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Free Vibration Analysis of a
Circular Plate With Multiple
Circular Holes by Using Indirect
BIEM and Addition Theorem
In this paper, natural frequencies and natural modes of a circular plate with multiple
circular holes are theoretically derived and numerically determined by using the indirect
boundary integral formulation, the addition theorem, and the complex Fourier series.
Owing to the addition theorem, all kernel functions are expanded into degenerate forms
and further expressed in the same polar coordinates centered at one circle where the
boundary conditions are specified. Not only the computation of the principal value is
avoided but also the calculation of higher-order derivatives can be easily determined. By
matching boundary conditions, a coupled infinite system of linear algebraic equations is
derived as an analytical model for the free vibration of a circular plate with multiple
circular holes. The direct-searching approach is utilized in the truncated finite system to
determine the natural frequency through singular value decomposition. After determining
the unknown Fourier coefficients, the corresponding mode shapes are obtained by using
the indirect boundary integral formulations. Some numerical eigensolutions are pre-
sented and then utilized to explain some physical phenomenon such as the beating and
the dynamic stress concentration. Good accuracy and fast rate of convergence are the
main features of the present method, thanks to the analytical approach.
�DOI: 10.1115/1.4001993�
Introduction

Circular plates with multiple circular holes are commonly ob-
erved in engineering structures �1�, e.g., aviation, aerospace, and
hipping, either to reduce the weight of the whole structure, to
ncrease the range of inspection, or to satisfy some other engineer-
ng designs. In addition, the title problem includes annular-like
lates, which are common elements in the rotating machinery with
ractical applications including disk brake system, circular saw
lades, and hard disk for data storage �2�. Geometric discontinui-
ies due to these holes inevitably cause the change in dynamic
haracteristics as well as the decrease in load carrying capacity. It
s important to comprehend the associated effects in the work of
he mechanical design or the associated controller design. As
tated by Leissa and Narita �3�: “The free vibrations of circular
lates have been of practical and academic interest for at least a
entury and a half.” We revisit this problem by proposing a semi-
nalytical approach.

Over the past few decades, much research has focused on the
nalytical solutions for natural frequencies of the circular or an-
ular plates �4–7�. Recently, some researchers intended to extend
he analysis of an annular plate �8,9� to that of the plate with an
ccentric hole. Cheng et al. �8� encountered difficulty and resorted
o the finite element method �FEM� to implement the vibration
nalysis of annular-like plates due to the complicated expression
or this kind of plate. Laura et al. �9� determined the natural fre-
uencies of a circular plate with an eccentric hole by using the
ayleigh–Ritz variational method where the assumed function
oes not satisfy the natural boundary condition in the inner free
dge. Lee et al. �10� proposed a semi-analytical approach to solve
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the free vibration analysis of a circular plate with multiple holes
by using the indirect boundary integral equation method �BIEM�.

It is well known that the boundary element method �BEM� or
the BIEM can reduce the dimension of the original problem by
one, and thus the number of the introduced unknowns is much less
than that of the traditional domain type methods such as finite
difference method �FDM� or FEM. For BEM applications to plate
problems, readers may consult with the review article �11�. By
using the BIEM to analytically solve the problem of plate with
multiple holes, two problems need to be solved. One is the im-
proper integral in the boundary integral equation; the other is that
the field point and the source point locate on different circular
boundaries when considering the multiply connected domain
problem. These problems have been treated by using the degener-
ate kernel and tensor transformation �10�, respectively. However,
tensor transformation accompanied with the higher-order deriva-
tive, such as the computation of effective shear force, increases
the complexity of computation and then deteriorates the accuracy
of its solution. In addition, the collocation method in Ref. �10�
belongs to the point-matching approach instead of the analytical
derivation. It also increases the effort of computation since bound-
ary nodes for collocation are required to satisfy the pointwise
boundary conditions.

