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Abstract 

In this paper, it is proved that the two approaches for Laplace problems, known in the literature 

as the method of fundamental solutions (MFS) and the Trefftz method, are mathematically 

equivalent in spite of their essentially minor and apparent differences in the formulation. It is 

interesting to find that the T-complete set in the Trefftz method for the interior and exterior problems 

are imbedded in the degenerate kernels of MFS. By designing circular-domain and circular-hole 

problems, the unknown coefficients of each method correlate by a mapping matrix after considering 

the degenerate kernels for the fundamental solutions in the MFS and the T-complete function in the 

Trefftz method. The mapping matrix is composed of a rotation matrix and a geometric matrix 

depends on the source location. The degenerate scale for the Laplace equation appears using the 

MFS when the geometric matrix is singular. The occurring mechanism of the degenerate scale in the 

MFS is studied by using circulants. The ill-posed problem in the MFS also stems from the 

ill-conditioned geometric matrix when the source is distributed far away from the real boundary. 

Several examples, interior and exterior problems with either simply- or doubly-connected domain, 

were solved by using the Trefftz method and the MFS. The comparison of efficiency between the 

two methods was addressed. 

Keywords: method of fundamental solutions (MFS), Trefftz method, T-complete set, degenerate 

kernels, mapping matrix, degenerate scale, ill-posed problem 

               

1. Introduction 
In 1926, Trefftz presented the Trefftz method for solving boundary value problems by superimposing the 

functions satisfying the governing equation, although various versions of Trefftz method, e.g., direct formulation 

and indirect formulations have been developed. The unknown coefficients are determined by matching the boundary 

condition. Many applications to the Helmholtz equation [3], the Navier equation [7,14] and the biharmonic equation 

[8] were done. Until recent years, the ill-posed nature in the method was noticed [1].   

In the potential theory, it is well known that the method of fundamental solutions (MFS) can solve potential 



  

 

problems when a fundamental solution is known. This method was attributed to Kupradze (1964) [14] in Russia, 

extensive applications in solving a broad range of problems such as potential problems [3,9], acoustics [11], 

biharmonic problems [8] have been found. The MFS can be reviewed as an indirect boundary element method with 

concentrated source instead of distribution. The initial idea is to approximate the solution through a linear 

combination of fundamental solution with source located outside the domain of the problem. Moreover, it has 

certain advantages over BEM, e.g., no singularity and no boundary integrals are required. However, ill-posed 

behavior is inherent in the regular formulation. It can also be applied to acoustics [3], elasticity [7,14] and plate 

problems [8]. 

 However, the link between the Trefftz method and the MFS was not discussed in detail to the authors’ best 

knowledge. A similar case to link the DRBEM and the method of particular integral was done by Polyzos et al. [12]. 

In this paper, we solve the interior and exterior Laplace problems with a circular boundary and prove the 

mathematical equivalence between the Trefftz method and the MFS. Two mathematical tools are required. One is 

degenerate kernel for the expansion of the closed-form fundamental solution, the other is the Fourier series 

expansion for the boundary density. Circulants is employed to study the degenerate scale in the MFS. The ill-posed 

behavior of the MFS is addressed. Also, the efficiency between the Trefftz method and MFS is compared with each 

other under the same number of degrees of freedom. 

 

2. Connection between the Trefftz method and the MFS for interior and exterior 
Laplace problems 

Consider the two-dimensional Laplace problem with circular-domain (interior problem) or circular-hole 

(exterior problem) of radius a  as shown in Fig.1 (a) and (b), respectively. The governing equation of the boundary 

value problem is the Laplace equation,  

Dxxu ∈=∇ ,0)(2  (1) 

where D is the domain, 2∇  denotes the Laplacian operator and )(xu  is the potential function. The boundary 

condition is given by the Dirichlet type 

Bxuxu ∈= ,)(  (2) 

By using the Fourier series expansion, the boundary condition )(xu can be expressed as 
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where nn baa ,,0  are the Fourier coefficients with respect to Fourier bases, )cos( φn  and )sin( φn , and φ  is the 

angle along the circular boundary. 
 

2.1 Trefftz method 
In the Trefftz method, the field solution )(xu  is superimposed by the T-complete functions, )(xu j , as follows: 
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where 12 +TN  is the number of T-complete functions, jw  is the unknown coefficient, )(xu j  is the 

complementary set which satisfies the Laplace equation. For the interior problem, we choose 1 , )sin( φρ nn  and 

),cos( φρ nn
 ( )aandNn <<∈ ρ0  to be the bases of the complementary set; and for the exterior problem 

we choose ρln , )sin( φρ nn−  and )cos( φρ nn−  ( )∞<<∈ ρaandNn  to be the T-complete functions in 



  

 

two-dimensional problem. Eq.(4) can be expressed by 
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where the superscripts ‘I’ and ‘E’ denote the interior and exterior problems, respectively. By matching the boundary 

condition at a=ρ , we have 
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After comparing the Eq.(3) with Eq.(7) for the interior problem, we obtain  

,00 aa =  (9) 
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For the exterior problem by using Eq.(8), we have 
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For the exterior problem, with the radius of 1=a , it is interesting to find the nonunique solution occurs since 0a  

can not be determined in Eq.(12) by using the Trefftz method. 

