Free Vibration Analysis of a
Circular Plate With Multiple
Circular Holes by Using Indirect
BIEM and Addition Theorem

In this paper, natural frequencies and natural modes of a circular plate with multiple
circular holes are theoretically derived and numerically determined by using the indirect
boundary integral formulation, the addition theorem, and the complex Fourier series.
Owing to the addition theorem, all kernel functions are expanded into degenerate forms
and further expressed in the same polar coordinates centered at one circle where the
boundary conditions are specified. Not only the computation of the principal value is
avoided but also the calculation of higher-order derivatives can be easily determined. By
matching boundary conditions, a coupled infinite system of linear algebraic equations is
derived as an analytical model for the free vibration of a circular plate with multiple
circular holes. The direct-searching approach is utilized in the truncated finite system to
determine the natural frequency through singular value decomposition. After determining
the unknown Fourier coefficients, the corresponding mode shapes are obtained by using
the indirect boundary integral formulations. Some numerical eigensolutions are pre-
sented and then utilized to explain some physical phenomenon such as the beating and
the dynamic stress concentration. Good accuracy and fast rate of convergence are the
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main features of the present method, thanks to the analytical approach.
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1 Introduction

Circular plates with multiple circular holes are commonly ob-
served in engineering structures [1], e.g., aviation, aerospace, and
shipping, either to reduce the weight of the whole structure, to
increase the range of inspection, or to satisfy some other engineer-
ing designs. In addition, the title problem includes annular-like
plates, which are common elements in the rotating machinery with
practical applications including disk brake system, circular saw
blades, and hard disk for data storage [2]. Geometric discontinui-
ties due to these holes inevitably cause the change in dynamic
characteristics as well as the decrease in load carrying capacity. It
is important to comprehend the associated effects in the work of
the mechanical design or the associated controller design. As
stated by Leissa and Narita [3]: “The free vibrations of circular
plates have been of practical and academic interest for at least a
century and a half.” We revisit this problem by proposing a semi-
analytical approach.

Over the past few decades, much research has focused on the
analytical solutions for natural frequencies of the circular or an-
nular plates [4-7]. Recently, some researchers intended to extend
the analysis of an annular plate [8,9] to that of the plate with an
eccentric hole. Cheng et al. [8] encountered difficulty and resorted
to the finite element method (FEM) to implement the vibration
analysis of annular-like plates due to the complicated expression
for this kind of plate. Laura et al. [9] determined the natural fre-
quencies of a circular plate with an eccentric hole by using the
Rayleigh—Ritz variational method where the assumed function
does not satisfy the natural boundary condition in the inner free
edge. Lee et al. [10] proposed a semi-analytical approach to solve
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the free vibration analysis of a circular plate with multiple holes
by using the indirect boundary integral equation method (BIEM).

It is well known that the boundary element method (BEM) or
the BIEM can reduce the dimension of the original problem by
one, and thus the number of the introduced unknowns is much less
than that of the traditional domain type methods such as finite
difference method (FDM) or FEM. For BEM applications to plate
problems, readers may consult with the review article [11]. By
using the BIEM to analytically solve the problem of plate with
multiple holes, two problems need to be solved. One is the im-
proper integral in the boundary integral equation; the other is that
the field point and the source point locate on different circular
boundaries when considering the multiply connected domain
problem. These problems have been treated by using the degener-
ate kernel and tensor transformation [10], respectively. However,
tensor transformation accompanied with the higher-order deriva-
tive, such as the computation of effective shear force, increases
the complexity of computation and then deteriorates the accuracy
of its solution. In addition, the collocation method in Ref. [10]
belongs to the point-matching approach instead of the analytical
derivation. It also increases the effort of computation since bound-
ary nodes for collocation are required to satisfy the pointwise
boundary conditions.

