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Abstract

In this paper, it is proved that the two approaches for Laplace problems, known in the literature
as the method of fundamental solutions (MFS) and the Trefftz method, are mathematically
equivalent in spite of their essentially minor and apparent differences in the formulation. It is
interesting to find that the T-complete set in the Trefftz method for the interior and exterior problems
are imbedded in the degenerate kernels of MFS. By designing circular-domain and circular-hole
problems, the unknown coefficients of each method correlate by a mapping matrix after considering
the degenerate kernels for the fundamental solutions in the MFS and the T-complete function in the
Trefftz method. The mapping matrix is composed of a rotation matrix and a geometric matrix
depends on the source location. The degenerate scale for the Laplace equation appears using the
MFS when the geometric matrix is singular. The occurring mechanism of the degenerate scalein the
MFS is studied by using circulants. The ill-posed problem in the MFS aso stems from the
ill-conditioned geometric matrix when the source is distributed far away from the real boundary.
Several examples, interior and exterior problems with either simply- or doubly-connected domain,
were solved by using the Trefftz method and the MFS. The comparison of efficiency between the
two methods was addressed.

Keywords: method of fundamental solutions (MFS), Trefftz method, T-complete set, degenerate
kernels, mapping matrix, degenerate scale, ill-posed problem

1. Introduction
In 1926, Trefftz presented the Trefftz method for solving boundary value problems by superimposing the
functions satisfying the governing equation, although various versions of Trefftz method, e.g., direct formulation
and indirect formul ations have been developed. The unknown coefficients are determined by matching the boundary
condition. Many applications to the Helmholtz equation [3], the Navier equation [7,14] and the biharmonic equation
[8] were done. Until recent years, the ill-posed nature in the method was noticed [1].
In the potentia theory, it is well known that the method of fundamental solutions (MFS) can solve potential



problems when a fundamental solution is known. This method was attributed to Kupradze (1964) [14] in Russia,
extensive applications in solving a broad range of problems such as potentia problems [3,9], acoustics [11],
biharmonic problems [8] have been found. The MFS can be reviewed as an indirect boundary element method with
concentrated source instead of distribution. The initial idea is to approximate the solution through a linear
combination of fundamental solution with source located outside the domain of the problem. Moreover, it has
certain advantages over BEM, e.g., no singularity and no boundary integrals are required. However, ill-posed
behavior is inherent in the regular formulation. It can also be applied to acoustics [3], elasticity [7,14] and plate
problems [8].

However, the link between the Trefftz method and the MFS was not discussed in detail to the authors' best
knowledge. A similar case to link the DRBEM and the method of particular integral was done by Polyzos et al. [12].
In this paper, we solve the interior and exterior Laplace problems with a circular boundary and prove the
mathematical equivalence between the Trefftz method and the MFS. Two mathematical tools are required. One is
degenerate kernel for the expansion of the closed-form fundamental solution, the other is the Fourier series
expansion for the boundary density. Circulants is employed to study the degenerate scale in the MFS. The ill-posed
behavior of the MFS is addressed. Also, the efficiency between the Trefftz method and MFS is compared with each
other under the same number of degrees of freedom.

2. Connection between the Trefftz method and the MFSfor interior and exterior
L aplace problems
Consider the two-dimensional Laplace problem with circular-domain (interior problem) or circular-hole
(exterior problem) of radius a asshown inFig.1 (a) and (b), respectively. The governing equation of the boundary
value problem is the Laplace equation,

NZu(x)=0, xI D @
where D is the domain, N? denotes the Laplacian operator and u(x) is the potential function. The boundary
condition is given by the Dirichlet type

ux)=u, xi B e

By using the Fourier series expansion, the boundary condition u(x) can be expressed as

— N — N —
u(a,f) =ao+ g ancos(nf ) + & bnsin(nf ) ©)
n=1 n=1

where ao, an, b, are the Fourier coefficients with respect to Fourier bases, cos(nf) and sin(nf),and f isthe
angle along the circular boundary.

