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Abstract

In this paper, the complex-valued BEM for solving the eigenfrequencies of the annular plates is
proposed. By employing the complex-valued BEM, the spurious eigenevalues in conjunction with the
true eigenvalues are obtained for free vibration of the multiply-connected plate. We analytically and
numerically examine the occurrence of the spurious eigenvalues in the continuous and discrete systems
of an annular plate. For the continuous system, the degenerate kernels for the fundamental solution and
the Fourier series expansion for the boundary density are employed to derive the true and spurious
eigenequations analytically. The circulant is adopted to analytically derive the true and spurious
eigenequation in the discrete system. It is found that the spurious eigenvalues parasitizing in the
multiply-connected plate depend on the associated true eigenvalues of the simply-connected plate with a
radius b which isthe inner circle of the annular domain. Three methods (SVD updating technique, the
Burton & Miller method and the CHIEF method) are adopted to suppress the occurrence of the spurious
eigenvalues, and a clamped-clamped annular plate is demonstrated analytically for the discrete systemin
this paper. Several examples were demonstrated to check the validity of the formulation.
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results in spurious eigensolutions. Tai and
Shaw [13] first employed BEM to solve
membrane vibration using the complex-valued
kernel. De Mey [5], Hutchinson and Wong [8]
employed only the real-part kernel to solve the
membrane and plate vibrations to avoid the
complex-valued computation in sacrifice of
occurrence of spurious eigensolutions. Wong
and Hutchinson [7,9] have presented a direct
BEM involving displacement, slope, moment
and shear force. They were able to obtain
numerical results for simply-connected and
clamped plates by employing only the real-part
BEM with obvious computational gains.
However, this saving leads to the spurious
eigenvalues in addition to the true ones in free
vibration analysis. Niwa et al. [12] also stated
that ""One must take care to use the complete
Green's function for outgoing waves, as
attempts to use just the real (singular) or
imaginary part (regular) separately will not
provide the complete spectrum”. This criticism
is not correct since the real-part BEM does not
lose any true eigenvalues. The reason isthat the
real and imaginary-part kernels satisfy the
Hilbert transform. Complete eigenspectrum is
imbedded in either one, real or imaginary-part
kernel. The Hilbert transform is the constraint
in the frequency domain corresponding to the
casual effect in the time-domain fundamental
solutions. The physical meaning of the real-part
kernel is the standing wave [6]. Tai and Shaw
[13] claimed that spurious eigenvalues are not
present if the complex-valued kernel is

employed for the eigenproblem. However, it is

true only for the problem with a simply-
connected domain. For multiply-connected
problems, spurious eigenequation occur even
though the complex-valued BEM is utilized [3,
4]. This is the reason why Chen and his
coworkers have developed many systematic
techniques [1, 2] for sorting out the true and the
spurious eigensol utions.

In this paper, the spurious eigensolution
for the multiply-connected plate eigenproblem
will be studied in the complex-valued BEM.
Since any two equations in the plate
formulation (4 equations) can be chosen, 6 (C;)
options can be considered. The occurring
mechanism for the spurious eigensolution in
the multiply-connected plate problem will be
studied analyticaly in the continuous and
discrete systems. Three methods (SVD
updating technique, the Burton & Miller
method and the CHIEF method) are adopted to
suppress the occurrence of the spurious
eigenvalues, and a clamped-clamped annular
plate is demonstrated anayticaly for the
discrete system.

