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Dual Boundary Element Analysis of Normal Incident Wave
Passing a Thin Submerged Breakwater with Rigid,

Absorbing, and Permeable Boundaries
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Abstract: In this paper, the dual integral formulation is derived for solving the scattering problem of normal incident wave passi
vertical and inclined barrier with rigid boundary condition which is descending from the water surface to a depth. Absorbing an
boundary conditions are both considered. The breakwater thickness is assumed to be zero since it is negligible in comparis
water depth and the wavelength of the incident wave. Although the multidomain boundary element method~BEM! can solve bounda
value problems with degenerate boundaries by dividing the interesting domain into two subdomains, the hypersingular fo
provides the key to solve the problem more efficiently in a single domain. To demonstrate the effects of the breakwater w
absorbing, and porous boundary conditions for the energy dissipation by the barrier, the transmission and reflection coeffici
scattering problem are determined by the developed dual BEM program. In addition, the results are obtained for the case
scattering by the barrier with zero thickness in constant water depth and are compared with the analytical solutions, the multido
solution, and the experimental data.
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Introduction

The boundary integral equation method~BIEM! or boundary el
ement method~BEM! is now establishing a position as an ac
alternative to the finite element method in many fields of e
neering. Over the past 20 years, main applications of BIEM
BEM were limited in boundary value problems without dege
ate boundaries. Since the degenerate boundary results in ra
ficiency for the influence matrix by using the conventional BE
the multidomain BEM was utilized to solve the nonunique s
tion by introducing an artificial boundary in the last decade,
cutoff wall ~Lafe et al. 1980!, thin barrier.~Liu and Abbaspou
1982!, screen acoustics~Chen et al. 2003!, and crack problem
~Blandford et al. 1981!. Instead of using the multidomain BEM
the hypersingular formulation plays a key role in solving
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problem in a single domain~Chen and Chen 1998!. The dua
BEM ~DBEM! or so-called the dual BIEM developed by Ho
and Chen~1988!, is becoming very popular for the problems w
a degenerate boundary. Aliabadi and his co-worker have exte
the DBEM applications and published many papers~Aliabadi
1997, Aliabadi and Saleh 2002!. The drawback of the multido
main approach is obvious in that the artificial boundary is a
trary, and thus not qualified as an automatic scheme. Fo
computational efficiency, a larger system of equations is req
since the degrees of freedoms on the interface are put int
system, and it takes more CPU time and memory space tha
DBEM method to solve the linear algebraic equation. Fur
more, the artificial boundary cannot be obtained for a half p
or infinite problem with degenerate boundary. The disadvan
of multidomain encourage researchers to deal with the dege
boundary problem by using the DBEM in a single domain w
hypersingularity in the last decades.

The type of breakwater can be considered as a thin barrie
a rigid boundary condition descending from the water surface
depth as shown in Fig. 1~a!. The effectiveness of zero-thickne
breakwater has been examined by various researchers nume
by using the multidomain BEM~Wiegel 1960; Raichlen and L
1978; Jones et al. 1979; Liu and Abbaspour 1982!. The analytica
solution of a vertical thin barrier for the transmission coefficieT
was solved in deep water by Ursell~1974!. It is interesting tha
the transmission coefficient becomes very small when 2pd/l is
great than one, wherel is the wavelength andd is the height o
the barrier which is descending from the water surface to a d
For the intermediate and shallow water depth cases, W
~1960! obtained an approximate solution by using the small
plitude wave theory. After comparing with the two solutions, W
gel’s solution does not match well with Ursell’s solution in
deep water situation. Other analytical solutions have also

developed by Losada et al.~1992! on the basis of the eigenfunc-
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tion expansion method for the case with a vertical thin barri
The diffraction of water waves by a thin porous breakw

~degenerate boundary! is considered initially by Yu~1995! and
has been widely studied by Losada et al.~1997!, Yip and Chwang
~1998!, McIver ~1999!, Wu et al.~1999!, Lee and Chwang~2000!,
and Linton and McIver~2000! by using analytical methods. Th
boundary condition on the breakwater assumes that the n
derivative of the potential of the flow through the breakwate
proportional to the difference in potential across the breakw
The scattering problem with the finite thickness of the perme
breakwater has been treated by adopting the conventional
~Hsu and Wu 1999!. The absorbing boundary with different a
sorbing parameters on the front and back sides of the break
has been studied by using the eigenfunction expansion m
~Tsaur et al. 2000!. To the best of the authors’ knowledge, DBE
was never utilized to treat scattering problems of a thin~zero-
thickness! breakwater with porous or absorbing boundary co
tion.

