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Abstract 
 

In this lecture, a new meshless method for solving eigenproblems using the radial basis 

function (RBF) is proposed. By employing the imaginary-part fundamental solution as the 

RBF, the diagonal and off-diagonal coefficients of the influence matrices are easily 

determined. True eigensolutions in conjunction with spurious eigensolutions occur at the 

same time. To verify this finding, the circulant is adopted to analytically derive the true and 

spurious eigenequations in the discrete system for a circular domain. In order to obtain the 

true and spurious eigenvalues, the singular value decomposition (SVD) technique of updating 

technique is utilized. Several examples, including 2-D and 3-D interior acoustics and plate 

eigenproblems, are demonstrated analytically and numerically to see the validity of the 

present method. 
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1. Introduction 
Mesh generation of a complicated geometry is always time consuming in the stage of 

model creation for engineers in dealing with engineering problems by employing numerical 

methods, e.g., the finite difference method (FDM), finite element method (FEM) and 

boundary element method (BEM). In the last decade, researchers have paid attention to the 

meshless method without employing the concept of element. Several meshless methods have 

also been reported in the literature, for example, the domain-based methods including the 

element-free Galerkin method [1], the reproducing kernel method [2], and boundary-based 

methods including the boundary node method [3], the meshless local Petrov-Galerkin 

approach [4], the local boundary integral equation method [5] and the RBF approach [6]. 

Integral equations and BEM have been utilized to solve the boundary value problems for 

a long time. Several approaches, e.g., the complex-valued BEM, the method of fundamental 

solution, the dual reciprocity method (DRM), the method of particular integral [7], multiple 

reciprocity method (MRM), the real-part BEM and imaginary-part BEM [8], have been 

developed for eigenproblems. To solve the problem by using the complex-valued BEM, the 

influence coefficient matrix would be complex arithematics [9]. Therefore, Tai and Shaw [10] 

employed only the real-part kernel to solve the eigenvalue problems in sacrifice of appearance 

of spurious eigenvalues. To avoid the singular and hypersingular integrals, De Mey [11] used 

imaginary-part fundamental solution to solve the eigenproblems and also encountered the 

problem of eigensolution. 

In the meshless method, Kang et al. proposed the NDIF (Non-dimensional Dynamic 

Influence Function) method to solve eigenproblems of membranes [12], acoustic cavities [13], 

and plates [14]. Later, Chen et al. commented that the NDIF method is a special case of 

imaginary-part BEM after lumping the distribution of density function for membrane 

vibrations [15], acoustics [16], and plate [17,18].  

Nevertheless, spurious eigensolutions are inherent in the imaginary-part BEM, the 

real-part BEM, the MRM and the meshless method. Numerically speaking, the spurious 

eigensolutions result from the rank deficiency of the influence coefficient matrix. Rank 

deficiency in BEM formulation, e.g., spurious eigenvalue, fictitious frequency, degenerate 

boundary and degenerate scale had been discussed particularly in the plenary lecture of Chen 

et al. [19]. This implies the fewer number of constraint equations making the solution space 

larger. Mathematically speaking, the spurious eigensolutions for interior problems arise from 

the source of “improper approximation of the null space of operator”. Two sources of rank 

deficiency in the influence matrices can be classified, one is the spurious solution due to 

incompleteness for the representation of the solution and the other is true solution due to the 

nontrivial eigensolution. The spurious eigensolution stems from the numerical method and 

has no physical meaning. Chen and his coworkers have developed several techniques for 

overcoming the spurious eigenvalues, e.g., dual formulation [20], domain partition [21], SVD 
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updating techniques [22] and CHEEF [23] method for sorting out the true and the spurious 

eigenvalues. 

In this lecture, we will employ the imaginary-part fundamental solution as RBF to solve 

the 2-D acoustic [24], 3-D acoustic [25] and plate eigenproblems [26]. The main difference 

between the present formulation and the method of fundamental solution is that we adopt only 

the imaginary-part fundamental solution instead of employing the complex-valued singular 

kernel. Another point is that we can distribute the strength along the real boundary. In solving 

the problem numerically, elements are not required and only boundary nodes are necessary. 

Both the boundary and source points are distributed on the real boundary only. The 

occurrence of spurious eigenvalues and the remedies will be discussed in this lecture. For the 

case of circular plate, the eigensolutions will be analytically derived in the discrete system by 

using circulants. Several examples, 2-D circular cavity, 3-D circular cavity and circular plates, 

will be demonstrated to see the validity of the present formulation. 

