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SUMMARY

Free-surface boundary is not only unknown in a priori but also the boundary conditions are overspec-
ified. In this paper, the Laplace problem with overspecified boundary conditions on the free surface is
solved by using the hypersingular equation instead of singular equation used conventionally in bound-
ary element method. The free surface can be determined using an iterative procedure starting from an
initial guess. By introducing the hypersingular equation, the convergence rate of free surface can be
accelerated. Finally, numerical examples including rectangular dams and canals were demonstrated and
were compared with others to show the validity of the present method. Copyright © 2006 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The analysis of seepage problems is strongly influenced by porous media, hydraulic gradient, and
pore pressure. In order to study these problems, accurately defining the position of free surface
is very important and necessary. In this decade, many researchers utilized boundary element
methods (BEM) to solve free-surface seepage problems but only singular equation was used.
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Finite element method [1] needs many iterations after the initial guess. In addition, the solution of
problems involving a free surface is generally obtained through an iterative scheme. Since the dual
boundary integral element method has been proposed for the Laplace equation problem by Chen
and Hong [2, 3], hypersingular equation can be considered as an alternative to solve the seepage
problems with free surface. Dual BEM was applied to deal with electrostatic problems by Chyuan
et al. [4]. Also, the extension to fracture mechanics was done by Hong and Chen [5]. A detailed
review article can be found in [6]. We can wonder whether the hypersingular equation may speed
up the convergence rate for free-surface problems.

In the past, many different methods were used to determine the location of free surface. For
example, Aitchison used the finite difference method (FDM) to determine the position of free
surface [7], and Caffrey and Bruch [8] also used FDM and FEM to analyse it. Then, the BEM
was used to study the seepage flow through the porous media by Liggett and Liu [9]. After that,
the finite element method (FEM) was proposed to solve the problems by Westbrook [1] and by
Gioda and Gentile [10], respectively. Cheng et al. [11] also determined the free surface for sluice
and spillway flows. Demetracopoulos and Hadjitheodorou [12] solved the free-surface problems
of canals. Regarding to previous methods, free surface can be determined by using all of these
methods but in a different rate of convergence. Hypersingular equation will be proposed to examine
its superiority over the available methods.

Comparing with previous methods, domain-based approach spends much time on mesh gener-
ation and also need more computer memory storage. In the FEM, the domain was divided into
many elements. Mesh generation is a time-consuming job. Especially, it needs to remesh in the
domain for each iteration after updating the free surface. Therefore, BEM was proposed to analyse
the problem, because it only discretizes the boundary of domain. Mesh generation becomes much
easier by this method and it can also save much computer memory storage at the same time. In
this study, constant elements are considered for simplicity.

In this paper, free surface is regarded as a moving boundary with the overspecified boundary
conditions. The main purpose of this paper is to employ the hypersingular equation for determining
the location of free surface. The rate of convergence by using the hypersingular equation is also
examined after comparing with that of FEM and traditional BEM, i.e. singular equation. In the
following section, singular equation and hypersingular equation will be reviewed and several
examples will be tested to demonstrate its validity.

2. PROBLEM STATEMENT

In this paper, the steady-state flow through the homogeneous dam is considered. The problem is
to find the potential ¢ which satisfies the Laplace equation

VZp=0 )

Referring to Figure 1, the boundary conditions can be expressed as

¢=h; only 2)
¢=hy onT;s 3)
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Figure 1. Flow through a rectangular dam.

In the I'; and I's, the potential ¢ is constant and it can be written as

¢>=y+§ )

where y is the position head, p is the pressure head and y is the unit weight of fluid. Since the
bottom of dam is impermeable, the boundary condition of the earth dam is zero

0
% _0 onty 5)
on

The boundary I'4 is the seepage surface and the pressure head is zero, thus it can be expressed as
¢=y(x) onTy ©)

The boundary I'3 is the free surface which is the interface between saturated region and dry region.
The free surface is regarded as the overspecified boundary conditions of

0
a—¢’=0, ¢=y(x) onTj3 7
= X

where the ¢ = y(x) is unknown in a priori and needs to be determined iteratively after the initial

guess of free surface. In the following section, the free surface will be solved by using the dual
boundary integral equations in conjunction with the initial guess of free surface.
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3. DUAL BOUNDARY ELEMENT METHOD FOR FREE-SURFACE SEEPAGE PROBLEMS

In this section, the hypersingular formulation for free-surface seepage problems is briefly described.
First, the Green’s identity is reviewed, which can be expressed as

0 0
[@vu—vvrpan= [ (62 v as ®)
D B on on
where D is the domain, B is the boundary, ¢» and y/ are the two scalar potentials of seepage flow,
and V2 denotes the Laplacian operator. By utilizing the Green’s identity, one of the dual boundary
integral equations for the domain point x is