2.1 Trefftz method
In the Trefftz method, the field solution u(x)  is superimposed by the T-complete functions, u;(x) , asfollows:
ZNJ +1
ux) = a w;u;(x 4
j=1

where 2N, +1 is the number of T-complete functions, w; is the unknown coefficient, u,(x) is the
complementary set which satisfies the Laplace equation. For the interior problem, we choose 1, r "sin(nf) and
r "cos(nf), (nT Nand 0<r <a) tobethebasesof the complementary set; and for the exterior problem
we choose Inr , r"sin(nf) and r "cos(nf) (nT Nand a<r <¥) to be the T-complete functions in



two-dimensional problem. Eq.(4) can be expressed by

Nt Nt

u'(rf)=a,+ @ a,r "cos(nf)+§ b,r"sin(nf),0<r <a (5)
n=1 n=1
Ny Nt

uE(rf)=aylnr +§ a,r "cos(nf)+ d b,r "sin(nf),a<r <¥ (6)
n=1 n=1

where the superscripts ‘I’ and ‘E’ denote the interior and exterior problems, respectively. By matching the boundary

conditionat r = a, we have

N N
u'(af)=a,+& a,a"cos(nf)+4a b.a"sn(nf). %
n=1 n=1
Nt Nt
u®(af)=a,lna+§ a,a "cos(nf )+ & b,a "sin(nf ). (8
n=1 n=1

After comparing the Eq.(3) with Eq.(7) for the interior problem, we obtain

a, = Ao, 9)
1 —
a, =—-an, n=12,..,N; (10)
a
1 —
b, =—bn n=212,..,N; (11)
a

1 —
=_——ay, 12
% Ina ° (12)
a, =a"an, n=12..,N; (13)
b,=a"b,, n=12..N;. (14)

For the exterior problem, with the radiusof a =1, it isinteresting to find the nonunique solution occurs since  a,
can not be determined in Eq.(12) by using the Trefftz method.

2.2 Method of fundamental solutions (MFS)
In the method of fundamental solutions, the field solution u(x) can be superimposed by U(x,s.) asfollows:

Ny .
ux)=4cu(xs), s D° (15)
j=1

where N,, isthe number of source pointsin the MFS, c is the unknown coefficient, s and x arethe source
point and collocation point, respectively, D° is the complementary domain and U(x,s;) is the fundamental
solution with the symmetry property

U(xs;) =U(s;,x) =Inr. (16)

where r :|X- Sj|.



In order to match Eq.(16), we have
g -
ux)=acu(s.x, s 1 D 7
j=1

The fundamental solution can be expressed by using the degenerate kernel

,'[u (Rq;:r.f)=In(R)- —(r—)“cos(n(q-f)), R>r
URq;r,f)=q “;1 (18)
}U *(Ra;r,f)=In(r)- a—( )cos(n(q-f)) R<r
n=1 N
where the superscripts “ i " and “ e ” denote the interior expression (R>r ) and the exterior expression

(R<r), s=(Rq) and x=(r,f) are the polar coordinates of s and x, respectively. By substituting the

Eq.(18) into the kernel function

U(rf)—aC[ln(R) a ( )COS(n(qJ-f))] O<r <a, 0<f<2p (19)
j n=1N

us(r f)‘aC[m(f) a—( Ry cog(n(@; - f))] a<r <¥, 0<f<2p (20)
n=1N

where q; = Nﬁ j - Egs.(19) and (20) in the MFS imply the T-complete set of Eqgs.(7) and (8) in the Trefftz method
M

for the interior and exterior problems, respectively. By employing the property of trigonometric function, Eq.(19)

and Eq.(20) can be rewritten as

u'(r,f)= aC In(R) - a[ac —(—) cos(ng ;)] cos(nf ) - a[ac —(—) sin(n;)] sin(nf ) (21)
n=1 j=1 n=l j=1

ut(r.f)= ac In(r) - a[ac —(—) cos(ng; )] cos(nf ) - a[ac —(—) sin(na;)] sin(nf ) (22
i=1 n=1 j=1 n=1 j=1

After comparing the Eq.(3) with Eq.(21) by truncating the higher order terms to N,, and matching the

boundary condition, the interior problem yields:

a = Ng} ¢ In(R) (23)
a_:_- .—( ) cos(nq;), n=12..,N, (24)
j=1
b _ My
—=-3 C—( )s|n(nq) n=12...,Ny. (25)
j=1