 

2. Meshless formulation using radial basis function of the imaginary-part 
fundamental solution 

The governing equation for the interior eigenproblem is 

L Ω∈= xxuxu ),()( µ , (1) 

where L is the differential operator, and 
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u is the potential, 2∇  is the Laplacian operator, 4∇  is the biharmonic operator, k is the 
wave number which is the angular frequency over the speed of sound, ?  is the frequency 

parameter, 
D

h0
2

4 ρω
λ = , ω  is the circular frequency, 0ρ  is the surface density, D is the 

flexural rigidity expressed as 
)1(12 2

3

ν−
=

Eh
D  in terms of Young's modulus E, the Poisson 

ratio ? , the plate thickness h, and O is the domain of the interest. The boundary conditions 

can be the Neumann or Dirichlet type for the acoustic eigenproblem, and the clamped, 

simply-supported or free boundary for the plate eigenproblem. 

The radial basis function is defined by 
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|)(|),( xssxG −= ϕ  (4) 

where x and s are the collocation and source points, respectively. The Euclidean norm 

|| xs −  is referred to as the radial distance between the collocation and source points. The 

two-point function ( |)(| xs −ϕ ) is called the RBF since it depends on the radial distance 

between x and s. By considering the imaginary-part fundamental solution as RBF, we have 
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in which || xsr −≡  is the distance between the source and collocation points, )1(
0H  and 

)2(
0H  are the first kind and second kind zeroth-order Hankel functions, respectively. We can 

choose the three kernels as follows: 

)),((),( xsUKxs θ=Θ , (6) 

)),((),( xsUKxsM m= , (7) 

)),((),( xsUKxsV v= , (8) 

where )(⋅θK , )(⋅mK  and )(⋅vK  mean the operators which are defined as follows: 
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where n and t are the normal vector and tangential vector, respectively. For the acoustic or 

membrane eigenproblem, the field solution can be represented by 

Single-layer (essential) potential approach: 

∑=
j

jiji xsUxu φ),()( , (12) 
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where jφ  is the unknown density of the essential potential. 

Double-layer (natural) potential approach: 

∑Θ=
j

jiji xsxu ψ),()( , (14) 
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where jψ  is the unknown density of the natural potential. For the plate problem, the field 

solution is 
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where jp  and jq  are the unknown coefficients. By applying the three operators in 

Eqs.(9)-(11) to Eq.(16), we have 

[ ]{ } [ ]{ }qQpPxuKx θθθθ +== ))(()( , (17) 

[ ]{ } [ ]{ }qQpPxuKxm mmm +== ))(()( , (18) 

[ ]{ } [ ] }{))(()( qQpPxuKxv vvv +== , (19) 

where θ , m  and v  denote the slope, normal moment and effective shear force, 

respectively. Since the two kernels (P and Q) are obtained from any two combinations of the 

four kernels (U, T , M and V), six ( 4
2C ) formulations can be considered. By matching the 

boundary conditions and plotting the determinant (or minimum singular value) versus the 

frequency parameter λ  (or wave number k ), we can determine the unknown coefficients 

(φ  and ψ ; p and q) and the eigenvalue ( λ or k) from the drop location. 

 

3. Analytical study for the eigensolution of a circular membrane, spherical cavity 
and plate eigenproblems in the discrete system 

The U kernel can be expressed in terms of degenerate kernels as shown below [30]: 
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where the superscripts “I” and “E” denote the interior and exterior domains separated by the 

boundary, respectively. 

 

3.1 Acoustic or membrane eigenproblem 

For the 2-D circular acoustic cavity or membrane, the degenerate kernel of 

imaginary-part fundamental solution can be shown as below: 
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where ),( φρ=x and ),( θRs =  in terms of the polar coordinate and mJ  denotes the mth 
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order Bessel function. Since the rotation symmetry is preserved for a circular boundary, the 

influence matrix is denoted by [U] of the circulants with the elements, 

),;,( ijji UU φρθρ= , (22) 

where iφ  and jθ  are the angles of observation and boundary points, respectively. By 

superimposing 2N lumped strength along the boundary, we have the influence matrix, 
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where the elements of the first row can be obtained by  

),( ijij xsUU = . (24) 