This paper presents an analytical model for the free vibration
analysis of a circular plate with multiple circular holes by using
the indirect boundary integral formulation, addition theorem, and
complex Fourier series. When considering a circular plate with
multiple circular holes in the indirect boundary integral formula-
tion, the transverse displacement field is represented by all adap-
tive coordinates centered at each center of circles. By using the
addition theorem, it is transformed into the same coordinate cen-
tered at the corresponding circle, where the boundary conditions
are specified. By this way, the higher derivative such as bending
moments and effective shear forces can be easily determined. Ac-
cording to the specified boundary conditions, a coupled infinite
system of simultaneous linear algebraic equations is obtained.
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Fig. 1 Problem statement for an eigenproblem of a circular
plate with multiple circular holes

Based on the direct-searching approach [12], the nontrivial eigen-
solution can be determined by finding the zero determinant of the
truncated finite system through singular value decomposition
(SVD) [13]. Several numerical examples are presented, and the
proposed results of a circular plate with an eccentric circular hole
and multiple circular holes are compared with those of semi-
analytical solutions [10], global discretization method [2], and
FEM using the ABAQUS [14]. The results of eigensolution for the
plate with two holes can be used to explain the reason why the
dynamic concentration occurs when two holes are close to each
other.

2 Problem Statement and Indirect Boundary Integral
Formulation

2.1 Problem Statement of Plate Eigenproblem. A uniform
thin circular plate with H nonoverlapping circular holes centered
at the position vector Oy (k=0,1,...,H; Oy is the position vector
of the outer circular boundary of the plate) has a domain (), which
is enclosed with boundary

H
B = U Bk (1)
k=0
as shown in Fig. 1, where R, and B, denote the radius and the
boundary of the kth circle, respectively. The governing equation
of the free flexural vibration for this plate is expressed as

Viule) =Nux), xeQ (2)

where V* is the biharmonic operator, u is the lateral displacement,
N*=w?poh/ D, \ is the frequency parameter, w is the circular fre-
quency, po is the volume density, /4 is the plate thickness, D
=FEh3/12(1-u?) is the flexural rigidity of the plate, E denotes the
Young’s modulus, and w is the Poisson’s ratio

2.2 Indirect Boundary Integral Formulation. Based on the
indirect boundary integral formulation, the displacement field of
plate vibration can be represented by [15]

u(x)=f P(s,x)d)(s)dB(s)+f O(s,x)i(s)dB(s), x € Q
B B
(3)

where B is the boundary of the domain (), s and x mean the
source and field points, respectively, ¢(s) and i(s) are the un-
known fictitious density distributions on the boundary, P(s,x) and
QO(s,x) are kernel functions, which can be chosen from any two of
the four kernel functions, U, ®, M, and V, which will be elabo-
rated on later. The kernel function U(s,x) is the fundamental so-
lution, which satisfies

011015-2 / Vol. 78, JANUARY 2011

V4U(s,x) = N*U(s,x) = 8(s — x) (4)

where 8(s—x) is the Dirac-delta function. Considering the two
singular solutions (Yo(Ar) and Ky(\r), which are the zeroth order
of the second-kind Bessel and modified Bessel functions, respec-
tively) and one regular solution (Jy(Ar) is the zeroth order of the
first-kind Bessel function) in the fundamental solution, we have
the complex-valued kernel [12],

1 , 2
U(s,x)=8)\—2D Yo(Nr) = iJo(Nr) + 7—TK0()\r) (5)
where r=|s—x| and i*?=-1. The other three kernels, O(s,x),

M(s,x), and V(s,x) can be obtained by applying the following
slope, moment, and effective shear operators defined by

i)
0= (6)

(.
KM=—D[MV2<->+<1—M> ﬂ(nz)] ™

J i
KV=—D|:%V2(')+(1_M)E(£<g('))>:| ®

to the kernel U(s,x) with respect to the source point, where d/dn
and 9/ are the normal and tangential derivatives, respectively;
V2 means the Laplacian operator. In the polar coordinates of
(R, ), the normal and tangential derivatives can be expressed by
d/dR and (1/R) d/ 7y, respectively, and then the three kernel func-
tions can be rewritten as

O(s.x) = K¢ ,(U(s.x)) = % o
M(s,x) = Ky (U(s,x)) =—D[MV3U(s,x) +(1 ‘M)%]
(10)
e KUt D[%(Vfl/(s,x)) +(1= )
x<1)i(i<imm .
R/3ay\oR\R dy