This paper presents an analytical model for the free vibration
analysis of a circular plate with multiple circular holes by using
the indirect boundary integral formulation, addition theorem, and
complex Fourier series. When considering a circular plate with
multiple circular holes in the indirect boundary integral formula-
tion, the transverse displacement field is represented by all adap-
tive coordinates centered at each center of circles. By using the
addition theorem, it is transformed into the same coordinate cen-
tered at the corresponding circle, where the boundary conditions
are specified. By this way, the higher derivative such as bending
moments and effective shear forces can be easily determined. Ac-
cording to the specified boundary conditions, a coupled infinite

system of simultaneous linear algebraic equations is obtained.
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ased on the direct-searching approach �12�, the nontrivial eigen-
olution can be determined by finding the zero determinant of the
runcated finite system through singular value decomposition
SVD� �13�. Several numerical examples are presented, and the
roposed results of a circular plate with an eccentric circular hole
nd multiple circular holes are compared with those of semi-
nalytical solutions �10�, global discretization method �2�, and
EM using the ABAQUS �14�. The results of eigensolution for the
late with two holes can be used to explain the reason why the
ynamic concentration occurs when two holes are close to each
ther.

Problem Statement and Indirect Boundary Integral
ormulation

2.1 Problem Statement of Plate Eigenproblem. A uniform
hin circular plate with H nonoverlapping circular holes centered
t the position vector Ok �k=0,1 , . . . ,H; O0 is the position vector
f the outer circular boundary of the plate� has a domain �, which
s enclosed with boundary

B = �
k=0

H

Bk �1�

s shown in Fig. 1, where Rk and Bk denote the radius and the
oundary of the kth circle, respectively. The governing equation
f the free flexural vibration for this plate is expressed as

�4u�x� = �4u�x�, x � � �2�

here �4 is the biharmonic operator, u is the lateral displacement,
4=�2�0h /D, � is the frequency parameter, � is the circular fre-
uency, �0 is the volume density, h is the plate thickness, D
Eh3 /12�1−�2� is the flexural rigidity of the plate, E denotes the
oung’s modulus, and � is the Poisson’s ratio

2.2 Indirect Boundary Integral Formulation. Based on the
ndirect boundary integral formulation, the displacement field of
late vibration can be represented by �15�

u�x� =�
B

P�s,x���s�dB�s� +�
B

Q�s,x���s�dB�s�, x � �

�3�

here B is the boundary of the domain �, s and x mean the
ource and field points, respectively, ��s� and ��s� are the un-
nown fictitious density distributions on the boundary, P�s ,x� and
�s ,x� are kernel functions, which can be chosen from any two of

he four kernel functions, U, �, M, and V, which will be elabo-
ated on later. The kernel function U�s ,x� is the fundamental so-

ig. 1 Problem statement for an eigenproblem of a circular
late with multiple circular holes
ution, which satisfies
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�4U�s,x� − �4U�s,x� = 	�s − x� �4�

where 	�s−x� is the Dirac-delta function. Considering the two
singular solutions �Y0��r� and K0��r�, which are the zeroth order
of the second-kind Bessel and modified Bessel functions, respec-
tively� and one regular solution �J0��r� is the zeroth order of the
first-kind Bessel function� in the fundamental solution, we have
the complex-valued kernel �12�,

U�s,x� =
1

8�2D
�Y0��r� − iJ0��r� +

2



K0��r�� �5�

where r�	s−x	 and i2=−1. The other three kernels, ��s ,x�,
M�s ,x�, and V�s ,x� can be obtained by applying the following
slope, moment, and effective shear operators defined by

K� =
�� · �
�n

�6�

KM = − D���2� · � + �1 − ��
�2� · �
�n2 � �7�

KV = − D� �

�n
�2� · � + �1 − ��

�

�t

 �

�n

 �

�t
� · ���� �8�

to the kernel U�s ,x� with respect to the source point, where � /�n
and � /�t are the normal and tangential derivatives, respectively;
�2 means the Laplacian operator. In the polar coordinates of
�R ,��, the normal and tangential derivatives can be expressed by
� /�R and �1 /R�� /��, respectively, and then the three kernel func-
tions can be rewritten as

��s,x� = K�,s�U�s,x�� =
�U�s,x�

�R
�9�

M�s,x� = KM,s�U�s,x�� = − D���s
2U�s,x� + �1 − ��

�2U�s,x�
�R2 �

�10�

V�s,x� = KV,s�U�s,x�� = − D� �

�R
��s

2U�s,x�� + �1 − ��

�
 1

R
� �

��

 �

�R

 1

R

�U�s,x�
��

��� �11�

Since the kernels P�s ,x� and Q�s ,x� can be selected from any
two of the four kernels, U�s ,x�, ��s ,x�, M�s ,x�, and V�s ,x�, six
�C2