The matrix [U] in Eq.(23) is found to be a circulant [28] since the rotational symmetry for the 

influence coefficients is considered. Here, the field and source points are both collocated on 

the boundary with a radius a ( aR ==ρ ) by matching the boundary condition. By using the 

degenerate kernel and the orthogonal property, the eigenvalue of the matrix [U] is obtained as 

follows: 

)()(2][ kaJkaJNU
lll =κ , (25) 

where NN ),1(,,2,1,0 −±±±= Ll . Similarly, the eigenvalues of matrices, [ ]Θ , [ ]θU  

and [ ]θΘ , are determined as follows: 

)()(2][ kaJkaJNk lll ′=Θκ , (26) 

)()(2][ kaJkaJNkU
lll ′=θκ , (27) 

)()(2 2][ kaJkaJNk lll ′′=Θθκ . (28) 

3.1.1 Dirichlet problem 

For the Dirichlet problem, a nontrivial solution of }{φ  in Eq.(12) implies 

0]det[ =U . (29) 

By employing the SVD technique, we can decompose the [U] matrix into 
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where Φ  is the orthogonal matrix as shown below: 
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Thus, we can obtain the eigenequation 0)()( =kaJkaJ ll  by using the single-layer 

potential approach. Similarly, we can obtain 0)()( =′ kaJkaJ ll  by using the double-layer 

potential approach. 

3.1.2 Neumann problem 

By the same way, we can also obtain the eigenequation 0)()( =′ kaJkaJ ll  by using 

the single-layer potential (essential) approach and 0)()( =′′ kaJkaJ ll  by using the 

double-layer (natural) potential approach for the Neumann problem. These results are shown 

in Table 1. Similarly, the approach can be extended to deal with 3-D acoustic eigenproblem. 

The results are shown in Table 2. 

 

3.2 Plate problem 

For the circular plate, the U kernels can be expressed in terms of degenerate kernels as 

shown below: 
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where the mI  denotes the mth order modified Bessel function. The field points and source 

points are distributed on the boundary with a radius a ( aR == ρ ) by matching the boundary 

condition. By using the degenerate kernel and the circulants, the eigenvalue of the matrix [U] 

can be obtained as follows: 
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where NN ),1(,,2,1,0 −±±±= Ll . Similarly, the eigenvalues of [T ], [U? ] and [T ? ] are 

obtained as follows: 
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By employing the SVD technique, the matrices [U], [T ], [U? ] and [T ? ] can be decomposed. 

We consider the U and T  kernels as P and Q for the clamped case (u=0 and ? =0). 

Combination of Eq.(16) with Eq.(17) yields 
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In order to obtain the nontrivial solution, Eq.(37) can be reduced to 
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where the subscript “e” denotes the essential potential approach. By employing the SVD 

technique, Eq.(38) is decomposed as shown below: 

[ ]
NN

TT
U

TT
U

NNeSM
44

44

×Θ

Θ
×













ΦΦΣΦΦΣ
ΦΦΣΦΦΣ

=
θθ

. (39) 

Equation (39) can be reformulated into 
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Since F  is orthogonal, the determinant of [SM]4N × 4N  is 
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for the clamped case. After using the differential property of Bessel function, Eq.(41) can be 

reduced to 
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By comparing with the exact solution [29], we can obtain that the zero term in the big bracket 

is the true eigenequation and the zero term in the middle bracket is the spurious eigenequation. 

It is interesting that the true and spurious eigenequations are the same. Similarly, the 

eigenequation of simply-supported and free boundary can be obtained as follows: 
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, respectively. It is found that the eigensolution of the clamped case is embedded in the 

Eqs.(43) and (44). After comparing with the exact solution [29], the present approach results 

in the spurious eigensolution 0)]()()()([ 11 =+ ++ aJaIaIaJ λλλλ llll  for all the boundary 

conditions. At the same time, we obtain the true eigenequation  
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for the simply-supported case and 
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for the free case. We can choose different kernels for P and Q and obtain different results for 

the spurious eigenequations as shown in Table 3 and Table 4. By comparing the Table 1 with 

Table 3, we find that the occurrence of spurious eigenequation only depends on the 

formulation instead of the specified boundary condition and the true eigenequation depends 

on the specified boundary condition instead of the formulation. It is also found that spurious 

and true eigenequations are the same not only when using the essential potential approach for 

the problem of essential boundary conditions ( 0=JJ , 0=jj  and 0=AA ) but also the 

natural potential approach for the problem of natural boundary conditions ( 0=′′JJ , 

0=′′jj  and 0=BB ) as shown in Tables 1, 2 and 3. 

