0.5,(1.0 energy-loss indexg, versuskh for (G,,G,)=(0.0,0.0), (0.5,

2 . T 0.0), (1.0, 0.0, to see the dissipation efficiency due to different

1.0) versuskh are shown in Fig. 22 by using tiéT method. The S .
physical phenomenon of energy-loss dependency on different ab-absorblng Instruments in the front of the breakwater.
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Eigenfuncti pansion (Tsaur et al., 2001)
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Fig. 13. Transmission and reflection coefficients obtained by using Fig. 15. Energy-loss coefficients obtained by using different meth-
different methodgcase 3h/d=0.75,G=1) ods(case 3h/d=0.75,G=0.5)
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b/d=0.75, G=1.0

Eigenfunction expansion method (Tsaur et al., 2001)
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Fig. 16. Energy-loss coefficients obtained by using different meth- Fig. 18. Transmission and reflection coefficients obtained by using
ods(case 3h/d=0.75,G=1.0) different methodgcase 4h/d=0.75, G,,G,)=(0.5,0.0)]

Conclusions
ary is arbitrary, and thus not qualified as an automatic scheme.

The dual integral formulation for solving the propagation of inci- For the computational efficiency, a larger system of equations is
dent wave passing a vertical and inclined thin barrier with rigid required since the degrees of freedoms on the interface are put
boundary condition which is descending from the water surface to into the system, and it takes more CPU time and memory space
a depth, and a thin vertical submerged breakwater with absorbingthan the DBEM method to solve the linear algebraic equation. For
or porous boundary conditions which is extending from the sea- the accuracy, the DBEM result is better than multidomain BEM

bed to a height has been derived in this paper. The drawback ofby comparing that of the eigenfunction expansion method. A

the multidomain approach is obvious in that the artificial bound- DBEM program has been developed to solve for this scattering

1
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Fig. 17. Energy-loss coefficients obtained for different porous coef-
ficient by usingUT method (combined withLM method (case 3,
h/d=0.75,G=0.5,)

Fig. 19. Transmission and reflection coefficients obtained by using
different methodgcase 4h/d=0.75, (G;,G,)=(1.0,0.0)]
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Fig. 20. Transmission and reflection coefficients for different Fig. 22. Transmission and reflection coefficients for different

absorbing coefficients obtained by usingl method (combined absorbing coefficients obtained by usitgl method (combined
with LM method [case 4, h/d=0.75, G.1.Gy) with LM method [case 4, h/d=0.75, G1.Gy)
=(0.0,0.0), (0.5,0.0), (1.0,0.0)] =(1.0,0.0), (1.0,0.5), (1.0,1.0)]
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Notation

The following symbols are used in this paper:
A = amplitude of incident wave;
D = domain of interest;
dB(3;) = jthintegration element;
G = complex porous-wall-effect parameter;
G, = absorbing parameters of front side of

breakwater;
absorbing parameters of back side of breakwater;
= acceleration of gravity;
= water depth;
= wave number;
= length of elements on barrier;
= boundary normal vector;
= total numbers of elements on barrier;
= normal vector at boundary pois{
= reflection coefficient;
= source point;
= coordinate of boundary node on barrier;
= transmission coefficient;
fundamental solution;
= field point;
= ith collocation point;
= dirac-delta function;
= wave frequency; and
= velocity potential.
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