 

2.2 Method of fundamental solutions (MFS) 

In the method of fundamental solutions, the field solution )(xu can be superimposed by ),( jsxU  as follows: 
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where MN  is the number of source points in the MFS, jc  is the unknown coefficient, s  and x  are the source 

point and collocation point, respectively, eD  is the complementary domain and ),( jsxU  is the fundamental 

solution with the symmetry property 
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where .jsxr −=  



  

 

In order to match Eq.(16), we have 
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The fundamental solution can be expressed by using the degenerate kernel 
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where the superscripts “ i  ” and “ e  ” denote  the interior expression ( ρ>R ) and the exterior expression 

( ρ<R ), ),( θRs =  and ),( φρ=x  are the polar coordinates of s  and x , respectively. By substituting the 

Eq.(18) into the kernel function 
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where j
NM

j
π

θ
2

= . Eqs.(19) and (20) in the MFS imply the T-complete set of Eqs.(7) and (8) in the Trefftz method 

for the interior and exterior problems, respectively. By employing the property of trigonometric function, Eq.(19) 

and Eq.(20) can be rewritten as 
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After comparing the Eq.(3) with Eq.(21) by truncating the higher order terms to MN  and matching the 

boundary condition, the interior problem yields: 
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For the exterior problem, we have 
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2.3 Connection between the Trefftz method and MFS 

We can compare the coefficients in the Trefftz method and in the MFS for interior and exterior problems. By 

setting 1212 +==+ NNN MT  under the request of the same number of degrees of freedom, the relationship 

between the unknown coefficients in the Trefftz method and the MFS can be written as 
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Exterior problem: 
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After comparing the two solutions for the Trefftz method and the MFS, we can correlate as 
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and the matrix [ ]K  for the interior case is 
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and  
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is for the exterior case. The relation of Eq.(35) was obtained to connect the Trefftz method and the MFS. We can 

decompose the matrix [K] into two parts, one is the matrix, ][ RT , which depends on the radius of the source 

distribution; the other is the matrix, ][ θT , which depends on the angle of the source point (Fig.1), as follows: 
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is for the interior problem and 
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is for the exterior problem 
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In Eq.(42), it is interesting to find 
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due to the orthogonal property as follows: 
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When the radius of the source location R moves far away from the real boundary and the number of the source 

points MN  become large, the condition number of [K] matrix deteriorates. This is the reason why the ill-posed 

behavior is inherent in the MFS. In the I
RT ][  matrix, it becomes singular at radius of one ( 0ln =R  for 1=R ) 

which results in a degenerate scale in the MFS. For the exterior Dirichlet problem of radius one ( 0ln =a  for 

1=a ), the nonunique solution exists in Eq.(8) where a0  can not be determined. Even though the Trefftz method 

can not obtain the unique solution. This may explain why the transformation matrix between the MFS and the 

Trefftz method is nonsingular. A detailed study for the degenerate scale in the MFS due to numerical nonuniqueness 

is elaborated on in the next section. 

 

2.4 Discussion of the degenerate scale in the MFS for Dirichlet problem 

For the circular case with radius a , we can express ),( φρ=x  and ),( θRs =  in terms of polar coordinate. 

Eqs.(19) and (20) can be expressed in terms of the degenerate kernel as below: 
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By matching the boundary condition, MFS yields the following algebraic equation 
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Based on the circulants for the finite number degrees of freedom system by locating 2N source points on a 

circular boundary, we have the influence matrix 
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The matrix U in Eq.(48) is found to be circulants since the rotation symmetry for the influence coefficients is 
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Based on the circulant theory, the spectral properties for the influence matrix, A, can be easily found as follows: 
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where kλ  and kα  are the eigenvalues for matrix A and 1
2NC , respectively. It is easily found that the eigenvalues 

for the circulants 1
2NC  is the root for 12 =Nα  as shown below: 
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Substituting Eq.(53) into Eq.(52), we have 
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According to the definition for mz in Eq.(49), we have 
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Substitution of Eq.(53) and (55) yields 
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Substituting mz  in the Eq.(49) into Eq.(56) and using the degenerate kernel of U in Eq.(18), the Reimann sum of 

infinite terms reduces to the following integral 
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By using the degenerate kernel for U(s,x) in Eq.(18) and the orthogonal conditions, Eq.(57) can be derived as 
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for the interior problem, and 
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for the exterior problem. Therefore, the determinant of matrix U can be represented to  
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According to Eqs.(60) and (61), we find that Rln  and aln  are embedded in the determinant of influence 

matrices and the phenomena of degenerate scale still occur for the interior and exterior problems. Finally, it is 

obvious to examine the occurring mechanism of the degenerate scale through Eq.(60) and (61). 