2n¢(x)=/T(s,x)¢(s)dB(s)—/ U s, x) 22
B B 0

dB(s), xeD ©)

N

Equation (9) is termed the singular formula. Then taking the normal derivative of Equation (9) for
the domain point x, the other equation of the dual boundary integral equations, i.e. hypersingular
formula, can be derived

0¢(x)

ony

0p(s)

27 =/M(s,x)¢(s)dB(s)—/ L(s, x)
B B 0

dB(s), xe€D (10)

ng

where U (s, x)=1Inr, T (s, x)=0U (s, x)/0nyg, L(s, x)=0U (s, x)/0ny, M (s, x):@zU(s, x)/0ngony,
r denotes the distance between source point s and collocation point x, ng is the unit outer normal
at point s on the boundary, and n, is the unit outer normal on the boundary. By tracing the domain
point x to the boundary, Equations (9) and (10) reduce to

ocqﬁ(x):CPV/ T (s, x)¢(s)dB(s) —RPV/ U(s, x) agﬁ(s) dB(s), xe€B (11)

B B ng

ua¢(x)=HPV/ M(s,x)(,b(s)dB(s)—CPV/ LD 4pe). xeB  (12)
Ny B B ong

where CPV, RPV, HPV are the Cauchy principal value, Riemann principal value, and Hadamard
principal value, respectively, and « =7 in the case of a smooth boundary [13]. Equations (11) and
(12) are named the dual boundary integral equations for the boundary point. Based on the theory
of dual boundary integral equations, a program BEPO2D was developed by Chen and Hong [2]
to solve the Laplace equation. In numerical implementation, Equation (12) is discretized to yield
a linear algebraic system.

Ut =Tu (13)

~ ~

Due to the overspecified boundary condition of Equation (7) for free-surface problem, we need
an initial guess for the free surface and then iterates. By solving the hypersingular equation of (10)
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Figure 2. Flowchart of iteration procedure.

Iterate again

subject to BCs of Equations (2)—(6) and the Neumann BCs of Equation (7), for the initial guess
of free surface, we can solve ¢. However, the solved ¢ is not the same with the initial guess of
the free surface. Then, by setting the ¢ value for the second guess of free surface, we can solve
the hypersingular equation again. For the stop condition of convergence, we use

VI @ — gy
&E=

<107 (14)
VI @)
where the symbol m is the number of elements on the free surface, ¢§"+1) is the location of

free surface for the (n + 1)th number of iteration, and the allowable tolerance used in this paper
is 1074, Stop condition of Equation (14) determines the number of iteration.

In this paper, the program BEPO2D was used to iterate the location of free surface, and the
flowchart is shown in Figure 2.
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4. NUMERICAL EXAMPLES

4.1. Case 1. Rectangular dam

The free surface of the homogeneous rectangular dam is considered in Figure 1, where the
upper hydraulic head h| =24, the lower hydraulic head hy =4, and the width of the earth dam
b=16. In this case, the boundary of domain is divided into 39 elements. In order to compare
with the available results [7], the initial guess of free surface is divided into eight elements;
all the elements are the same in length, which are shown in Figure 3. By utilizing the singular
and hypersingular formulations to solve the location of free surface under the stop condition
of Equation (14), respectively, results are compared with those of Aitchison and Westbrook as
shown in Table I, Figures 4 and 5. It can be seen in Table I that the data (12.68) is better
to match the numerical solution of 12.79 by Aitchison than that (12.61) of using the singular
formulation.

For the free-surface problem, it is one kind of inverse problem since boundary is not known in
a priori. It is realizable that the analytical solution of this problem is not easy to find. Based on
the semi-analytical nature of Aitchison’s solution by using the complex variable, his data is more
believable than other numerical results. The separation point at b = 16 is interesting and important
since the location is a singular point due to the intersection of the fixed and free boundaries.
Besides, the separation point plays an important role in dam stability and is our main concern for
civil engineers. Therefore, the data of the point (b = 16) by Aitchison is chosen to compare with

25

20

0 5 10 15 20 25

Figure 3. Boundary element mesh of case 1.
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Table I. Free surface obtained by using different methods.