In this paper, we will construct the dual integral formulation
a single domain instead of using the multidomain BEM for s
ing the problem of normal incident wave passing a thin ver
and inclined barrier with a rigid boundary condition which
descending from the water surface to a depth in Fig. 1~a!, and a
thin vertical submerged breakwater with absorbing and po

Fig. 1. Definition sketch for two types of thin barrier and th
boundary conditions:~a! Floating barrier;~b! submerged breakwate
and ~c! boundary conditions of thin barrier
boundary condition which is extending from the seabed to a
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height in Fig. 1~b!, and the rigid, permeable, and absorb
boundary conditions of a thin barrier in Fig. 1~c!. After discretiz-
ing the dual integral equations, a dual BEM program will
developed to solve wave scattering problems for a zero-thic
breakwater. The results will be compared with those of nume
solutions by using the multidomain BEM~Liu and Abbaspou
1982!, the experimental data and the analytical solutions~Ursell
1974; Losada et al. 1992; Tsaur et al. 2000!.

Mathematical Formulation

The boundary value problem for the scattering of small ampl
waves by a fixed thin barrier is summarized below~Liu and Ab-
baspour 1982; Chen et al. 2002!. A thin barrier parallel to thez
axis is shown in Figs. 1~a and b!. A wave train with a frequenc
s propagates towards the barrier in a constant water deph.
Assuming inviscid, incompressible fluid and irrotational flow,
wave field may be represented by the velocity potentialF(x,y,t)
everywhere in the interested domain that satisfies the La
equation as

¹2F~x,y,t !50 (1)

According to the uniformity of the water depth in thez axis and
the periodicity in time, the potentialF(x,y,t) of fluid motion can
be expressed as

F~x,y,t !5f~x,y!e2 ist (2)

wheres satisfies the dispersion relation

s25gk tanh~kh!, (3)

in which k5wave number; andg5acceleration of gravity. Th
unknown functionf(x,y) describes the fluctuation of the pot
tial on thexy plane. Substitution of Eq.~2! into Eq.~1! yields the
two-dimensional Laplace equation as follows:

¹2f~x,y!50, ~x,y! in D (4)

where D5domain of interest. The boundary conditions of
interested domain are summarized as follows:
1. The linearized free water surface boundary condition~Dean

and Dalrymple 1984!

]f

]y
2

s2f

g
50 (5)

2. Seabed boundary conditions

]f

]n
50 (6)

wheren5boundary normal vector. The bottom is imperm
able.

3. Breakwater boundary conditions.
• Rigid boundary condition@as shown in Fig. 1~c!#

]f1

]n
5

]f2

]n
50 (7)

where subscripts 1 and 2 denote the front and back sid
the breakwater, respectively. The normal velocity is zer
the barrier.
• Porous boundary condition@as shown in Fig. 1~c!#

]f1

]n
52

]f2

]n
5ikG~f22f1! (8)
whereG5complex porous-wall-effect parameter~Yu 1995!,
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and indicates that the fluid velocity normal to the barrie
proportional to the pressure difference across the barrier
real part ofG is the resistance of the barrier and the im
nary part is the phase differences between the velocity
the pressure due to inertial effects. The resistance ma
related with a friction coefficient or a head loss coeffici
Inertial effects may be related with an added mass coeffi
or effective bore diameter.
• Absorbing boundary condition@as shown in Fig. 1~c!#

]f1

]n
5ikG1f1 (9)

]f2

]n
52ikG2f2 (10)

where G1 and G25absorbing parameters of the front a
back sides of the breakwater. This barrier can reduce ki
energy of incident water wave by placing armor unit w
different absorbing parameters on the front side and
side of the breakwater

4. Radiation condition at infinity~Sommerfeld 1964!

lim
r→`

r 1/2S ]f

]r
2 ikf D50 (11)

where r 5Ax21y2. Eq. ~11! indicates that the behavior
scattered water wave must be outgoing away from the b
water structure.