2. Boundary integral equationsfor
plate eigenproblems
The governing equation for the free
flexural vibration of a uniform thin plate is
written as follows:

VAu(x) = 'u(x), xeQ (1)
where u is the lateral displacement,
A=w’phID, A is the frequency parameter,
o isthe circular frequency, p, isthe surface

density, D istheflexural rigidity expressed as



D = En®/12(1-v*) in terms of Young's
modulus E , Poisson ratio v , the plate
thicknessh, and Q is the domain of the thin
plate. The integral equations for the domain
point can be derived from the Rayleigh-Green
identity asfollows [10]:

au(x) = jB{—u (s, X)V(S) + O(s, X)M(S)

@)
—M(s,x)8(s) +V (s, x)u(s)} dB(s),
a0(x) = [ {-U, (s, () +©, (s, )m(s) -
~M,(5.08(8) +V, (s, )u(s)} dB(s),
am(x) = jB{—um(s, XV(S) + O, (s, X)M(s) @
=M, (8,X)6() +V,, (s, x)u(s)} dB(s),
av(x) = [ {-U,(5.9v(9) + ©, (s, )m(s) -

=M, (s,%)6(s) +V, (s, x)u(s)} dB(s),
where ¢ =1 for xeQ, a=1/2 for xeB,
a=0 for xeQ®, Q° is the complementary
domainof Q, B istheboundary, u, 4, m
and v mean the displacement, slope, normal
moment, effective shear force, sand x are
the source and field points, respectively, U ,
®, M and VvV kene functions will be
elaborated on later. The kernel function U(s, x)

isthe fundamental solution U_(s,x) whichis

[Yo (Ar) +13,(4r) —E(Ko(ﬂr) +ily(Ar))]
s

U, (%)= ©)
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where J, and I, denote the zero-order Bessel
and modified Bessel functions of the first kind,
Y, and K, denote the zero-order Bessel and
modified Bessel functions of the second kind,
r=|s-x and i*=-1, respectively. The three
kernels, O(s,x) , M(s,x) and V(s,x), are
defined asfollows:

O(s,%) = K, (U (s,%) @)
M (5,%) = K, (U (5,%)) ©)

V(s,x) = K, (U (s,X) (9)
where K,() , K, and K, mean the

operators which are defined as follows:

o()

KeO=7 (10)

Kn() = W2(0)+@-v) 5;;) (11)
_V'0 ) 2 20

KO == 24022 (12)

where n and t are the normal vector and
tangential vector, respectively. The operators
K,(), Kn() and K,() canbeappliedto U,

®, M and V kernels. The kernel functions

can be expressed as.
O(s,X) = NEX (13)
M ($%) = WU (5,%) + (1— 1) 20 () (14)
on;
_oVU(SX) o, 0 0U(sX)
V(s,x) = T a-v) . (—6nsats ) (15)

The displacement, slope, normal moment and

effective shear force are derived by

0(x) = K, (u(x)) (16)
m(x) = K, (u(x)) a7
v(x) = K, (u(x)) (18)

3. Mathematical analysisfor the
multiply-connected plate

3.1 Continuous system

We consider an annular plate clamped on the
outer circle B, (y=0and ¢,=0) and the
inner circle B, (u,=0and ¢,=0), where u,,
6,, u, and 6, arethedisplacement and slope
onthe B, andB,, respectively. Theradii of the

outer and inner circles ase a and b ,



respectively. The moment and shear force, m,

m,, v, and v,, can be expanded into Fourier

series by

m(s) = D-(p5, cos(ng) + i, cos(ng)  (19)
m(s) = Y (P, coslng) + 6, cosng)  (20)
W(S) = Y (@, cos(ng) +b cosng)  (21)

V(8) = (4, cos(ng) B, cos(ng)  (22)

where the superscript = cc " denotes the
clamped-clamped case, ¢ is the angle on the
circular boundary, &%, b%, p5 and q
(i=12) ae the undetermined Fourier
coefficients on B (i=12). When the field

point locates on B, , substitution of the

Egs.(19)-(22) into the Egs.(2) and (3) yields

0=~ U (5 60 (9B(S) - [ U (552, X3 V(5B
B B,

+ [ O XM (SEB(9) + [ (582 Xe)m(S)B(S)
B B,

0=~ [ Uy (50 X600 (SBIS) - [ Uy (552, X V2l KBS
B B,

24)