For the exterior problem, we have

—ao = écj (26)



_ Ny 1 .
a"an=-ac E(R) cos(nq;), n=12..,Ny @7
j=1

— N
a"bn =- é“_ﬂcj %(R)n sn(ng;), n=12..,Ny (28)
j=1

2.3 Connection between the Trefftz method and MFS

We can compare the coefficients in the Trefftz method and in the MFS for interior and exterior problems. By
setting 2N; +1= N, =2N +1 under the request of the same number of degrees of freedom, the relationship
between the unknown coefficients in the Trefftz method and the MFS can be written as
Interior problem:

2N+1

a,= ac In(R) (29)
j=1
101,
a8,=- a ¢;—(=)"cos(ng;), n=12..2N+1 (30)
j=1 n R
a1 1
b, =- Ja1 CjF(E) sin(ng;), n=12..2N+1 (3D)
Exterior problem:
2[(\>l+1
ap = a ¢ (32
j=1
> R R
a,=- a cj;(R) cos(ng;), n=12..2N+1 (33)
j=1
e R RPN
b, =- a ch(R) sn(ng;), n=12..2N+1 (34)

[V 1, U
% u B_[K]{ Vg (35)
where

u={a, a b a b - a, b}

(36)
Y:{C.L G G G G - Gy CZN+1}T

and the matrix [K] for the interior caseis



g’: 1InR 1InR 1InR 1 InR u
. E cos(qy) F cos(q,) F cos(qs) F cos(lon.) g
e 7. -1 -1 -1 U
[K | ]: g ?Sm(ch) Fs‘.n(%) Fs_n(%) an(qu +1) H
? -1.1 : -1.1 : : 3
- ( ) COS(qu) W(E)NCOS(NQZ) W(E)NCOS(N%) ( ) cos(Ndzy41)
9- 11 11y ”
&5 e 1L ) sin(Noy) - ()" sin(Na) - —= ()" sin(Nai) W‘E) Sin(NGzy.)§
and
é 1 1 . 1 0
& - Rcos@,) - Reos(d,) = c0s(dg) - Reos(lpyey) g
¢ - G
(] RIe - Rea RS RSN
KE|=¢ R u
é a
g—m) o) RN cos(a,) LR cos(gy) =GN coc(N .
e u
e L R)M sin(Ny) W‘R) sin(Ng,) W‘R) sin(Ng,) W‘R) Sn(Nigy.o)

is for the exterior case. The relation of Eq.(35) was obtained to connect the Trefftz method and the MFS. We can

decompose the matrix [K] into two parts, one is the matrix, [Tg], which depends on the radius of the source

(37)

(39)

distribution; the other is the matrix, [TO| ], which depends on the angle of the source point (Fig.1), as follows:

[Tel' =

isfor the interior problem and

[TR]E =

isfor the exterior problem
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e 1 1 1 b
e

@005(%) Cos(@p) v e e e e COS(Q2N+1)8
gSin(fM) Sn(@p) e e e e e Sin(QZNHl)E
_@COS(ZQ]_) cos(2qp) - e e e e cOS(20N41) U
[Tq]—gsin(qu) SN(2gp) e e e e e Sin(2q2N+1)tJ:J (42)
é . . e e H u
EOOS(qu) COS(NQ ) v wor e e e cos(NqZN+1)§
Gin(Nay) sin(NGz) - e SN(NGIN+D) oy gy (a4
In EQ.(42), it isinteresting to find
N+
2N +1) 43
doitg )= A — ®
2

due to the orthogonal property as follows:

&N +1 0 0 u
é 2N +1 a
¢ 0 q
é a

T-6 2N+ a

[Tq10Tq] é 0 2 a (44)

é S o
é a
g o 0 o 2N+
é 2 QN+ 2N+

When the radius of the source location R moves far away from the real boundary and the number of the source
points N,, become large, the condition number of [K] matrix deteriorates. This is the reason why the ill-posed
behavior isinherent in the MFS. In the [TR]I matrix, it becomes singular at radiusof one (INR=0 for R=1)
which results in a degenerate scale in the MFS. For the exterior Dirichlet problem of radius one (Ina=0 for
a =1), the nonunique solution exists in Eq.(8) where a; can not be determined. Even though the Trefftz method
can not obtain the unique solution. This may explain why the transformation matrix between the MFS and the
Trefftz method is nonsingular. A detailed study for the degenerate scale in the MFS due to numerical nonuniqueness

is elaborated on in the next section.