Since the kernels P(s,x) and Q(s,x) can be selected from any
two of the four kernels, U(s,x), O(s,x), M(s,x), and V(s,x), six
(Cg) formulations can be considered. For the computational effi-
ciency, the kernels U(s,x) and O(s,x) are chosen as P(s,x) and
QO(s,x) in Eq. (3). In addition to the displacement, the slope, the
normal moment, and the effective shear force are derived by ap-
plying the three operators in Egs. (6)-(8) to Eq. (3) with respect to
the field point as follows:

u(x):f U(s,x)¢(s)dB(s)+f O(s,x)i(s)dB(s), x e
B B

(12)

H(x)zf Ue(s,x)¢(s)dB(s)+f O (s, x)4(s)dB(s), x e Q
B B

(13)

m(x) =f U, (s,x)p(s)dB(s) +f 0,.(s,x)i(s)dB(s), x e Q
B B
(14)
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u(x)=f Uv(s,x)¢(s)dB(s)+f 0,(s,x)i(s)dB(s), x e
B B

(15)

For the clamped case, the lateral displacement u(x) and the
slope O(x) on the boundary are specified to be zero. For the
free case, the normal moment m(x) and the effective shear force
v(x) on the boundary are set to be zero. The simply supported

lﬂ
(s.x) = 8)\2Dm_7x
U: -
UE(s,x) = !
T8N &
== 3
TO8ND, 2
0:

©

1
E, _
%) =D 2

m=—o0w

where the superscripts / and E denote the interior and exterior
cases for U(s,x) degenerate kernel to distinguish p<R and p
>R, respectively, as shown in Fig. 2. The other degenerate ker-
nels Ugy(s,x), Ogs.x), U,(s,x), ©,(s,x), Uy(s,x), and O,(s,x)
in the indirect boundary integral equations can be obtained by
applying the operators of Egs. (6)—(8) to the degenerate kernel
U(s,x) and O(s,x) in Egs. (16) and (17) with respect to the field
point x. In order to fully utilize the geometry of circular boundary,
the fictitious boundary densities, ¢(s) and ¢(s), can be expanded
by employing the complex Fourier series as follows:

#s)= >, de™, seB, k=0,...H (18)
PKs)= D, bre™*, seB, k=0,...H (19)

n=-—w

x=(p.¢)
s=(R.Y)

Fig. 2 Degenerate kernel for U(s, x)

Journal of Applied Mechanics

Downloaded 24 Oct 2010 to 140.121.146.148. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

> {Jmm)[ym(xp) il (\p)]+ Inl(xmK (\p)

{JWR)[Y,M(M) iT,(\p)] + —1 W(ARK,, (m)} e p>R

condition can be obtained by specifying both the lateral displace-
ment u(x) and the normal moment m(x) to be zero.

2.3 Degenerate Kernels and Complex Fourier Series for
the Fictitious Boundary Densities. In the polar coordinates, the
field point and source point can be expressed as x=(p, ¢) and s
=(R, y), respectively. By using the addition theorem [16], the ker-
nel functions U(s,x) and O(s,x) are expanded in the series form
as follows:

2
{J (NPLYW(NR) = i, (NR)] + —1,(Np)K ,(NR) mé= - p<R

im(d=v  p=R

} (16)
}

{Jm(xp)[Y,’,,(xR)—iJ;,(AR)]+ =1,(\p)K,, (m} mé=y p<R

(17)

where a* and b* are the complex Fourier coefficients of the kth
circular boundary, v, is its polar angle and H is the number of
inner holes.

3 Eigensolutions for a Circular Plate With Multiple
Circular Holes

Considering a circular plate with H circular holes, Eq. (12) can
be explicitly expressed as

U’(so,x)¢(s0)dBO(s0)+f ®1(so,x)¢(so)d30(so)

By

u(x) =
By

H
- [E UE(sksx)¢(sk)dBk(sk)
k=1 J B,

+f ®E(sk9x)l//(sk)dBk(sk):|, x e (20)
By

Substituting both the degenerate kernels, Egs. (16) and (17),
and the fictitious boundary densities, Egs. (18) and (19), into Eq.