+ [©0(s0:x6)m(SB(S) + [ O (552, XM (9B(S)
B B,

When the field point locates on B, ,
substitution of the Egs.(19)-(22) into the Egs.(2)
and (3) yields

0=~ U (962 (90B(8) ~ [U (520 X2V (S1BC)
B B,

+ [0 Xe)m(9B(E) + [ O(sa20 Ke2)m(S)B(S)
B B,
0=~ [ Uy (55 Xaa (B9 - [ Uy (S22 (9B(9
B B,
+ [ @50 %62)M(SBS) + [ 05 (552 52 (9B(S)
B B,

The kernel functions, U(s,x), 0(s,X),

U,(s,x) and ©,(s,x), can be expanded by using

the expansion formulae

D YnlA0) () 005G~ ). > p
Yo(ar) ={™* L B 27
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where J,, and |, denote the mth-order Bessel
and modified Bessel functions of the first kind,
Y, and K, denote the mth-order Bessel and
modified Bessel functions of the second kind.
s:(;,g) and x=(p,¢) arethe polar coordinates
of s and x, respectively. By using the degenerate
kernels into Egs.(23)-(26) and the orthogonality
condition of the Fourier series, the Fourier

coefficients a, and p, satisfy

cc
0 a,
O ‘CC
—frm] & (31
O cC
pl n
cC
0 Pin
where
j; (se1, %61 jgz(sez»xm J’é‘i(sm‘xm Jotsez xen
Jucerxez Jycez e Joserxez Ié”}saz X52) o) 0B(S)
= Jyota e Jyotszrm Joota e Joote2
Jyoaxe Jyoaxee Jootaxe Jo oo xee
(32)

Also, the coefficients of b and o have the

same relationship in the matrix form. For the
existence of nontrivial solution for &%, b

n?

p> and g%, the determinant of the matrix



[TM] versus the eigenvalue must be zero. By
using the properties of the determinants, we can
decompose the Eq.(32) to

det[TM] = det( [Sb,"1[T,*]) (33)
where

J.(4a) J,(Ab) J/(4a) J,(Ab)
Y,(ia) Y,(#b) Y.(4a) Y.(2b)

[Tm]: ’ r (34)
" [,(4a) 1,(Ab) 1 (da) 1;(1b)
K,(1a) K, (ib) K;(1a) K/ (ib)
and
Y, (2a) +iJ, (12) 0 K, (18) +i(-)"1 ,(4a) 0
(5] - i3, (4b) J,(2b) i1, () 1,(7a)
" A (Aa) +13) (Aa)) 0 A(K.L(Za)+i(-)"1/(4a)) 0
13! (Ab) 23! (Ab) iA1,(Ab) 2(1,(Ab))
(35)

It is noted that the matrix [T*] denotes the
matrix of true eigenequation for the C-C case
and the matrix [S“] denotes the matrix of
spurious  eigenequation in  the u, @
formulation. Zero determinant in the Eq.(33)
implies that the eigenequation is,
det[TM] = det( [Sb,"][T,]) =0 (36)
After comparing with the analytical solution for
the annular plate [11,14,15], the former matrix
[S] in the EQ.(36) results in the spurious
eigenequation while the latter matrix [T*]
results in the true eigenequation. All the true
and spurious equations for the multiply-
connected plate in the complex-valued BEM
areshown in Tables 1 and 2.
3.2 Discrete system
For the discrete system, the Eqs.(23)-(26)
can be rewritten as
0=[U1L{v} +[U12]{v,} + [OLI{my} +[©12]{ m;} (37
0=[U21{w;} +[U 22){v,} +[©21]{m;} + [©22]{m,} (38)

0=[U11,){v}} +[U12,]{v5} +[011,}{m} +[612,]{m;}  (39)
0=[U21,){vi} +[U22,}{vo} +[©21,{m} +[©22,]{m;}  (40)
By assembling Eqs.(37)-(40) together, we have

0 A
YT (4D
0 m
0 m,
where
Ull U2 611 o12
(9] = U2l U2 021 622 4
Ylull, U1z, 611, ©12, (42)

u21, U2, 021, 022,

For the existence of nontrivia solution of
v, v,, m and m,, the determinant of the
matrix [SM /] versus eigenvalue must be zero.