5. The boundary conditions on the fictitious interfaces.
For the infinite strip problem, the domain can be divided
three regions after introducing two pseudoboundaries on
sides of the barrier,x56 l , as shown in Figs. 1~a and b!. The
potential in Region I without energy loss can be expressed

f~1!~x,y!52
igA

s
~eik~x1 l !1Re2 ik~x1 l !!

cosh~k~h1y!!

cosh~kh!
(12)

where the superscript~1! denotes the region number;A
5amplitude of incident wave; andR5reflection coefficient. Th
potential in Region III without energy loss which needs to sa
the radiation B.C. in Eq.~11! can be expressed as

f~3!~x,y!52Teik~x2 l !
cosh~k~h1y!!

cosh~kh!

igA

s
(13)

whereT5transmission coefficient.
The boundary conditions on the fictitious interfaces are

f~1!~2 l ,y!5f~2!~2 l ,y! (14)

]f~1!

]x U
x52 l

5
]f~2!

]x U
x52 l

(15)

f~3!~ l ,y!5f~2!~ l ,y! (16)

]f~3!

]x U
x5 l

5
]f~2!

]x U
x5 l

(17)

According to Eqs.~12!, ~13!, ~14!, and ~16!, we can derive th

reflection and transmission coefficients as follows:
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R5211
k

n0 sinh~kh! E2h

0

f~2!~2 l ,y!cosh~k~h1y!!dy

(18)

T5
k

n0 sinh~kh! E2h

0

f~2!~ l ,y!cosh~k~h1y!!dy (19)

where

n05
1

2 S 11
2kh

sinh~2kh! D
Dual Boundary Integral Equations for Wave
Scattering by Thin Barrier

The first equation of the dual boundary integral equations fo
domain point can be derived from the Green’s third iden
~Chen and Hong 1993!

2pf~ x̃!5E
B
T~ s̃,x̃!f~ s̃!dB~ s̃!2E

B
U~ s̃,x̃!

]f~ s̃!

]ns
dB~ s̃!,

x̃PD (20)

where x̃5field point (x̃5(x,y)); s̃5source point; andU( s̃,x̃)
andT( s̃,x̃) are

U~ s̃,x̃!5 ln~ us̃2 x̃u!

T~ s̃,x̃![
]U~ s̃,x̃!

]ns̃
(21)

in which ns̃ denotes the normal vector at the boundary poins̃,
andU( s̃,x̃) is the fundamental solution which satisfies

¹2U~ x̃,s̃!5d~ x̃2 s̃!, x̃PD (22)

whered( x̃2 s̃)5Dirac-delta function. After taking normal deriv
tive with respect to Eq.~20! for a thin barrier problem, the seco
equation of the dual boundary integral formulation for the dom
point is derived

2p
]f~ x̃!

]nx̃
5E

B
M ~ s̃,x̃!f~ s̃!dB~ s̃!2E

B
L~ s̃,x̃!

]f~ s̃!

]ns̃
dB~ s̃!,

x̃PD (23)

where

L~ s̃,x̃![
]U~ s̃,x̃!

]nx̃
(24)

M ~ s̃,x̃![
]2U~ s̃,x̃!

]nx̃]ns̃
(25)

in which nx̃ represents the normal vector ofx̃. By moving the
field point x̃ in Eqs. ~20! and ~23! to the boundary, the du
boundary integral equations for the boundary point can be
tained as follows:

pf~ x̃!5CPVE
B
T~ s̃,x̃!f~ s̃!dB~ s̃!

2RPVE
B
U~ s̃,x̃!

]f~ s̃!

]ns̃
dB~ s̃!,
x̃PB (26)

ASTAL AND OCEAN ENGINEERING © ASCE / JUL/AUG 2004 / 181



hy
-

y

ried

cal-
for

y
in

n-
addi-
-

using
p
]f~ x̃!

]nx̃
5HPVE

B
M ~ s̃,x̃!f~ s̃!dB~ s̃!