2.4 Discussion of the degenerate scalein the MFSfor Dirichlet problem

For the circular case with radius a, wecan express x=(r,f) and s=(R,q) intermsof polar coordinate.

Egs.(19) and (20) can be expressed in terms of the degenerate kernel as below:

| 4 g ¥1,a, u

u'(af)="a ¢;dnR- & =) cosn(; - ) (45)
j=1 @ =N R a
Zlgul A 3 1 R u

uf(af)= @ c;dna- & =(-)"cos(n@; - f))g (46)
=1 e n=N a u

By matching the boundary condition, MFS yields the following algebraic equation

(47)



Based on the circulants for the finite number degrees of freedom system by locating 2N source points on a

circular boundary, we have the influence matrix

g % 4 5 - ZZN-lg
glon-1 D 4 Dn-zg
[U] :gzzN-z N1 D ZzN-sg (48)
8 : : Do : i
g€z L o Lty
where
z, =U(Rq,,:r,0), m=0,1,2,---,2N-1 (49)

2pm

inwhich qmzm, f =0 without loss of generality.

The matrix U in EQq.(48) is found to be circulants since the rotation symmetry for the influence coefficients is

considered. By introducing the following bases for the circulants |, CL, C2. -+, C2h ", we can expand matrix A

into
[U] =4l +31C%N +32C22N +"'+aZN-1CZZIw-1 (50)
where | isaunit matrix and
@0 10 - 0 0f
0
$ o100
C%N =g: : : 3 (51)
@ 00 0 1g
& oo o of

Based on the circulant theory, the spectral properties for the influence matrix, A, can be easily found as follows:
|l =ay+aa, +aaf++a.ag *, k=0+1L+2.+N-1N (52)
where |, and a, aretheeigenvaluesfor matrix Aand C2, , respectively. It is easily found that the eigenvalues

for thecirculants Cj,, istherootfor a®™ =1 asshown below:

. 2pk
2Pk
a,=e2N, k=0+L%2..tN-1N (53)
Substituting Eq.(53) into Eq.(52), we have
2N-1 2N-1 2pmk
lv=a zmax = a Zme N (54)
m=0 m=0

According to the definition for  z,,,in Eq.(49), we have
Zn=Zn.m M=012..,2N-1 (55)
Substitution of Eq.(53) and (55) yields



N

N-1

= é z,, cos(mkDq) (56)

m=0
Substituting z,, in the Eq.(49) into Eq.(56) and using the degenerate kernel of U in Eq.(18), the Reimann sum of

infinite terms reduces to the following integral

2

lim
N® ¥

U (mDd, 0)cos(mkDg) » —— 67U (4, 0)cos(ka) d (57)

0

QJoZ

[, =
m

By using the degenerate kernel for U(s,x) in Eq.(18) and the orthogonal conditions, Eq.(57) can be derived as

]I 2NInR, k=0
b= 'ZN(a)‘k‘ k=21%2--+(N-1),N (58)
i K
for the interior problem, and
Jl 2NIna, k=0
|k:|ﬂ(5)\k\, k=+1£2.-+(N-1,N (59)
f I "a

for the exterior problem. Therefore, the determinant of matrix U can be represented to

deu'] = (-2 ARG By L (60)
det{UE] = (- 2N)2N-2 2RIna NC) & R)zb 1 (61)

b=1 &
According to Egs.(60) and (61), we find that InR and Ina are embedded in the determinant of influence

matrices and the phenomena of degenerate scale still occur for the interior and exterior problems. Finaly, it is

obvious to examine the occurring mechanism of the degenerate scale through Eq.(60) and (61).

4. Numerical examples

Two examples, interior and exterior problems, are considered. Also, the doubly-connected problems with
annular domain and eccentric case are solved by using the Trefftz method and the MFS.
4.1 Simply-connected problems
4.1.1 Interior problems

Given a Laplace Dirichlet problem with a circular domain of radius one, both the Trefftz method and the MFS
are utilized to solve the problem as shown in Fig.2. The exact solution is shown in Fig.2(c). The sensitivity of Nt
and N, is aso addressed. Good agreement can be made for the case of Ny =4 ( Fig.2(b)) and
Ny =20( Fig.2(f)).