4� formulations can be considered. For the computational effi-
ciency, the kernels U�s ,x� and ��s ,x� are chosen as P�s ,x� and
Q�s ,x� in Eq. �3�. In addition to the displacement, the slope, the
normal moment, and the effective shear force are derived by ap-
plying the three operators in Eqs. �6�–�8� to Eq. �3� with respect to
the field point as follows:

u�x� =�
B

U�s,x���s�dB�s� +�
B

��s,x���s�dB�s�, x � �

�12�


�x� =�
B

U
�s,x���s�dB�s� +�
B

�
�s,x���s�dB�s�, x � �

�13�

m�x� =�
B

Um�s,x���s�dB�s� +�
B

�m�s,x���s�dB�s�, x � �
�14�

Transactions of the ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



s
f
v

w
c
�
n
i
a
U
p
t
b

J

Downloa
v�x� =�
B

Uv�s,x���s�dB�s� +�
B

�v�s,x���s�dB�s�, x � �

�15�

For the clamped case, the lateral displacement u�x� and the
lope 
�x� on the boundary are specified to be zero. For the
ree case, the normal moment m�x� and the effective shear force
�x� on the boundary are set to be zero. The simply supported
Fig. 2 Degenerate kernel for U„s ,x…
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condition can be obtained by specifying both the lateral displace-
ment u�x� and the normal moment m�x� to be zero.

2.3 Degenerate Kernels and Complex Fourier Series for
the Fictitious Boundary Densities. In the polar coordinates, the
field point and source point can be expressed as x= �� ,�� and s
= �R ,��, respectively. By using the addition theorem �16�, the ker-
nel functions U�s ,x� and ��s ,x� are expanded in the series form
as follows:
U:�UI�s,x� =
1

8�2D 

m=−�

� �Jm�����Ym��R� − iJm��R�� +
2



Im����Km��R��eim��−��, � � R

UE�s,x� =
1

8�2D 

m=−�

� �Jm��R��Ym���� − iJm����� +
2



Im��R�Km�����eim��−��, � � R� �16�

�:��I�s,x� =
1

8�D 

m=−�

� �Jm�����Ym� ��R� − iJm� ��R�� +
2



Im����Km� ��R��eim��−��, � � R

�E�s,x� =
1

8�D 

m=−�

� �Jm� ��R��Ym���� − iJm����� +
2



Im� ��R�Km�����eim��−��, � � R� �17�
here the superscripts I and E denote the interior and exterior
ases for U�s ,x� degenerate kernel to distinguish ��R and �
R, respectively, as shown in Fig. 2. The other degenerate ker-

els U
�s ,x�, �
�s ,x�, Um�s ,x�, �m�s ,x�, Uv�s ,x�, and �v�s ,x�
n the indirect boundary integral equations can be obtained by
pplying the operators of Eqs. �6�–�8� to the degenerate kernel
�s ,x� and ��s ,x� in Eqs. �16� and �17� with respect to the field
oint x. In order to fully utilize the geometry of circular boundary,
he fictitious boundary densities, ��s� and ��s�, can be expanded
y employing the complex Fourier series as follows:

�k�s� = 

n=−�

�

an
kein�k, s � Bk, k = 0, . . . ,H �18�

�k�s� = 

n=−�

�

bn
kein�k, s � Bk, k = 0, . . . ,H �19�
where an
k and bn

k are the complex Fourier coefficients of the kth
circular boundary, �k is its polar angle and H is the number of
inner holes.

3 Eigensolutions for a Circular Plate With Multiple
Circular Holes

Considering a circular plate with H circular holes, Eq. �12� can
be explicitly expressed as

u�x� =�
B0

UI�s0,x���s0�dB0�s0� +�
B0

�I�s0,x���s0�dB0�s0�

− �

k=1

H �
Bk

UE�sk,x���sk�dBk�sk�

+�
Bk

�E�sk,x���sk�dBk�sk��, x � � �20�

Substituting both the degenerate kernels, Eqs. �16� and �17�,
and the fictitious boundary densities, Eqs. �18� and �19�, into Eq.
�20� in the adaptive coordinate system, we have