2CPVE
B
L~ s̃,x̃!

]f~ s̃!

]ns̃
dB~ s̃!

x̃PB (27)

where RPV, CPV, and HPV5Riemann principal value, Cauc
principal value, and Hadamard~Mangler! principal values, re
spectively.

It should be noted that Eq.~27! can be derived simply b
applying a normal derivative operator with respect to Eq.~26!.
Differentiation of the Cauchy principal value should be car
out carefully by using Leibnitz’s rule~Chen and Hong 1999!. The
commutative property provides us with two alternatives for
culating the Hadamard principal value in a similar way used
crack problems~Hong and Chen 1988! and acoustics~Chen and
Chen 1998!. For the problem including an ordinary boundarS
and degenerate boundariesC1 andC2 on the both sides of a th
barrier as shown in Figs. 1~a and b!, i.e., B5S1C11C2, Eqs.
~26! and ~27! can be reformulated as follows:

For x̃PS, Eqs.~26! and ~27! become

pf~ x̃!5CPVE
S
T~ s̃,x̃!f~ s̃!dB~ s̃!

2RPVE
S
U~ s̃,x̃!

]f~ s̃!

]ns̃
dB~ s̃!

1E
C1

T~ s̃,x̃!Df~ x̃!dB~ s̃!

2E
C1

U~ s̃,x̃!S
]f~ s̃!

]ns̃
dB~ s̃! (28)

p
]f~ x̃!

]nx̃
5HPVE

S
M ~ s̃,x̃!f~ s̃!dB~ s̃!

2CPVE
S
L~ s̃,x̃!

]f~ s̃!

]ns̃
dB~ s̃!

1E
C1

M ~ s̃,x̃!Df~ s̃!dB~ s̃!

2E
C1

L~ s̃,x̃!S
]f~ s̃!

]ns̃
dB~ s̃! (29)

where

Df~ s̃![f~ s̃1!2f~ s̃2! (30)

S
]f

]n
~ s̃![

]f

]n
~ s̃1!1

]f

]n
~ s̃2! (31)

1
For x̃PC , Eqs.~26! and ~27! reduce to

182 / JOURNAL OF WATERWAY, PORT, COASTAL AND OCEAN ENGINEER
pSf~ x̃!5CPVE
C1

T~ s̃,x̃!Df~ s̃!dB~ s̃!

2RPVE
C1

U~ s̃,x̃!S
]f~ s̃!

]ns̃
dB~ s̃!

1E
S
T~ s̃,x̃!f~ s̃!dB~ s̃!2E

S
U~ s̃,x̃!

]f~ s̃!

]ns̃
dB~ s̃!

(32)

pD
]f~ x̃!

]nx̃
5HPVE

C1
M ~ s̃,x̃!Df~ s̃!dB~ s̃!

2CPVE
C1

L~ s̃,x̃!S
]f~ s̃!

]ns̃
dB~ s̃!

1E
S
M ~ s̃,x̃!f~ s̃!dB~ s̃!2E

S
L~ s̃,x̃!

]f~ s̃!

]ns̃
dB~ s̃!

(33)

where

Sf~ s̃!>f~ s̃1!1f~ s̃2! (34)

D
]f

]n
~ s̃![

]f

]n
~ s̃1!2

]f

]n
~ s̃2! (35)

Eqs. ~30!, ~31!, ~34!, and ~35! indicate that the boundary u
knowns on the degenerate boundary double, and that the
tional hypersingular integral equation, Eq.~23!, is correspond

Fig. 2. Two alternative approaches for degenerate-boundary
dual formulation
ingly necessary, i.e., the dual boundary integral equations can
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unknowns on the degenerate boundary.