(20) in the adaptive coordinate system, we have

u(x; pg, bosP1> D1s -+ > P11 Dr1)

= f (87\121) 2 {J’”()\po)[Ym()\R()) — ljm()\RO)]
By m=—o0

%

2 ) )
+— m()\Po)Km(ARo)}elm(%_yo))( E agemyo)dBo(so)
T

n=—o

l oo
' f 8 (ﬁzx {Jm(hpo)[y;l(wo) = iJ,(\Ry)]

%

2 ) )
+ _Im()\Po)K,’n()\Ro)}elm(%70))( 2 bge’””o)dBO(so)
T

n=—ow
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©

_i f <8)\2D 2

=1 m=—

{Jm()\Rk)[Ym(}\pk) - iJm()\pk)]

Im(ka)Kmupk)}efm(d’k‘yk’)( > aﬁe""’k)d&(sk)

J SADE

m=—ow

{Jr’n()\Rk)[Ym()\pk) =i, (Apy)]

%

2, " (\RDK,, (xpk)} (¢ w( > ble ’”k)dBk(sk)

21

where the (pg, ¢o),(p1>P),...,(py,Py) are the polar coordinates
of the field point x in the local coordinates at the center of the
corresponding circle. By employing the analytical integration
along each circular boundary in the adaptive coordinate and by
applying the orthogonal property, Eq. (21) can be rewritten as

u(x; po, bosP1> D1 -+ > Prs Dr1)

_ TRy -
) 2

m=—ow

{‘Im()\f)O)[Ym()\RO) - l‘]m()\RO)]

2
* ;Tlm(xpo)Km(xRo)}a“ ey 0 E {Jm(xpo)[Y (\Ro)

4ND

m=—0

’ 2 ’ im
l‘]m()\RO)] + gl)n()\pO)Km()\RO)}b?ne %o

H
E{ o E{ (RQLY,,(Apy) = i1,,(Mpy)]

m=—00

zmd)k_'__ E

m—foo

Im()\Rk)K (M’k)} {J (ARYLY,,(\py)

=il (Np) ]+ EIL(RRk)Km(XPk)}b’fne[md’k} (22)
T

To determine these unknown coefficients, the other three Egs.
(13)—(15) are required by applying three operators of Egs.
(9)—(11) to Eq. (22). First, this procedure involves the higher-
order derivatives. Second, Eq. (22) consists of several different
variables. It is difficult to directly derive the formulation. Conse-
quently, it is necessary to transform Eq. (22) into one coordinate
system by applying again the addition theorem.

Based on Graf’s addition theorem for the Bessel functions
given in Refs. [16,17], we can express the theorem in the follow-
ing form:

©

JuNpe™ = X, (N )], (Np )™ (23)
n=—o
L(pe™ b= D 1, (r e "%, (Np, e P (24)
an()\pk)ei)n¢k
E Ym—n()\rkp)ei(m_n)gk”-]n()\pp)eind)l’, pp < rkp
n=—%
2 Jm—n()\rkp)ei(m_n)Hkan(}\pp)ein¢P, pp > rkp
n=—0
(25)
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v

Fig. 3 Notation of Graf’s addition theorem for Bessel
functions
Km()\pk)eim¢k

E (_ 1)nKm—n(}\rkp)ei(m_n)Hkpln(xpp)emqsp, Pp < Fip

n=—0
©

E (_ 1)m_nlm—n()\rkp)ei(m_n)Hkan()\pp)em(bp» Pp = Tkp

n=—0

(26)

where (p,,, ¢,) and (py, ¢) in Fig. 3 are the polar coordinates of a
general field point x with respect to O, and Oy, which are the
origins of two polar coordinate systems, and (rk[,,ﬂkp) are the
polar coordinates of O, with respect to Oy.