u�x;�0,�0,�1,�1, . . . ,�H,�H�

=�
B0


 1

8�2D 

m=−�

� �Jm���0��Ym��R0� − iJm��R0��

+
2



Im���0�Km��R0��eim��0−�0��
 


n=−�

�

an
0ein�0�dB0�s0�

+�
B0


 1

8�D 

m=−�

� �Jm���0��Ym� ��R0� − iJm� ��R0��

+
2



Im���0�Km� ��R0��eim��0−�0��
 


�

bn
0ein�0�dB0�s0�
n=−�
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− 

k=1

H ��
Bk


 1

8�2D 

m=−�

� �Jm��Rk��Ym���k� − iJm���k��

+
2



Im��Rk�Km���k��eim��k−�k��
 


n=−�

�

an
kein�k�dBk�sk�

+�
Bk

1

8�D 

m=−�

� �Jm� ��Rk��Ym���k� − iJm���k��

+
2



Im� ��Rk�Km���k��eim��k−�k�
 


n=−�

�

bn
kein�k�dBk�sk��

�21�

here the ��0 ,�0� , ��1 ,�� , . . . , ��H ,�H� are the polar coordinates
f the field point x in the local coordinates at the center of the
orresponding circle. By employing the analytical integration
long each circular boundary in the adaptive coordinate and by
pplying the orthogonal property, Eq. �21� can be rewritten as

u�x;�0,�0,�1,�1, . . . ,�H,�H�

=

R0

4�2D 

m=−�

� �Jm���0��Ym��R0� − iJm��R0��

+
2



Im���0�Km��R0��am

0 eim�0 +

R0

4�D 

m=−�

� �Jm���0��Ym� ��R0�

− iJm� ��R0�� +
2



Im���0�Km� ��R0��bm

0 eim�0

− 

k=1

H � 
Rk

4�2D 

m=−�

� �Jm��Rk��Ym���k� − iJm���k��

+
2



Im��Rk�Km���k��am

k eim�k +

Rk

4�D 

m=−�

� �Jm� ��Rk��Ym���k�

− iJm���k�� +
2



Im� ��Rk�Km���k��bm

k eim�k� �22�

To determine these unknown coefficients, the other three Eqs.
13�–�15� are required by applying three operators of Eqs.
9�–�11� to Eq. �22�. First, this procedure involves the higher-
rder derivatives. Second, Eq. �22� consists of several different
ariables. It is difficult to directly derive the formulation. Conse-
uently, it is necessary to transform Eq. �22� into one coordinate
ystem by applying again the addition theorem.

Based on Graf’s addition theorem for the Bessel functions
iven in Refs. �16,17�, we can express the theorem in the follow-
ng form:

Jm���k�eim�k = 

n=−�

�

Jm−n��rkp�ei�m−n�
kpJn���p�ein�p �23�

Im���k�eim�k = 

n=−�

�

Im−n��rkp�ei�m−n�
kpIn���p�ein�p �24�

Ym���k�eim�k

=� 

n=−�

�

Ym−n��rkp�ei�m−n�
kpJn���p�ein�p, �p � rkp



n=−�

�

Jm−n��rkp�ei�m−n�
kpYn���p�ein�p, �p � rkp�

�25�
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Km���k�eim�k

=� 

n=−�

�

�− 1�nKm−n��rkp�ei�m−n�
kpIn���p�ein�p, �p � rkp



n=−�

�

�− 1�m−nIm−n��rkp�ei�m−n�
kpKn���p�ein�p, �p � rkp�
�26�

where ��p ,�p� and ��k ,�k� in Fig. 3 are the polar coordinates of a
general field point x with respect to Op and Ok, which are the
origins of two polar coordinate systems, and �rkp ,
kp� are the
polar coordinates of Op with respect to Ok.

By using the addition theorem for the Bessel functions Jm���k�,
Ym���k�, and Km���k�, the displacement field near the circular
boundary B0 under the condition of �0�rk0 can be expanded as
follows:

u�x;�0,�0�

=

R0

4�2D 

m=−�

� �Jm���0��Ym��R0� − iJm��R0��

+
2



Im���0�Km��R0��am

0 eim�0

+

R0

4�D 

m=−�

� �Jm���0��Ym� ��R0� − iJm� ��R0��

+
2



Im���0�Km� ��R0��bm

0 eim�0

− 

k=1

H � 
Rk

4�2D 

m=−�

� �Jm��Rk� 

n=−�

�

Jm−n��rk0�ei�m−n�
k0�Yn���0�

− iJn���0��

+
2



Im��Rk� 


n=−�

�

�− 1�m−nIm−n��rk0�ei�m−n�
k0Kn���0��ein�0am
k

+

Rk

4�D 

m=−�

� �Jm� ��Rk� 

n=−�

�

Jm−n��rk0�ei�m−n�
k0�Yn���0�

− iJn���0��

+
2



Im� ��Rk� 


�

�− 1�m−nIm−n��rk0�

Fig. 3 Notation of Graf’s addition theorem for Bessel
functions
n=−�
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�ei�m−n�
k0Kn���0��ein�0bm
k � �27�

Furthermore, Eq. �27� can be rewritten as

u�x;�0,�0� = 

m=−�

�

eim�0�Am
0 ���0�am

0 + Bm
0 ���0�bm

0

− 

k=1

H � 

n=−�

�

Amn
k ���0�an

k + 

n=−�

�

Bmn
k ���0�bn

k��
�28�

here

Am
0 ���0� =


R0

4�2D
�Jm���0��Ym��R0� − iJm��R0��

+
2



Im���0�Km��R0�� �29�

Bm
0 ���0� =


R0

4�D
�Jm���0��Ym� ��R0� − iJm� ��R0��

+
2



Im���0�Km� ��R0�� �30�

Amn
0 ���0� =


Rk

4�2D
ei�n−m�
k0�Jn−m��rk0�Jn��Rk��Ym���0�

− iJm���0�� +
2



�− 1�n−mIn−m��rk0�In��Rk�Km���0��

�31�

Bmn
k ���0� =


Rk

4�D
ei�n−m�
k0�Jn−m��rk0�Jn���Rk��Ym���0� − iJm���0��

+
2



�− 1�n−mIn−m��rk0�In���Rk�Km���0�� �32�

By differentiating Eq. �28� with respect to �0, the slope 
 near
he circular boundary B is given as
0

een used to simplify �m����.
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�x;�0,�0� = 

m=−M

M

eim�0�Cm
0 ���0�am

0 + Dm
0 ���0�bm

0

− 

k=1

H � 

n=−�

�

Cmn
k ���0�an

k + 

n=−�

�

Dmn
k ���0�bn

k��
�33�

where Cm
0 ���0�, Dm

0 ���0�, Cmn
k ���0�, and Dmn

k ���0� can be ob-
tained by differentiating Am

0 ���0�, Bm
0 ���0�, Amn

k ���0�, and
Bmn

k ���0� in Eqs. �29�–�32� with respect to p0.
Similarly, by applying the addition theorem to Eq. �22� and then

using the moment operator of Eq. �7�, the bending moment field
m�x� near the circular boundary Bp �p=1, . . . ,H� can be expanded
as follows:

m�x;�p,�p� = 

m=−�

�

eim�p�Em
p ���p�am

p + Fm
p ���p�bm

p

+ 

k=0

k�p

H

�k� 

n=−�

�

Emn
k ���p�an

k + 

n=−�

�

Fmn
k ���p�bn

k��
�34�

where �k=−1, k=0, and �k=1, k�0,

Em
p ���p� =


Rp

4�2 �Jm��Rp���m
Y ���p� − i�m

J ���p��

+
2



Im��Rp��m

K���p�� �35�

Fm
p ���p� =


Rp

4�
�Jm� ��Rp���m

Y ���p� − i�m
J ���p��

+
2



Im� ��Rp��m

K���p�� �36�
Emn
k ���p� = �


Rk

4�2 ei�n−m�
kp�Jn−m��rkp��m
J ���p��Yn��Rk� − iJn��Rk�� +

2



In−m��rkp��m

I ���p�Kn��Rk�� , k = 0


Rk

4�2 ei�n−m�
kp��m
J ���p�Jn��Rk��Yn−m��rkp� − iJn−m��rkp�� +

2



�− I�m�m

I ���p�In��Rk�Kn−m��rkp�� , k � 0,p� �37�

Fmn
k ���p� = �


Rk

4�
ei�n−m�
kp�Jn−m��rkp��m

J ���p��Yn���Rk� − iJn���Rk�� +
2



In−m��rkp��m

I ���p�Kn���Rk�� , k = 0


Rk

4�
ei�n−m�
kp��m

J ���p�Jn���Rk��Yn−m��rkp� − iJn−m��rkp�� +
2



�− I�m�m

I ���p�In���Rk�Kn−m��rkp�� , k � 0,p� �38�
here the moment operator �m
X���� from Eq. �7� is defined as