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Aitchison 23.74 23.41 23.02 22.59 22.12 21.60 21.04 20.43 19.78 19.08 18.31 17.48 16.57 15.54 14.39 12.79
Westbrook 23.64 23.32 23.06 22.52 22.12 21.55 21.07 20.36 19.81 19.07 18.26 17.45 16.54 15.51 1433 —

Present  23.76 23.42 23.03 22.59 22.12 21.60 21.04 20.43 19.78 19.07 18.30 17.47 16.56 15.50 14.15 12.61
(singular
equation)

Present  23.74 23.40 23.01 22.52 22.09 21.57 21.00 20.39 19.73 19.02 18.24 17.39 16.45 15.39 14.09 12.68

(hyper-
singular
equation)

R @ Boundary nodes

DAitchison
+Westbrook

< |nitial guess

“ Singular formulation

20

Figure 4. Free surface (singular equation).

our results. It is also found that the hypersingular-approach solution cannot obtain better solution
through all the range. At least, we provide an alternative approach to solve the free-surface
seepage problems and predict the separation point properly. After comparing with the references,
the number of iterations of present method is fewer than that of FEM and singular BEM as shown in
Table II.
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Figure 5. Free surface (hypersingular equation).

Table II. Number of iterations by using different methods (Case 1).

Method Mesh Number of iterations
FEM [1] 17 x 25 49
Singular equation 39 14
Present (hypersingular equation) 39 13

4.2. Case 2. Rectangular dam

Referring to the Figure 1 again, another case with different water depth is considered. The homo-
geneous rectangular dam with base b =1, the upper hydraulic head %) =1, and the lower hy-
draulic head s, =0. The boundary mesh is shown in Figure 6, and the free surface is determined
by using the singular and hypersingular equations, respectively, as shown in Figures 7 and 8.
Table IIT shows the profile of free surface by using different methods. The number of iterations
of singular and hypersingular equations is also shown in Table IV. Table V shows the final po-
sition of the separation point above the dam base obtained by using different methods. Although
Polubarinova-Kochina developed a free surface for the rectangular dam [14], it was adjusted by
Cryer later [15]. Ozis used Cryer’s formulation and improved the evaluations of integrals in 1981
[16] and the location of 12.7070 is seen as the best solution of separation point. Then, Bruch used
linear boundary elements and an iterative technique to determine the separation point [17]. Singular

Copyright © 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2007; 23:755-769
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Figure 6. Boundary element mesh of case 2.
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Figure 7. Free surface (singular equation).
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Figure 8. Free surface (hypersingular equation).

Table III. Free surface obtained by using different methods.

x 0.2 04 0.6 0.8 1.0

Polubarinova-Kochina [14]  0.938 0.850 0.738 0.595 0.368
Singular equation 0.939 0.850 0.737 0.590 0.368
Hypersingular equation 0.937 0.847 0.732 0.584 0.379

Table IV. Iteration number by using the singular equation and hypersingular
equation (Case 2).

Method Mesh Number of iteration
Singular equation 25 12
Present (hypersingular equation) 25 9

and hypersingular equations using constant elements are both employed to solve the problem as
shown in Table V. It is found that the solution (12.68) using the hypersingular formulation agrees
better than that (12.61) by using the singular formulation after comparing with the Ozis’ solution
(12.70). Instead of using higher-order elements, hypersingular formulation yields a better solution.

Copyright © 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2007; 23:755-769
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Table V. Final position of separation point using different methods.

Reference Height
Polubarinova-Kochina [14] 12.95
Cryer [15] 12.7132
Ozis [16] 12.7070
Westbrook [1], FEM NA
Bruch [17], BEM, Linear element 12.98
Cabral and Wrobel [18], BEM, B-spline 12.74
Present, BEM, constant element, singular equation 12.61
Present, BEM, constant element, hypersingular equation 12.68
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Figure 9. (a) Canal of Case A; (b) canal of Case B; (c) canal of Case C; and (d) canal of Case D.
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Figure 10. (a) Velocity field and streamlines of Case A; (b) velocity field and streamlines of Case B;
(c) velocity field and streamlines of Case C; and (d) velocity field and streamlines of Case D.

4.3. Case 3. Canals

Four surface canals (Cases A, B, C and D) are also solved. Figure 9 shows the mathematical
models for Cases A, B, C and D. The stream lines and velocity fields are plotted and the free
surfaces are determined as shown in Figure 10. Fewer number of iteration by using hypersingular
formulation is required than that by using the singular one. The results of the four cases are utilized
to demonstrate the feasibility of hypersingular formulation.

5. CONCLUSIONS

Free-surface seepage problems were solved by using the hypersingular equation and the results
were compared with other solutions. It is found that the iteration number using the present method

Copyright © 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2007; 23:755-769
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Figure 10. Continued.

is fewer than that of the other methods. It is found that increasing the order of kernel singularity
yields more accurate results than increasing the order of boundary element. Several examples

including rectangular dams and surface canals were demonstrated to check the efficiency of the
present method.
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