Since the rotation symmetry is preserved for a
circular boundary, the influence matrices for
the discrete system are found to be circulants
such that the eigenvalue can be analytica
derived

iy __ & _2
M= 4/12{[Y/(ﬂa)3f(ia) . K, (1a)l,(4a)]

HI, 023, 68) - 2 01 Gy a9

£=04122,...2(N -1),N

Since the matrix [u11] issymmetric circulants,

it can be expressed by
U1y = oz ot
w0 o - 0 0 0
o A o . o0 0 0
0 o A .0 0 0
- : o : : ot
U11]
D < I
0 0 o o A, o
[u1g
0 0 0 0 0 AN Donsan
(44)
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Similarly, we can obtain the other eigenvalues
of the influence matrices by using the
properties of the circulants. By decomposing

the influences matrix in Eq.(42), we have

® 0 0 O
0O ® 0 O
[sm*]=
B 0 0 @ O
0 0 0 o
. (46
Zunn Zurz Zem Zenz @ O O O (46)
Zyn Zuz Zexn Zex |0 ® 0 O
Ly, Zuiz, Zew, Zew, |0 0O @ O
Zuz, Zuz, Zez, Zexz, |0 0 0 @

Since o is orthogonal, the determinant of

[SM Flansen is

2U 11 ZU 12 ZG')ll 2(-)12

2 z z 2
det[ SV ] = et va Zuz Zean Zez
Ly, Zuiz, Zen, Zeiz,

(47)
Zuzlﬂ Euzzg Z@nﬂ 2@22,;
By employing the eigenvalues of each

influence matrices for Eq.(47), we have

defSMET= ] det((UITED=0  (48)

r==(N+1)

Zero determinant in Eq.(48) implies that the
eigenequation is
det([S”][T,]) =0 (49)

The true eigenequation for a continuous system
can be obtained by approaching N in the
discrete system to infinity. The former part in
the middle bracket of EQ.(49) is the spurious
eigenequation while the latter part in the big
bracket is found to be the true eigenequation. In
this case, it is interesting to find that the true
and spurious eigenequation are the same with

those derived in the continuous system.

3.3 Sudy of the spurious eigenequation
After comparing the Eq.(36) in the
continuous system with the Eq.(49) in the
discrete system for for the annular plate, the
same spurious eigenequation det[S’]=0 is
embedded in the same (u, #) formulation no
matter what the boundary condition is.
By using the cofactor of the matrix [S] to
simplify the zero determinant of the Eq.(35) for

the spurious eigenequation, we have

det[S)’] = det[Sa;"] det[ )] (50)
where
wi_ | Ya(AA)+i,(A2)  K,(Aa)+i(-D)"I,(1a)
[Sa“]{z(vnua)m;ua)) i(K,;(ﬁa)H(—l)"l,’,(ia)J (52)

and

(52)

S)ug _ ‘Jn(lb) In(ﬂ’b)
(1= 23!(Ab) I/ (Ab)

It is found that the determinant of the matrix
[S3] in the Eq.(51) is never zero. The
spurious eigenequation is the zero determinant
of the matrix [$’] in the Eq.(52). It is
interesting that the zero determinant of the
[S0°] in the u,@ formulation results in the
true egenequation of  simply-connected
clamped plate with a radius b. The spurious
eigenvalues parasitizing in the u,6 BEM
depend on the radius b which is the inner
circle of the annular domain. In fact, the
multiply-connected problem can be
superimposed by two problems, one is an
interior problem with B, boundary and the
other is an exterior problem with B, boundary.
The source which causes the appearance of the
spurious eigenvalues stems from the exterior

problem with the inner boundary even though



the complex-valued kernels are employed as
well as the membrane and acoustics behaves
[34].