By using the addition theorem for the Bessel functions J,,(Apy),
Y,,(\py), and K,,(\py), the displacement field near the circular
boundary B under the condition of p,>ry, can be expanded as
follows:

u(x; po, o)
7R, i

4AN’D

m=-x

{Jm(APO)[Ym()\RO) - l*]m()\RO)]
2 .
+ 7—71,,,<Xp0>1<m(xR0>}aﬁ’ne””"")

LSS

4}\Dm_4 {J (\po)LY,,(AR) = i, (AR)]

2 .
+=1,(\po)K},(AR) [bie™%
T

H o
TR .
-3 LAJ) S In R D T g Y, gy
=1 m=-x n=—o

- iJ,(Apo)]

n 1 (ka)E (= 1)y,

n=—u"

—n()\rk())ei(m_n)HkOKn()\pO) em%alfn

%

# I S {50 S, e, )

m=—%

= iJ,(\py)]

n=—0

_Im()\Rk) 2 ( l)m nIm n()\rkO)

n=-o
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M
XK ) em%bfn:| @7) 6x 3 po, o) = E e™bo{ ) (Npo)ay, + D) (Npy)b,),
m=—M
Furthermore, Eq. (27) can be rewritten as H
* ) - E 2 Cmn()\p0)a + 2 Dmn()\pO)bi
ulxspo, o) = > ™\ AD(Npo)al), + B)(\po)b), =t L= A
== (33)
H
_E E A (Apo)d + 2 Bt (\py)bt where CO()\pO) D (Apo), CO()\pO) and Dmn()\pok) can be ob-
rgl e tained by dlfferentlatmg A, (\po), Bm()\po), A, (Npo),
(28) Bfnn()\po) in Egs. (29)—(32) with respect to py.
Similarly, by applying the addition theorem to Eq. (22) and then
where using the moment operator of Eq. (7), the bending moment field
m(x) near the circular boundary B, (p=1,...,H) can be expanded
AO()\pO)—% JuNpo)[Y w(NRy) = id,,(NR)] as follows:
2 o
+ :Tlm()\po)Km()\RO) (29) m(x;pyd,) = > eimdy EV(Np,)al, + F(\p,)b,
()\po)__ Jm()\po)[Y )\Ro) l],,"()\Ro)]
4\D k
o) + E €k E Emn(}\pp)a + E mn()\pp)b
+ I n(Apo) K, (AR) (30) S S
k#p
" (34)
0 _ L l(ﬂ m)6
A ( pO) - 4)\2 ko{Jn—m()\rkO)Jn()\Rk)[Ym()\po) where 8k=_1’ k=0, and 8k=1a k#O,
. 2 n—-m
= iJ(Npo) ] + 71_(— 1) In—m()\rk())ln()\Rk)Km()\p())} El(\p,) = 4)\2 {J (R (\p,) - ia(\p,)]
(31)
2 K
R, + glm(th)am(kp,,) (35)
mn()\p()) = Eel(n_m)eko{ nfm()\rkO)Jrrl()\Rk)[Ym(}\p()) - l‘[m()\p())]
2 / Fo0np) = T2 10 ONR M) - icthh,)]
+ 7—7(— D" (A1) L, (NR DK, (N po) (32) m M) = T ML A P mEp
By differentiating Eq. (28) with respect to p,, the slope 6 near + 2 I'\R,) X (\p,) (36)
. . . m p’“m pp
the circular boundary By is given as T
e
TR i(n-m)o J i 2 !
me kp ‘]n—m()\rkp) am()\Pp)[YnO\Rk) - lJn()\Rk)] + ;In—m()\rkp) am()\pp)Kn()\Rk) ’ k=0
E},(\p,) = R ) (37)
2 AN ROLY o Nrig) = i) ]+ = (= D" ) Mo ) LORDK (W) [ K # 0.p
\
TR itn-myg J ' . 2 1 '
Ke, "% T (W) @ (Np )Y (NRY) — i, (AR ] + :Tln_m()\rkp)am()\pp)Kn()\Rk) , k=0
Fl(\p,) = R 5 (38)
T € MR o Nrg) = i i) ]+ —(= D" N L NRDK, -y Nry) £k # 0,p
T

where the moment operator aifl()\p) from Eq. (7) is defined as

’ N 2
o (\p) =D{(1 —m# - [(1 - u)':)% T V}Xm(xp)}

(39)

in which the upper (lower) signs refer to X=J,Y (I,K), respec-
tively. The differential equations for the Bessel’s functions have
been used to simplify @ (\p).
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From Eq. (8), the effective shear operator B*(\p) can be ex-
pressed as follows:

X, (\p)
2

- _M)w}
p

Bu(\p) =D{[m2(1 - w = (\p)’]
(40)

JANUARY 2011, Vol. 78 / 011015-5



Similarly, the effective shear field v(x) near the circular bound-
ary B, (p=1,...,H) can be expressed as follows:

0

v(ip,. b)) = 2 e[ Gh(Np,)al,+ HE(Np,)D,

m=—%

> Gh.(hpak+ X HL,(p,)b

n=—0

H
+ 2 &k
k=1

k#p

n=—0

(41)
where G (\p,), Hb(Np,), Gk (Ap,), and Hf‘nn()\pp) are obtained

mn
by replacing ai,i()\pp) in Egs. (35)-(38) by Bi;()\pp).

For an outer clamped circular plate (u=60=0) with multiple cir-
cular holes subject to free edge (m=v=0), by setting p, to R, and
applying the orthogonal property of {e”??} (p=0,1,...,H), Eqgs.
(28), (33), (34), and (41) yield

H 0
Agl()\RO)agz + B?n(xRO)b?n - E E Akmn()\RO)alr{l

k=1 | n=-x

+ > BY (NRBE | =0
H ©
C?n()\RU)a?n + DIO ()\R())bgz - 2 2 Csm()\R())aﬁ

m
k=1 n=—w

+ > D (\R)DE | =0

mn
n=—=

(42)

> ELONR))dE

n=—%

H
EL(NR ), + FL(NRDE + > &
k=0

k#p

+ > Fo R bE | =0

n=—o0

> GEL(OR)d

n=—o0

m

H
GI(\R,)dl, + HL,(NR,)bE + ) &,
k=0

k#p

+ >, HL R | =0

mn
n=-o0

form=0,*1,*2,...,n=0,%x1,%=2,...,and p=1,...,H. Equa-
tion (42) results in a coupled infinite system of simultaneous lin-
ear algebraic equations for the coefficients aﬁ1 and bﬁl, k
=0,...,H.

For an outer free circular plate (m=v=0) with multiple circular
holes subject to a clamped edge (u=6=0), a coupled infinite sys-
tem of linear equations analogous to Eq. (42) can be similarly
obtained as follows: (1) A&()\Ro), B&()\Ro), Aﬁm()\Ro), and
B]:m()\RQ) in Eq. (42) are determined by replacing X,,(Apy) in Egs.
(29)—(32) with aﬁ()\po) and setting pg to Ry, where the notation X
represents J, Y, I, and K, respectively; (2) Com()\RO), D?n()\Ro),
ck (ARy), and DX (AR() in Eq. (42) can be simila}fly obtained,
but here B (\py) is used; (3) EP(\R,), Fh(AR,), E,,,(\R),), and
F f,m()\Rp) in Eq. (42) are determined by replacing ' (\py) in Egs.
(35)—(38) with X,,(Apy) and setting p, to R; and (4) differentiat-
ing the coefficients in (3) with respect to p, and setting p, to R
yield G(\R,), H"(\R,), G%,(AR,), and H’, (\R,) in Eq. (42).

mn
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\ Case I:
Geometric data:

a=lm

b=0.25m

e=0.45m
thickness=0.002m
Boundary condition:
Inner circle : free
Outer circle: clamped

N\

Fig. 4 A circular plate with an eccentric hole subject to
clamped-free boundary conditions

In the following computation, only the finite M terms are used
in Eq. (42). Based on the direct-searching scheme [12], the natural
frequencies are determined as the minimum singular value from
the SVD of the truncated finite system by performing the fre-
quency sweep. In our approach, two steps are employed. In the
first step, the larger frequency interval AN is taken. For example,

6.5 :
Sixth mode
{ 6.2323
6 Fifth mode 6.0886 .
—<—- } } ]
- Fourth mode J AT
% 55} §
£
]
& 5t |
2 _ Third mode 5 s
s et ) L 4.7438
3 45} O—g— it | i
§'> Second mode HSE
[
41 ]
3.5} g
First mode
e t + t t t t +3.2014
3 L 1 1 L
0 5 10 15 20 25