 

4. Numerical examples 
Two examples, interior and exterior problems, are considered. Also, the doubly-connected problems with 

annular domain and eccentric case are solved by using the Trefftz method and the MFS. 

4.1 Simply-connected problems 

4.1.1 Interior problems 

    Given a Laplace Dirichlet problem with a circular domain of radius one, both the Trefftz method and the MFS 

are utilized to solve the problem as shown in Fig.2. The exact solution is shown in Fig.2(c). The sensitivity of TN  

and MN  is also addressed. Good agreement can be made for the case of 4=TN ( Fig.2(b)) and 

20=MN ( Fig.2(f)). 

 



  

 

4.1.2 Exterior problems 

    An infinite domain with a circular hole is designed for the exterior Dirichlet problem. Since the radius one 

results in the mathematical nonuniqueness, the radius is chosen as two. The numerical results are shown in Fig.3 by 

using the Trefftz method (Fig.3(a), (b)) and the MFS (Fig.3(d), (e), (f)). Also, the exact solution is shown in Fig.3(c). 

The different numbers of TN  and MN  are tested for the convergence. Good agreement can be made for the case 

of 4=TN ( Fig.3(b)) and 20=MN ( Fig.3(f)). If the radius is one, both the Trefftz method and the MFS fail in 

real computation. No results are shown for the problem of radius one. 

4.2 Doubly-connected problems 

Consider the Laplace annular problem with radius 1a  and 2a  ( 5.2,1 21 == aa ) as shown in Fig.4. By 

selecting the source location of 9.01 =R  and 6.22 =R  in the MFS, the results are shown in Fig.5. Good 

agreement is made after comparing with the exact solution in Fig.5 (b). And the Trefftz method has the same results 

shown in Fig.6. 

    For the eccentric case in Fig.7, the same techniques are used. By choosing the different source locations in the 

MFS, the results are shown in Fig.8. Good agreement is made after comparing with the exact solution in Fig.8 (d). 

In addition, the Trefftz method can obtain the good results in Fig.9. 

 

5. Conclusions 
In this paper, the proof of the mathematical equivalence for Laplace problem between the Treffz method and 

the MFS were derived successfully. It is interesting to find that the T-complete set in the Trefftz method for the 

interior and exterior problems are imbedded in the degenerate kernels of MFS. The degenerate scale appears when 

using the MFS based on the problem construction and the Trefftz method related to the T-complete function. The 

ill-posed problem in MFS also stems from the geometric matrix when the source is distributed far away from the 

real boundary. Both the Trefftz method and the MFS were employed to solve the interior and exterior problems with 

simply-connected and doubly-connected domain. 
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Fig.1(a) Definition sketch of polar coordinate for the interior Laplace equation with the 

circular domain (?  is the source location of the MFS) 
 
 
 

             
 
  
  
 
 
 
 
 
 
 

      Fig.1(b) Definition sketch of polar coordinate for the exterior Laplace problem with the 
circular hole. (?  is the source location of the MFS) 
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(a) 2=TN                           (d) 5=MN  
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(b) 4=TN                          (e) 9=MN  
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Fig. 2 The contour for the interior and exterior Laplace problems using the Trefftz method and the 

MFS (source location: R=1.1). 

Trefftz method: (a) 2=TN , (b) 4=TN , (c) Exact solution 

MFS    : (d) 5=MN , (e) 9=MN , (f) 20=MN  

 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Exact solution

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) Exact solution: (f) 20=MN  )3cos(),( 3 φρφρ =u



  

 

    -5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

   -5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

 
                       (a) 2=TN                       (d) 5=MN  
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Fig. 3 The contour for the exterior problem with radius 2=a  using the Trefftz 

method and the MFS (source point: R=1.9).   

Trefftz method: (a) 2=TN , (b) 4=TN , (c) Exact solution 

 MFS   : (d) 5=MN , (e) 9=MN , (f) 20=MN

(c) Exact solution (f) 20=MN  



  

 

 
 
 
 
 

 
 
 

     Fig. 4 Laplace problem with an annular domain 
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                  Fig. 5 The contour for annular circle using the MFS 

              (inner:  R1=0.9, 20 points ; outer: R2=2.6, 60 points) 
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         Fig. 6 The contour for annular circle using the Trefftz method (26 points) 
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     Fig.7 Laplace problem for eccentric circle 
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Fig. 8 The contour for the eccentric case using the MFS 

(inner: 20 points; outer: 60 points) 
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      Fig. 9 The contour for eccentric case using the Trefftz method 
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(d) Exact solution 
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