Dual Boundary Element Method for Wave Scattering
by Thin Barrier

By discretizing Eqs.~26! and ~27! into boundary elements, w
can obtain the equations as follows:

@ T̄i j #$f j%5@Ui j #H S ]f

]n D
j
J

@Mi j #$f j%5@ L̄ i j #H S ]f

]n D
j
J

where the elements of the four influence matrices are

Ui j 5RPVE
Bj

U~ s̃j ,x̃i !dB~ s̃j ! (36)

T̄i j 52pd i j 1CPVE
Bj

T~ s̃j ,x̃i !dB~ s̃j ! (37)

L̄ i j 5pd i j 1CPVE
Bj

L~ s̃j ,x̃i !dB~ s̃j ! (38)

Mi j 5HPVE
Bj

M ~ s̃j ,x̃i !dB~ s̃j ! (39)

in which x̃i5 i th collocation point;dB( s̃j)5 j th integration ele
ment; andBj denotes thej th boundary element. After combinin
the dual equations on the degenerate boundary whenx̃ collocates
on C1 or C2, the singular system of the four influence matri
are desingularized. Since either one of the two equations,UT or
LM, for the ordinary boundaryS can be selected, two alternat
approaches,UT1LM andLM1UT in Fig. 2, are proposed.

Fig. 3. Chebyshev nodes on thin barrier
The UT1LM method employs the following equation:

JOURNAL OF WATERWAY, PORT, CO
F Ti Sj S
Ti Sj C1 Ti Sj C2

Ti C1 j S
Ti C1 j C1 Ti C1 j C2

Mi C1 j S
M i C1 j C1 Mi C1 j C2

G H f j S

f j C1

f j C2

J

5F Ui Sj S
Ui Sj C1 Ui Sj C2

Ui C1 j S
Ui C1 j C1 Ui C1 j C2

Li C1 j S
Li C1 j C1 Li C1 j C2

G 5
]f

]nj S

]f

]nj C1

]f

]nj C2

6 (40)

wherei S and i C1 denote the collocation points on theS andC1

boundaries, respectively, andj S and j C1 denote the element I.D
on the S and C1 boundaries, respectively. Besides, theLM
1UT method can solve the degenerate boundary proble
using

F Mi Sj S
M i Sj C1 Mi Sj C2

Ti C1 j S
Ti C1 j C1 Ti C1 j C2

Mi C1 j S
M i C1 j C1 Mi C1 j C2

G H f j S

f j C1

f j C2

J

5F Li Sj S
Li Sj C1 Li Sj C2

Ui C1 j S
Ui C1 j C1 Ui C1 j C2

Li C1 j S
Li C1 j C1 Li C1 j C2

G 5
]f

]nj S

]f

]nj C1

]f

]nj C2

6 (41)

The main difference between Eqs.~40! and ~41! is the constrain
obtained by collocating the points on the ordinary boundaryS),
using theUT andLM equations, respectively.

In the numerical implementation, the velocity field is sing
at the tip of the barrier which needs fine mesh. To put more n
on the near tip of the barrier (y52d) for Eqs.~20! and ~23! of
the dual boundary integral equations, the Chebyshev me
adopted by

si52 l d cos~ i 21!
p

nd
, i 51, . . . ,nd11 (42)

wheresi5coordinate of boundary node on the barrier; andl d and
nd5 length and total numbers of elements on the barrier.
Chebyshev mesh accumulates nodes near the end of the ba
shown in Fig. 3, and allocation of the mesh points is an ada
scheme on the barrier.

Illustrative Examples

To demonstrate the validity of the dual boundary integral for
lation and the developed DBEM program, four examples
given as follows.

Case 1: Floating Vertical Barrier with Rigid Boundary

The boundary element mesh of the scattering water wave pro
is shown in Fig. 4. To compare the accuracy of the DBEM re