�m
X���� = D��1 − ��

Xm� ����
�

− ��1 − ��
m2

�2 � �2�Xm�����
�39�

n which the upper �lower� signs refer to X=J ,Y �I ,K�, respec-
ively. The differential equations for the Bessel’s functions have

X

From Eq. �8�, the effective shear operator �m
X���� can be ex-

pressed as follows:

�m
X���� = D��m2�1 − �� � ����2�

Xm� ����
�2 − m2�1 − ��

Xm����
�3 �
�40�
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Similarly, the effective shear field v�x� near the circular bound-
ry Bp �p=1, . . . ,H� can be expressed as follows:

v�x;pp,�p� = 

m=−�

�

eim�p�Gm
p ���p�am

p + Hm
p ���p�bm

p

+ 

k=1

k�p

H

�k� 

n=−�

�

Gmn
k ���p�an

k + 

n=−�

�

Hmn
k ���p�bn

k��
�41�

here Gm
p ���p�, Hm

p ���p�, Gmn
k ���p�, and Hmn

k ���p� are obtained
y replacing �m

X���p� in Eqs. �35�–�38� by �m
X���p�.

For an outer clamped circular plate �u=
=0� with multiple cir-
ular holes subject to free edge �m=v=0�, by setting �p to Rp and
pplying the orthogonal property of �eim�P� �p=0,1 , . . . ,H�, Eqs.
28�, �33�, �34�, and �41� yield

m
0 ��R0�am

0 + Bm
0 ��R0�bm

0 − 

k=1

H � 

n=−�

�

Amn
k ��R0�an

k

+ 

n=−�

�

Bmn
k ��R0�bn

k� = 0

m
0 ��R0�am

0 + Dm
0 ��R0�bm

0 − 

k=1

H � 

n=−�

�

Cmn
k ��R0�an

k

+ 

n=−�

�

Dmn
k ��R0�bn

k� = 0

�42�

m
p ��Rp�am

p + Fm
p ��Rp�bm

p + 

k=0

k�p

H

�k� 

n=−�

�

Emn
k ��Rp�an

k

+ 

n=−�

�

Fmn
k ��Rp�bn

k� = 0

m
p ��Rp�am

p + Hm
p ��Rp�bm

p + 

k=0

k�p

H

�k� 

n=−�

�

Gmn
k ��Rp�an

k

+ 

n=−�

�

Hmn
k ��Rp�bn

k� = 0

or m=0, �1, �2, . . ., n=0, �1, �2, . . ., and p=1, . . . ,H. Equa-
ion �42� results in a coupled infinite system of simultaneous lin-
ar algebraic equations for the coefficients am

k and bm
k , k

0, . . . ,H.
For an outer free circular plate �m=v=0� with multiple circular

oles subject to a clamped edge �u=
=0�, a coupled infinite sys-
em of linear equations analogous to Eq. �42� can be similarly
btained as follows: �1� Am

0 ��R0�, Bm
0 ��R0�, Amn

k ��R0�, and

mn
k ��R0� in Eq. �42� are determined by replacing Xm���0� in Eqs.

29�–�32� with �m
X���0� and setting �0 to R0, where the notation X

epresents J, Y, I, and K, respectively; �2� Cm
0 ��R0�, Dm

0 ��R0�,
mn
k ��R0�, and Dmn

k ��R0� in Eq. �42� can be similarly obtained,
ut here �m

X���0� is used; �3� Em
p ��Rp�, Fm

p ��Rp�, Emn
k ��Rp�, and

mn
k ��Rp� in Eq. �42� are determined by replacing �m

X���0� in Eqs.
35�–�38� with Xm���0� and setting �0 to R0; and �4� differentiat-
ng the coefficients in �3� with respect to �0 and setting �0 to R0

p p k k
ield Gm��Rp�, Hm��Rp�, Gmn��Rp�, and Hmn��Rp� in Eq. �42�.
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In the following computation, only the finite M terms are used
in Eq. �42�. Based on the direct-searching scheme �12�, the natural
frequencies are determined as the minimum singular value from
the SVD of the truncated finite system by performing the fre-
quency sweep. In our approach, two steps are employed. In the
first step, the larger frequency interval �� is taken. For example,