4. Extraction of thetrue eigenvalues
using SVD updating techniquein
the discrete system
A conventional approach to detect the
nonunique solution is the criterion of satisfying
adl Egs.(2)-(5) a the same time. For the
clamped-clamped annular plate, the Egs.(4)-(5)
reduce to
0=[ULL,]{wi} + [U12,]{v;} + [€11,{m} +[012,){m;}  (53)
0=[U 215, ){vi} +[U 22 {vz} + [©21,]{m} +[022,){m;}  (54)
0=[U11,J{vi} +[U12,}{vo} +[€11,]{m} +[012,}{m;}  (55)
0=[U21,}{vi} +[U22,}{vo} +[©2L, {m} +[022,{m;}  (56)
After rearranging the terms, Egs.(53)-(56) can

be assembled to

0 A
EVES e (57)
0 m
0 m,
where
ulli Ul2 11 o612
. |U21 U2 @21 022
[SM 2 1= (58)
U1, U12, ©11, 012,

u21, U2, 021, 022,

To obtain an overdetermined system, we can
combine Egs.(42) and (58) by using the
updating term,

[C]{;} -0 (59)

where

v
[C] ) |:SV| OC}SlelN (60)

Since the eigenequation is nontrival, the rank of
the matrix [C] must be smaller then 4N, the
4N singular values for the matrix [C] must

have at least one zero value. The explicit form
for the matrix [C] can be decomposed into

O 0o ooo &g o
O 0o o8 oo o

O 0o & oo oo
O 0o % oo o oo
O 8% oo oo oo
8 0 0o oo ooo

(61)
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M
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c
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Yuu, vz, e, Zew, [® 0 0 O
Yuu, 2uz, 2oz, Zez, |0 ® 0 0
2o, 2Zuiz, Zewu, e, |0 O @ 0O
2uz, 2uz, 2oz, 2ez,|0 0 0 @

Zun, Zu, Zeu, e

7Zu21v 2oz, Loz, Zezzvi

Based on the equivalence between the SVD
technique and the least-squares method in
mathematical essence, the zero determinant of
the matrix [C]'[C] is implies the nontrivial
solution. After a length derivation, the only
possibility for the zero determinant of the
matrix [C]'[C] is only the true eigenequation
to be zero, such that

det[T]=0 (62)
This indicates that only the true eigenequation
of the clamped circular plate is sorted out in the
SVD updating matrix since the true
eigenequation is simultaneously embedded in
the six formulations. The result matches well
with Egs.(36) and (49) in the continuous and
discrete systems.
4.2 TheBurton & Miller method

In the exterior acoustics of Helmholtz equation



by using the dua BEM, Burton & Miller
utilized the product of hypersingular equation
with an imaginary constant and added to the
singular equation in dealing with fictitious-
frequency problem which results in a
non-unigueness solution. By extending this
concept to solve the spurious eigenequation in

the complex-valued BEM, we have

Vi

(v ]+ilsvs) ZE - (63)

o O O O

m,

4.3 CHIEF method

By adding the CHIEF point (p<b) to solve
the multiply-connected plate eigenproblem in
null-field integral equation, we have

UCL UC2 @eCl ©C2
uci, ucz, ect, ecz,|, . (4

(51|
where the index C denotes the CHIEF point
in the null-field integral equation and the
subscript  N.(=1) indicates the number of
additional CHIEF points. The symboals,
UC1LUC2,6ecC1,,6C2,,UC1,,UC2,,6C1, and
®C2, mean the influence row vectors resulted
from of the U,8,U, and ®, kernels which
is collocating the CHIEF point. Combining the
Egs.(42) and (64) together to obtain the
overdetermined system, we can sort out the true

eigenvalues.