Terms of Fourier series (N=2M+1)

Fig. 5 Natural frequency parameter versus the number of
terms of Fourier series for a circular plate with an eccentric
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the value of 0.1 is chosen to sweep the frequency range of our
concern. For the second step, the local sweep with the smaller one
proceeded depending on the precision requirement of the consid-
ered problem. For instance, the value of 0.0001 is adopted in this
paper. That is to say, the adaptive scheme of AN is used. Once the
eigenvalues are found, the associated mode shapes can be ob-
tained by substituting the corresponding boundary eigenvectors
(i.e., the complex Fourier series representing the fictitious bound-
ary density) into the boundary integral equations.

4 Numerical Results and Discussions

To demonstrate the proposed method, the FORTRAN code was
implemented to determine natural frequencies and modes of a
circular plate with multiple circular holes. The same problem was
independently solved by using FEM (the ABAQUS software) for
comparison. In all cases, the inner boundary is subject to the free
boundary condition, the thickness of the plate is 0.002 m, and the
Poisson’s ratio w is 1/3 unless otherwise specified. The general-
purpose linear triangular elements of type S3 were employed to
model the plate problem by using ABAQUS. Although the thickness
of the plate is 0.002 m, these elements do not suffer from the
transverse shear locking based on the theoretical manual of
ABAQUS [14].

4.1 Case 1: A Circular Plate With an Eccentric Hole
[2,10]. A circular plate with an eccentric hole, as shown in Fig. 4,
is considered. The outer and inner radii are 1 m (R;=1 m) and
0.25 m (R,=0.25 m), respectively, and the offset distance e for
the eccentric hole is 0.45 m (e/a=0.45). The lower six natural
frequency parameters versus the number of terms of Fourier series
N are shown in Fig. 5. It shows that the proposed solution
promptly converges by using only a few terms of Fourier series.
In addition, only the fourth and fifth modes are lost in the former
six modes when M equals to 1. The convergence rate is superior
to that by using the collocation approach [10] for the same prob-
lem. Figure 6 indicates the minimum singular value of the influ-
ence matrix versus the frequency parameter N when using 11
terms of Fourier series (N=11). Since the direct-searching scheme
is used, the drop location indicates the eigenvalue. The FEM was
employed to solve the same problem, and its model has 242,211
elements and 121,891 nodes in order to obtain acceptable results
for comparison. The lower six natural frequency parameters and
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Fig. 8 Contour of residual DMSs around the hole with eccen-
tricity e from 0 to 0.6: (a) the present method and (b) the finite
element method [8]
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Fig. 9 Effect of the eccentricity e on the natural frequencies
for the free-clamped annular-like plate: (a) the present method
and (b) the global discretization method [2]

modes by using the present method, the semi-analytical method
[10], and FEM are shown in Fig. 7. The results of the present
method match well with those of FEM by using the ABAQUS. It
indicates that the semi-analytical results show some deviations
from the other results due to the complicated transformation of the
effective shear force.

It may be worth mentioning that the proposed method can per-
form a local vibration analysis by using the residual displacement
mode shape (DMS), defined as the difference of DMS between the
circular and annular-like plate to the problem of damage detection
[8]. Figure 8 shows the contour of residual DMSs of mode (1,0)
[10] around the hole with eccentricity e from 0 to 0.6 by using (a)

Case 2:

Geometric data:
a=lm

b=0.25m

¢=0.15m
thickness=0.002m
Boundary condition:
Inner circle : free
Outer circle: clamped

Fig. 10 A circular plate with two holes subject to clamped-free
boundary conditions
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the present method and (b) the finite element method [8]. The
unobvious change around the hole in the DMS, even for a small
eccentricity, can be detected clearly from the residual DMS analy-
sis. It can provide an approach to identify damage occurring in the
annular-like plate.