 

4. Treatment of the spurious eigenvalues using singular value decomposition 
updating techniques for circular cases 

In order to extract out the true eigenvalues, the singular value decomposition (SVD) 
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updating technique is utilized. 

 

4.1 Acoustic or membrane eigenproblem 

For the 2-D acoustic cavity or membrane subject to the Dirichlet boundary condition, 

spurious eigenvalues appear when the double-layer potential approach is employed. In order 

to extract out the true eigenvalues and filter out the spurious ones, the SVD updating 

technique is utilized. By employing the double-layer potential approach, the Dirichlet 

problem can be formulated as shown below: 

0}{][ =Θ ψ . (47) 

Since the imaginary-part formulation is incomplete in the solution representation, additional 

constraints are required to filter out the spurious eigenvalue. To provide the additional 

constraint, the single-layer potential approach can be formulated as 

0}{][ =φU . (48) 

To obtain an overdetermined system, Eqs.(47) and (48) are both required. By using the 

relation in the degenerate kernels between the direct method and the indirect method [24], the 

SVD updating term to extract out the true eigenequation (for the direct method) is equivalent 

to the SVD updating document (for the indirect method). We have 
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where the superscript “T” denote the transpose. By using the SVD technique and least square 

smethod for the matrix [C], we can easily extract out the true eigenequation ( 0)( =kaJ l ) for 

the Dirichlet problem. Similarly, we can also find the true eigenequation ( 0)( =′ kaJ l ) for the 

Neumann problem. This approach can also be extended to deal with the 3-D acoustic 

eigenproblem. The true eigenequations, 0)( =kajl  for the Dirichlet case and 0)( =′ kajl  

for the Neumann case, are obtained. 

 

4.2 Plate eigenproblem 

In Table 4, we can find that the spurious eigenvalues occur when we use the M and V 

kernels as P and Q for the clamped boundary condition. The formulation is shown below: 
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where the subscript “n” denotes the nature potential approach and p′  and q′  are the 

unknown coefficients corresponding to the M and V kernels, respectively. Similarly, the 

additional constraint by using the U and T  kernels as P and Q is considered. The combined 

matrix is shown below: 
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. (51) 

By using the SVD technique and least squares method, we can obtain the true eigenequation 

( 0)()()()( 11 =+ ++ aIaJaIaJ λλλλ llll ) for the clamped boundary condition. This indicates 

that only the true eigenvalues of the clamped circular plate is imbedded in the SVD updating 

matrix. Similarly, the true eigenequations for the simply-supported plate and free plate are 

also obtained respectively as follows: 

0)()(2))()()()()(1( 11 =+++− ++ aIaaJaIaJaIaJ λλλλλλλν llllll  (52) 

for the simply-supported plate and 
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llll
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 (53) 

for the free plate. 

5. Numerical results 
5.1 Acoustic or membrane eigenproblem 

A 2-D circular cavity or membrane with a radius 1 m is considered. Fig.1(a) shows the 

minimum singular value 1σ  versus the wave number k for the Dirichlet problem by using 

the single-layer potential (essential potential) approach. No spurious eigenvalue appears since 

the true and spurious eigenvalues ( 0)( =kJ n ) are the same. Fig.1(b) shows the minimum 

singular value 1σ  versus the wave number k for the Dirichlet problem by using the 

double-layer potential (natural potential) approach. As predicted analytically, the spurious 

eigenvalues ( 0)( =′ kJ n ) appear in Fig.1(b). The SVD updating technique is employed to 

extract out the true eigenvalues when using the double-layer potential approach as shown in 

Fig.1(c). After the treatment of using SVD updating technique, the drop of the spurious 

eigenvalues disappears. Good agreement is made, only the true eigenvalues ( 0)( =kJ n ) are 

obtained. 

For the 3-D acoustic cavity, the similar results are shown in Fig.2(a)-2(c). Fig.2(a) shows 

the minimum singular value 1σ  versus the wave number k for the Dirichlet problem by 

using the single-layer potential approach. No spurious eigenvalue appears since the true and 

spurious eigenvalues ( 0)( =kjn ) are the same. Fig.2(b) shows the minimum singular value 

1σ  versus the wave number k for the Dirichlet approach by using the double-layer potential 

approach. As predicted analytically, the spurious eigenvalues ( 0)( =′ kjn ) appear in Fig.2(b). 