Fig. 4 A circular plate with an eccentric hole subject to
clamped-free boundary conditions

Fig. 5 Natural frequency parameter versus the number of
terms of Fourier series for a circular plate with an eccentric
hole „a=1.0, b=0.25, e/a=0.45…

Fig. 6 The minimum singular value versus the frequency pa-
rameter for a circular plate with one eccentric hole „a=1.0, b

=0.25, e=0.45…
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he value of 0.1 is chosen to sweep the frequency range of our
oncern. For the second step, the local sweep with the smaller one
roceeded depending on the precision requirement of the consid-
red problem. For instance, the value of 0.0001 is adopted in this
aper. That is to say, the adaptive scheme of �� is used. Once the
igenvalues are found, the associated mode shapes can be ob-
ained by substituting the corresponding boundary eigenvectors
i.e., the complex Fourier series representing the fictitious bound-
ry density� into the boundary integral equations.

Numerical Results and Discussions
To demonstrate the proposed method, the FORTRAN code was

mplemented to determine natural frequencies and modes of a
ircular plate with multiple circular holes. The same problem was
ndependently solved by using FEM �the ABAQUS software� for
omparison. In all cases, the inner boundary is subject to the free
oundary condition, the thickness of the plate is 0.002 m, and the
oisson’s ratio � is 1/3 unless otherwise specified. The general-
urpose linear triangular elements of type S3 were employed to
odel the plate problem by using ABAQUS. Although the thickness

f the plate is 0.002 m, these elements do not suffer from the
ransverse shear locking based on the theoretical manual of
BAQUS �14�.

4.1 Case 1: A Circular Plate With an Eccentric Hole
2,10]. A circular plate with an eccentric hole, as shown in Fig. 4,
s considered. The outer and inner radii are 1 m �R1=1 m� and
.25 m �R2=0.25 m�, respectively, and the offset distance e for
he eccentric hole is 0.45 m �e /a=0.45�. The lower six natural
requency parameters versus the number of terms of Fourier series

are shown in Fig. 5. It shows that the proposed solution
romptly converges by using only a few terms of Fourier series.
n addition, only the fourth and fifth modes are lost in the former
ix modes when M equals to 1. The convergence rate is superior
o that by using the collocation approach �10� for the same prob-
em. Figure 6 indicates the minimum singular value of the influ-
nce matrix versus the frequency parameter � when using 11
erms of Fourier series �N=11�. Since the direct-searching scheme
s used, the drop location indicates the eigenvalue. The FEM was
mployed to solve the same problem, and its model has 242,211
lements and 121,891 nodes in order to obtain acceptable results

Fig. 7 The lower six natural frequency parameters and
=0.25, e=0.45…
modes of a circular plate with an eccentric hole „a=1.0, b
or comparison. The lower six natural frequency parameters and

ournal of Applied Mechanics
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Fig. 8 Contour of residual DMSs around the hole with eccen-
tricity e from 0 to 0.6: „a… the present method and „b… the finite

element method †8‡
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odes by using the present method, the semi-analytical method
10�, and FEM are shown in Fig. 7. The results of the present
ethod match well with those of FEM by using the ABAQUS. It

ndicates that the semi-analytical results show some deviations
rom the other results due to the complicated transformation of the
ffective shear force.

It may be worth mentioning that the proposed method can per-
orm a local vibration analysis by using the residual displacement
ode shape �DMS�, defined as the difference of DMS between the

ircular and annular-like plate to the problem of damage detection
8�. Figure 8 shows the contour of residual DMSs of mode �1,0�
10� around the hole with eccentricity e from 0 to 0.6 by using �a�

ig. 9 Effect of the eccentricity e on the natural frequencies
or the free-clamped annular-like plate: „a… the present method
nd „b… the global discretization method †2‡

ig. 10 A circular plate with two holes subject to clamped-free

oundary conditions
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the present method and �b� the finite element method �8�. The
unobvious change around the hole in the DMS, even for a small
eccentricity, can be detected clearly from the residual DMS analy-
sis. It can provide an approach to identify damage occurring in the
annular-like plate.