(UT1LM or LM1UT) with the analytical solution of the deep

ASTAL AND OCEAN ENGINEERING © ASCE / JUL/AUG 2004 / 183
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water theorem by Ursell~1974! and the multidomain BEM resul
~Liu and Abbaspour 1982! under the deep water condition, t
transmission coefficientsT and reflection coefficientsR againstkd
are plotted in Fig. 5 forkh55, in whichd is the submerged dep
of the vertical barrier. The agreement among the present nu
cal results, the multidomain BEM result and the theoretical s
tions is good. The DBEM program is also applied to the cas
intermediate water depth where Wiegel~1960! presented som
experimental data. Figs. 6, 7, and 8 show the transmission
ficients T versus d/h for different water depths,kh54.272,
2.1362, and 1.06, respectively. When the solved problem
apart into two different domains ford5L, the DBEM method i
not required whend5L. The analytical solution of eigenfunctio
expansion method by Losada et al.~1992!, Wiegel’s approximat
theoretical solution, and the numerical solution of the mult
main BEM are also shown for comparison. It is found that
solution of DBEM is closer to that of the eigenfunction expan
method than the solution of multidomain BEM. Wiegel’s appro
mate solution~1960! does not work well for the deep water reg
in Fig. 6. The present numerical results agree well with the re
of experimental data and the multidomain BEM well for the ca
of intermediate water depth in Figs. 7 and 8. The power trans
sion theory is the one that captures the trend of the experime

Fig. 4. Boundary element mesh

Fig. 5. Transmission and reflection coefficients for differ
submerged lengths of thin vertical breakwater~case 1,kh55)
184 / JOURNAL OF WATERWAY, PORT, COASTAL AND OCEAN ENGINEER
the intermediate and shallow water depth cases in Figs. 7 a
But the others are closer to the experiments in the deep
situation in Fig. 6. The result is difficult to converge a m
reasonable solution whend gets very close toh. We need a mor
refined mesh to make the grid convergence for the singula
havior of the local area. Therefore, a more reasonable res
obtained by adding more elements in Fig. 8.

Fig. 6. Transmission coefficients obtained by using different m
ods ~case 1,kh54.272)

Fig. 7. Transmission coefficients obtained by using different m
ods ~case 1,kh52.1362)
ING © ASCE / JUL/AUG 2004
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Case 2: Floating Inclined Barrier with Rigid Boundary

Numerical experiments were performed to examine the effici
of an inclined barrier as compared with a vertical barrier.
numerical results of the multidomain BEM are also shown
comparison. The transmission coefficientT versusd/h is plotted
for different angles of inclination ofkh52.075, u50° in Fig.
9~a!, u525° in Fig. 9~b!, andu545° in Fig. 9~c!. The two solu
tions, UT1LM and LM1UT approaches, match well with t
multidomain BEM solution in Figs. 9~a–c!. In fact, the barrier i
extremely effective atd/h50.285 for u545° in Fig. 9~c!. The
transmission coefficientT is plotted againstu for kh52.075, as
shown in Figs. 10~a and b!, one is for fixed length of the barri
( l d /h50.4), in whichl d is the length of the barrier; the other
for a fixed gap (d/h50.4). Therefore, the two cases are the s
whenu50°. The present numerical results agree well with th
of the multidomain BEM for the cases in Figs. 10~a and b!. The
numerical results show that the transmission coefficientT is a
symmetric function ofu. The barrier acts as a beach whenu is a
negative value in the real world. The wave breaking could o
and it could reduce the transmitted wave energy. The free su
profiles on the left side of the barrier are shown in Fig. 11~a! for
u50°, Fig. 11~b! for u545°, and Fig. 11~c! for u5245°. The
present numerical results agree well with those of the mul
main BEM for the cases in Figs. 11~a–c!. For the case ofu50°
~vertical barrier! in Fig. 11~a!, the surface profile is similar to
standing wave. The wave runup phenomenon is clearly rev
for u5245° in Fig. 11~c!.

Case 3: Submerged Breakwater with Porous Boundary
Condition

Numerical experiments were performed to examine the effici
of a thin ~zero thickness! submerged breakwater with poro
boundary condition by varying different porous coefficients.
barrier is modeled as zero thickness, i.e., the barrier is a d

Fig. 8. Transmission coefficients obtained by using different m
ods ~case 1,kh51.06)
erate boundary. Dual formulation is the key to solving the prob-

JOURNAL OF WATERWAY, PORT, CO
lem. To verify the accuracy, the results of the eigenfunction
pansion method ~Tsaur et al. 2000! are also shown fo
comparison. According to numerical experiments, the leng
each pseudoboundary is adopted by the double of water dep
this case, the submergence ratio (d/h) is 0.75. By using the du
formulations~UT or LM method!, the reflection and transmissi
coefficients are plotted againstkh in Figs. 12 and 13 forG50.5
and G51.0 in Eq. ~8!, respectively. The results compare w
with the eigenfunction expansion method. To see the dissip
efficiency due to porous parameters, transmission and refle
coefficients with different porous coefficients,G50, 0.5, and 1.0
versus kh by using theUT method ~combined with theLM
method! are shown in Fig. 14. The physical phenomenon