When the SVD updating technique is used, we can also find that the spurious eigenvalues 

disappear in Fig.2(c). Good agreement is made, only the true eigenvalues ( 0)( =kjn ) are 

obtained. 
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5.2 Plate eigenproblem 

A circular plate with a radius 1 m and the Poisson ratio 31=ν  is considered. Fig.3(a) 

shows the determinant of the versus the frequency parameter ?  for the circular clamped 

plate by using the U and T  kernels. No spurious eigenvalue appears since the true and 

spurious eigenvalues ( 0=A ) are the same. Fig.3(b) shows the determinant versus the 

frequency parameter ?  for the circular clamped plate by using M and V kernels. As 

predicted analytically, the spurious eigenvalues ( 0=B ) appear in Fig.3(b). Similarly, the 

SVD updating technique was used to extract out the true eigenvalues for the clamped plate 

eigenproblem in Fig.3(c). We can find that no spurious eigenvalue occurs. Good agreement is 

made, only the true eigenvalues ( 0=A ) are obtained. 

6. Conclusions 
We have developed a meshless method for the membrane, acoustic and plate 

eigenproblem by using the imaginary-part kernel, which was chosen as the RBF to represent 

the solution. Neither boundary elements nor singularities are required. It is interesting to find 

that the true spurious eigensolution is contaminated by spurious one. We also find that the 

spurious eigenequation only depends on the formulation instead of the specified boundary 

condition and the true eigenequation depends on the specified boundary condition instead of 

the formulation. In order to extract out the true eigenequation, the SVD technique was 

successfully utilized to overcome the problem of spurious eigenvalues. Although only circular, 

spherical cavities and plate was treated in the present approach, the same algorithm in the 

discrete system can be applied to solve arbitrary-shaped acoustic cavity and plate numerically 

without any difficulty. 
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Table 1 The true and spurious eigenequations of 2-D acoustic problem by using 
the single-layer and double-layer potential approaches 

 u = 0 (Dirichlet) t = 0 (Neumann) 

Essential potential 
(Single-layer potential) 

0)}()]{([ =aJaJ λλ ll  0)}()]{([ =′ aJaJ λλ ll  

Natural potential 
(Double-layer potential) 

0)}()]{([ =′ aJaJ λλ ll  0)}()]{([ =′′ aJaJ λλ ll  

 
Table 2 The true and spurious eigenequations of 3-D acoustic problem by using 

the single-layer and double-layer potential approaches 

 u = 0 (Dirichlet) t = 0 (Neumann) 

Essential potential 
(Single-layer potential) 

0)}()]{([ =ajaj λλ ll  0)}()]{([ =′ ajaj λλ ll  

Natural potential 
(Double-layer potential) 

0)}()]{([ =′ ajaj λλ ll  0)}()]{([ =′′ ajaj λλ ll  

where mj  and mj′  are the m-th order spherical Bessel functions of the first kind and 

its derivative, respectively. 
 

Table 3 True and spurious eigenequations for the circular plate by using the 
essential and natural potential approaches 

 
0=u  and 0=θ  

(Clamped boundary) 
0=m  and 0=v  

(Free boundary) 

Essential formulation 
(U  and Θ  formulation) 

0}]{[ =AA  0}]{[ =BA  

Natural formulation 
( M  and V  formulation) 

0}]{[ =AB  0}]{[ =BB  

where )()()()( 11 aIaJaIaJA λλλλ ++ += llll  and 
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The term inside [ ] and {} mean the spurious and true eigenequation, respectively. 
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Table 4 True and spurious eigenequations for the clamped, simply-supported and free plates using the imaginary-part fundamental solution 
 Clamped boundary Simply-supported boundary Free boundary 
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Fig.1 The first minimum singular value versus the wave number for the 2-D circular cavity 

eigenproblem. 

Fig.2 The first minimum singular value versus the wave number for the 3-D spherical cavity 

eigenproblem. 

Fig.3 The determinant versus the frequency parameter for the clamped plate eigenproblem. 

(a) Essential potential approach for the problem of the essential boundary condition. 

(b) Natural potential approach for the problem of the essential boundary condition. 

(c) Extraction of true eigenvalues of (b) by using the SVD updating technique. 

 