The next example is a commercial computer hard disk drive
�2�, which is an annular aluminum plate. The outer and inner radii
are 178 mm and 84 mm, respectively, and the thickness is 1.9 mm.
The plate was fixtured between two solid circular aluminum
flanges with an outside radius of 124 mm. The flanges were
aligned and positioned on the plate at a specified value of e within
the range of 0–30 mm. Figure 9 is the effect of the eccentricity e
on the natural frequencies for the free-clamped annular-like plate
by using �a� the present method and �b� the global discretization
method. Good agreement can be observed. Values of m and n in
the mode �m ,n� �10� shown in Fig. 9 are numbers of diametrical
nodal lines and circular nodal lines, respectively. Subscript 1 de-
notes the straight diametrical nodal line, while subscript 2 denotes
the curved diametrical nodal line �10�. It shows that an annular-
like plate with small eccentricity has close eigenfrequencies and is
apt to result in beating between those close eigenmodes.

Fig. 11 Natural frequency parameter versus the number of
terms of Fourier series for a circular plate with two holes „a
=1.0, b=0.25, c=0.15…

Fig. 12 The minimum singular value versus the frequency pa-
rameter for a circular plate with two holes „a=1.0, b=0.25, c

=0.15…
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4.2 Case 2: A Circular Plate With Two Holes [10]. In order
o demonstrate the generality of the present method, a circular
late with two holes is considered, as shown in Fig. 10. The radii
f holes are 0.25 m and 0.15 m, and the coordinates of the centers
re �0.5, 0.0� and ��0.4,�0.3�, respectively. The lower six natural
requency parameters versus the number of terms of Fourier series

are shown in Fig. 11. When the number of inner circular hole
ncreases, the fast convergence rate can also be observed. The
ixth mode shows a slower convergence rate due to the complex
eometrical configuration. Figure 12 indicates the minimum sin-
ular value of the influence matrix versus the frequency parameter
when using 11 terms of Fourier series �N=11�. To achieve a

omparable solution for comparison, the FEM needs 136,670 el-
ments. The lower five natural frequency parameters and modes
y using the present method, the semi-analytical method �10�, and
he FEM are shown in Fig. 13. Good agreement between the re-
ults of the present method and those of the ABAQUS is observed.

To investigate the hole-hole interaction �18�, a circular plate
ontaining two identical holes with different central distances is
tudied. The radii of the circular plate and the circular hole are 1

and 0.15 m, and the dimensionless distances of two holes L /a
re chosen as 2.1, 2.5, and 4.0 in the numerical experiments,
here a is the radius of circular holes and L is the central distance
f two holes. Numerical results show that the space of two holes
as a minor effect on the lower eigenfrequencies. Regarding
igenmodes shown in Fig. 14, the zone of the maximum deforma-
ion, enclosed with the dashed line, for the case of L /a=2.1 is
ignificantly less than that for L /a=4.0. Consequently, the dy-
amic stress concentration �19� for the case of L /a=2.1 is larger
ecause the distortion energy caused by the external loading con-
entrates in the smaller area.

Our proposed method has advantages over both the analytical
ethods and the numerical methods, such as the conventional
EM or the FEM. On one hand, it is clearly convinced that the
roposed formulation is applicable to problems with multiple cir-
ular holes, which cannot be solved easily by the other analytical
ethods. On the other hand, it is demonstrated that the proposed
ethod has advantages, such as the good accuracy and fast rate of

Fig. 13 The lower five natural frequency parameters and
=0.15…
onvergence over the conventional BEM or FEM.
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5 Concluding Remarks
An analytical model for the free vibration of a circular plate

with multiple circular holes was derived as a coupled infinite sys-
tem of simultaneous linear algebraic equations. Natural frequen-
cies and natural modes of the stated problem were determined in
the truncated finite system by using the direct-searching scheme.
The proposed method utilized indirect boundary integral equa-
tions, the addition theorem, and the complex Fourier series. Ow-
ing to the addition theorem, two critical problems of improper
integration in the indirect boundary integration and the higher
derivative in the multiply connected domain problems were suc-
cessively solved in a novel way. The proposed results match well
with those provided by FEM using a lot of elements to obtain
acceptable solutions for comparison. It shows good accuracy and
fast rate of convergence, thanks to the analytical approach. Be-
sides, the proposed numerical results have attempted explanations
for the beating in the rotating machinery and the dynamic stress
concentration when two holes are close to each other.
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