Fig. 9. Transmission coefficients versus submerged depths o
breakwaters with various angles:~a! u50°, ~b! u525°, ~c! u545°
~case 2,kh52.075)
energy-loss dependency for different porous materials is clearly
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revealed. The energy-loss index,EL512(R21T2), for the en-
ergy dissipation versuskh with respect to the different poro
coefficients is plotted in Figs. 15 (G50.5) and 16 (G51.0),
respectively. Fig. 17 displays the energy-loss indexEL versuskh
for G50.5 and 1, to see the dissipation efficiency due to po
parameters. The results by usingLM -DBEM, which are not goo
enough for the higher wave number by using constant eleme
capture hypersingularity, can be attributed to the same numb
boundary elements for all cases of the different wave num
Indeed, we need to refine the mesh to improve the better res
to employ a higher-order element as shown in Fig. 12.

Case 4: Submerged Breakwater with Absorbing
Boundary Condition

Numerical results were displayed to examine the validity of a
submerged breakwater with absorbing boundary conditio
varying different absorbing coefficients on the front and b

Fig. 10. Transmission coefficients versus different inclination an
of thin breakwater:~a! fixed lengthl d /h50.4 and~b! fixed gapd/h
50.4 ~case 2,kh52.075)
sides of the breakwater. To ensure the current numerical compu-

186 / JOURNAL OF WATERWAY, PORT, COASTAL AND OCEAN ENGINEER
tation’s accuracy, the numerical results of the eigenfunction
pansion method are also shown for comparison. Accordin
numerical experiments, the length of each pseudoboundary i
adopted by double the water depth. In this case, the submer
ratio (d/h) is also 0.75 the same as Case 3. By using the
formulations~UT or LM methods!, the reflection and transmissi
coefficients are plotted againstkh in Figs. 18 and 19 fo
(G1 ,G2)5(0.5,0.0) and~1.0, 0.0! in Eqs. ~9! and ~10!. The re-
sults are compared well with those of the eigenfunction expa
method. To see the dissipation efficiency due to a differen
sorbing instrument in the front side of the breakwater, trans
sion and reflection coefficients for different absorbing co
cients, (G1 ,G2)5(0.0,0.0), ~0.5, 0.0!, ~1.0, 0.0!, versuskh by
using theUT method are shown in Fig. 20. Fig. 21 indicates

Fig. 11. Wave amplitude on front side of thin breakwater:~a!. u
50°, ~b! u545°, and~c! u5245° ~case 2,kh52.075,d/h50.4)
reflection and transmission coefficients using the DBEM and

ING © ASCE / JUL/AUG 2004
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eigenfunction expansion method againstkh with (G1 ,G2)
5(1.0,1.0), of which the two absorbing instruments for two
sorbing coefficients,G1 andG2 , are set in the front side and ba
sides of the breakwater. The results agree well with those o
eigenfunction expansion method. To display the dissipation
ciency due to different absorbing instruments in the back sid
the breakwater, transmission and reflection coefficients for d
ent absorbing coefficients (G1 ,G2)5(1.0,0.0),~1.0, 0.5!,~1.0,
1.0! versuskh are shown in Fig. 22 by using theUT method. The
physical phenomenon of energy-loss dependency on differe

Fig. 12. Transmission and reflection coefficients obtained by u
different methods~case 3,h/d50.75,G50.5)

Fig. 13. Transmission and reflection coefficients obtained by u
different methods~case 3,h/d50.75,G51)
JOURNAL OF WATERWAY, PORT, CO
sorbing materials on the front or back sides of the breakwa
clearly revealed. The value of transmission coefficient is la
when the absorbing coefficientG2 is larger. The energy-loss ind
EL of energy dissipation versuskh for the absorbing coefficie
(G1 ,G2)5(1.0,1.0) is plotted in Fig. 23. Fig. 24 shows
energy-loss indexEL versuskh for (G1 ,G2)5(0.0,0.0), ~0.5,
0.0!, ~1.0, 0.0!, to see the dissipation efficiency due to differ
absorbing instruments in the front of the breakwater.