The next example is a commercial computer hard disk drive
[2], which is an annular aluminum plate. The outer and inner radii
are 178 mm and 84 mm, respectively, and the thickness is 1.9 mm.
The plate was fixtured between two solid circular aluminum
flanges with an outside radius of 124 mm. The flanges were
aligned and positioned on the plate at a specified value of e within
the range of 0-30 mm. Figure 9 is the effect of the eccentricity e
on the natural frequencies for the free-clamped annular-like plate
by using (a) the present method and (b) the global discretization
method. Good agreement can be observed. Values of m and n in
the mode (m,n) [10] shown in Fig. 9 are numbers of diametrical
nodal lines and circular nodal lines, respectively. Subscript 1 de-
notes the straight diametrical nodal line, while subscript 2 denotes
the curved diametrical nodal line [10]. It shows that an annular-
like plate with small eccentricity has close eigenfrequencies and is
apt to result in beating between those close eigenmodes.
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Fig. 12 The minimum singular value versus the frequency pa-
rameter for a circular plate with two holes (a=1.0, b=0.25, ¢
=0.15)
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4.2 Case 2: A Circular Plate With Two Holes [10]. In order
to demonstrate the generality of the present method, a circular
plate with two holes is considered, as shown in Fig. 10. The radii
of holes are 0.25 m and 0.15 m, and the coordinates of the centers
are (0.5, 0.0) and (—0.4,—0.3), respectively. The lower six natural
frequency parameters versus the number of terms of Fourier series
N are shown in Fig. 11. When the number of inner circular hole
increases, the fast convergence rate can also be observed. The
sixth mode shows a slower convergence rate due to the complex
geometrical configuration. Figure 12 indicates the minimum sin-
gular value of the influence matrix versus the frequency parameter
N\ when using 11 terms of Fourier series (N=11). To achieve a
comparable solution for comparison, the FEM needs 136,670 el-
ements. The lower five natural frequency parameters and modes
by using the present method, the semi-analytical method [10], and
the FEM are shown in Fig. 13. Good agreement between the re-
sults of the present method and those of the ABAQUS is observed.

To investigate the hole-hole interaction [18], a circular plate
containing two identical holes with different central distances is
studied. The radii of the circular plate and the circular hole are 1
m and 0.15 m, and the dimensionless distances of two holes L/a
are chosen as 2.1, 2.5, and 4.0 in the numerical experiments,
where a is the radius of circular holes and L is the central distance
of two holes. Numerical results show that the space of two holes
has a minor effect on the lower eigenfrequencies. Regarding
eigenmodes shown in Fig. 14, the zone of the maximum deforma-
tion, enclosed with the dashed line, for the case of L/a=2.1 is
significantly less than that for L/a=4.0. Consequently, the dy-
namic stress concentration [19] for the case of L/a=2.1 is larger
because the distortion energy caused by the external loading con-
centrates in the smaller area.

Our proposed method has advantages over both the analytical
methods and the numerical methods, such as the conventional
BEM or the FEM. On one hand, it is clearly convinced that the
proposed formulation is applicable to problems with multiple cir-
cular holes, which cannot be solved easily by the other analytical
methods. On the other hand, it is demonstrated that the proposed
method has advantages, such as the good accuracy and fast rate of
convergence over the conventional BEM or FEM.

Journal of Applied Mechanics

Fig. 14 The first natural frequency parameters and modes of a
circular plate with two holes: (a) L/a=2.1 and (b) L/a=4.0

5 Concluding Remarks

An analytical model for the free vibration of a circular plate
with multiple circular holes was derived as a coupled infinite sys-
tem of simultaneous linear algebraic equations. Natural frequen-
cies and natural modes of the stated problem were determined in
the truncated finite system by using the direct-searching scheme.
The proposed method utilized indirect boundary integral equa-
tions, the addition theorem, and the complex Fourier series. Ow-
ing to the addition theorem, two critical problems of improper
integration in the indirect boundary integration and the higher
derivative in the multiply connected domain problems were suc-
cessively solved in a novel way. The proposed results match well
with those provided by FEM using a lot of elements to obtain
acceptable solutions for comparison. It shows good accuracy and
fast rate of convergence, thanks to the analytical approach. Be-
sides, the proposed numerical results have attempted explanations
for the beating in the rotating machinery and the dynamic stress
concentration when two holes are close to each other.
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