4.1.2 Exterior problems

An infinite domain with a circular hole is designed for the exterior Dirichlet problem. Since the radius one
results in the mathematical nonuniqueness, the radius is chosen as two. The numerical results are shown in Fig.3 by
using the Trefftz method (Fig.3(a), (b)) and the MFS (Fig.3(d), (), (f)). Also, the exact solution is shown in Fig.3(c).
The different numbersof Ny and N,, aretested for the convergence. Good agreement can be made for the case
of Ny =4 (Fig.3(b)) and N, =20( Fig.3(f)). If the radius is one, both the Trefftz method and the MFS fail in
real computation. No results are shown for the problem of radius one.
4.2 Doubly-connected problems

Consider the Laplace annular problem with radius &, and a, (&, =1, a, =2.5) asshown in Fig.4. By
selecting the source location of Ry =09 and R, =2.6 in the MFS, the results are shown in Fig.5. Good
agreement is made after comparing with the exact solution in Fig.5 (b). And the Trefftz method has the same results
shown in Fig.6.

For the eccentric case in Fig.7, the same techniques are used. By choosing the different source locations in the
MFS, the results are shown in Fig.8. Good agreement is made after comparing with the exact solution in Fig.8 (d).

In addition, the Trefftz method can obtain the good resultsin Fig.9.

5. Conclusions
In this paper, the proof of the mathematical eguivalence for Laplace problem between the Treffz method and
the MFS were derived successfully. It is interesting to find that the T-complete set in the Trefftz method for the
interior and exterior problems are imbedded in the degenerate kernels of MFS. The degenerate scale appears when
using the MFS based on the problem construction and the Trefftz method related to the T-complete function. The
ill-posed problem in MFS also stems from the geometric matrix when the source is distributed far away from the
real boundary. Both the Trefftz method and the MFS were employed to solve the interior and exterior problems with

simply-connected and doubly-connected domain.
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Fig.1(a) Definition sketch of polar coordinate for theinterior Laplace equation with the
circular domain (? isthesourcelocation of the MFS)

N2u(x) =0, xI D

Fig.1(b) Definition sketch of polar coordinate for the exterior L aplace problem with the
circular hole. (? isthesourcelocation of the MFS)
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(0) Exact solution: u(r ,f)=r 2 cos(F ) (f) N, =20

Fig. 2 The contour for theinterior and exterior Laplace problems using the Trefftz method and the
MFS (sourcelocation: R=1.1).
Trefftzmethod: () Ny =2, (b) Ny =4, (c) Exact solution
MFS  :(d) Ny =5,(6 Ny=9,() Ny=20



1 _
(c) Exact solution  u(r,f)=Inr +—-cos(¥) (f) Ny =20
r

Fig. 3 The contour for the exterior problem with radius a=2 usingthe Trefftz
method and the MFS (source point: R=1.9).
Trefftzmethod: () Nt =2,(b) N; =4, (c) Exact solution
MFS :(d) N, =5,(€) N, =9,(f) N, =20
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(a) Numerical solution (b) Exact solution ufr ,f)=%2r5
Fig. 5 The contour for annular circleusingthe MFS

(inner:  R;=0.9, 20 points; outer: R,=2.6, 60 points)

(&) Numerical solution (b) Exact solution ur ,f)=||L2rS
n

Fig. 6 The contour for annular circle using the Trefftz method (26 points)



(a) R]_:O.g, R2=2.6 (b) R]_:O.g, R2=3.0 (C) R]_:O.g, R2=4.0 (d) Exact solution
1,182 +148 cof |

u(r,f)= X
D" 2 v o

Fig. 8 The contour for the eccentric case usingthe MFS

(inner: 20 points; outer: 60 points)
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TTTTTT method (=6)
Trefftzmethod (tt=1)

(a) 12 points (b) 28 points (c) 52 points (d) Exact solution
1, 16 2+1+8 cos

rf)= In
2 ™ 2 v oot

Fig. 9 The contour for eccentric case using the Trefftz method