Fig. 14. Transmission and reflection coefficients for different po
coefficients obtained by usingUT method~combinedLM! ~case 3
h/d50.75,G50,0.5,1.0!

Fig. 15. Energy-loss coefficients obtained by using different m
ods ~case 3,h/d50.75,G50.5)
ASTAL AND OCEAN ENGINEERING © ASCE / JUL/AUG 2004 / 187
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Conclusions

The dual integral formulation for solving the propagation of in
dent wave passing a vertical and inclined thin barrier with r
boundary condition which is descending from the water surfa
a depth, and a thin vertical submerged breakwater with abso
or porous boundary conditions which is extending from the
bed to a height has been derived in this paper. The drawba
the multidomain approach is obvious in that the artificial bou

Fig. 16. Energy-loss coefficients obtained by using different m
ods ~case 3,h/d50.75,G51.0)

Fig. 17. Energy-loss coefficients obtained for different porous c
ficient by usingUT method ~combined withLM method! ~case 3
h/d50.75,G50.5,1!
188 / JOURNAL OF WATERWAY, PORT, COASTAL AND OCEAN ENGINEER
ary is arbitrary, and thus not qualified as an automatic sch
For the computational efficiency, a larger system of equatio
required since the degrees of freedoms on the interface a
into the system, and it takes more CPU time and memory s
than the DBEM method to solve the linear algebraic equation
the accuracy, the DBEM result is better than multidomain B
by comparing that of the eigenfunction expansion metho
DBEM program has been developed to solve for this scatt

Fig. 18. Transmission and reflection coefficients obtained by u
different methods@case 4,h/d50.75, (G1 ,G2)5(0.5,0.0)]

Fig. 19. Transmission and reflection coefficients obtained by u
different methods@case 4,h/d50.75, (G1 ,G2)5(1.0,0.0)]
ING © ASCE / JUL/AUG 2004
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problem. Four illustrative examples of thin~zero thickness! bar-
riers with rigid, porous, and absorbing boundary conditions,
been successfully solved using the proposed DBEM, and th
sults were compared well with those obtained using analy
solutions, numerical solutions of the multidomain BEM, and
periments.

Fig. 20. Transmission and reflection coefficients for differ
absorbing coefficients obtained by usingUT method ~combined
with LM method! @case 4, h/d50.75, (G1 ,G2)
5(0.0,0.0), (0.5,0.0), (1.0,0.0)]

Fig. 21. Transmission and reflection coefficients obtained by u
different methods@case 4,h/d50.75, (G1 ,G2)5(1.0,1.0)]
JOURNAL OF WATERWAY, PORT, CO
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Fig. 22. Transmission and reflection coefficients for differ
absorbing coefficients obtained by usingUT method ~combined
with LM method! @case 4, h/d50.75, (G1 ,G2)
5(1.0,0.0), (1.0,0.5), (1.0,1.0)]

Fig. 23. Energy-loss coefficients obtained by using different m
ods @case 4,h/d50.75, (G1 ,G2)5(1.0,1.0)]
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Notation

The following symbols are used in this paper:
A 5 amplitude of incident wave;
D 5 domain of interest;

dB( s̃j) 5 j th integration element;
G 5 complex porous-wall-effect parameter;

G1 5 absorbing parameters of front side of
breakwater;

G2 5 absorbing parameters of back side of breakwate
g 5 acceleration of gravity;
h 5 water depth;
k 5 wave number;

l d 5 length of elements on barrier;
n 5 boundary normal vector;

nd 5 total numbers of elements on barrier;
ns̃ 5 normal vector at boundary points̃;
R 5 reflection coefficient;
s̃ 5 source point;
si 5 coordinate of boundary node on barrier;
T 5 transmission coefficient;
U 5 fundamental solution;
x̃ 5 field point;
x̃i 5 i th collocation point;
d 5 dirac-delta function;
s 5 wave frequency; and
F 5 velocity potential.
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