5. Numerical results and discussions
We consider an annular plate with the outer
radius of one meter (a=1m) and the inner

radius of 0.5 meter b=05m of B andB,,
respectively, and the Poisson ratio 1/3. The

outer and inner boundaries are both discretized
into ten constant boundary elements,
respectively. Three cases (C-C, S-S and F-F
annular plates) were considered.

Figures 1.(@) ~ 1.(c) show the determinant of
[SM] versus frequency parameter 4 for the
three cases of annular plate using the
complex-valued formulations (u, ). Both the
true and spurious eigenvalues  occur
simultaneously. After comparing with (@), (b)
and (c) results, the spurious eigenvalues (6.392,
9.222 and 11.810) are obtained no matter what
the boundary condition is. It reconfirms that the
spurious eigenvalues depends on the
formulation instead of the specified boundary
condition. All the spurious eigenvalues satisfy
the spurious eigenequation ( [S’1=0 in
Eq.(52)) in the Table 2. The spurious
eigenequation of multiply-connected
eigenproblem by using the u, # formulation is
found to be the true eigenequation of the
simply-connected clamped plate with a radius
b whichistheinner radius of the annular plate
[3,4].

Three methods, the SVD technique of
updating term ((u, 8) + (m,v) formulation), the
Burton & Miller method ( (u, m)+i(8,v)
formulation) and CHIEF method (two points),
the true eigenvalues were obtained as shown in
Figures 1.(d)-(f).

All the numerical data of the true
eigenvalues are satisfied the true eigenequation
in the Table 1, and the eigenvalues agree well
with the data in Leissa and Laura et al.
[11,14,15]. It is worth mentioning that we



provide the wunified form of the true
eigenequations for the three cases of annular
plates in Table 1 instead of the separate form
(n=0,1,2) [11]. The true eigenvalues are well
compared with the Leissa's numerical results.
However, the obtained eigenvalues according
to the Leissa's eigenequation are not consistent
to those in his book. The possible explanation
is that the eigenequations in the Leissa's book

for some cases were wrongly typed.

6. Conclusions

A complex-valued BEM formulation has
been derived for the free vibration of annular
plate. The true and spurious eigeneguations
were derived analytically by using the Fourier
series, degenerate kernels and circulants in both
the continuous and discrete systems. Since
either two equations in the plate formulation (4
equations) can be chosen, six options can be
considered. The occurrence of spurious
eigenequation only depends on the formulation
instead of the specified boundary condition,
while the true eigenequation is independent of
the formulation and is relevant to the specified
boundary condition. It is interesting that the
spurious eigeneguation of multiply-connected
plate eigenproblen by wusing the wu, 0
formulation is found to be the true
eigenequation of simply-connected clamped
plate with aradius b which isthe inner radius
of the annular plate. All the results are shown in
the Tables 1 and 2. Three methods (SVD
updating technique, the Burton & Miller
method and the CHIEF method) were adopted

to suppress the occurrence of the spurious
eigenvalues, only the true eigenvalues obtained.

A C-C annular plate was demonstrated
anaytically to see the validity of the present
method. Several examples of plates were
illustrated to check the validity of the present
formulations. Although the annular case lacks
generality, it leads significant insight into the
occurring mechanism of true and spurious
eigenequation. Although the proof is only
limited to the annular case, it is a great help to
the researchers who may require analytical
explanation for the reason why the spurious
eigenevalues appears. The same agorithm in
the discrete system can be applied to solve
arbitrary-shaped plate numerically without any
difficulty. Nevertheless, mathematical
derivation in the continuous and discrete

systems can not be done anaytically.
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Table 1. True eigenequationsfor the annular plate.

Cases true eigenequation [T, ]
J,(Aa) J,(Ab) J.(Aa) J.(Ab)]
Y,(4a) Y,(2b) Y;(4a) Y;(2b)
c-C I.(Aa) 1,(ab) 1:(1a) 1. (ib)
K,(1a) K,(4b) K] (2a) K;(lb)_
J,(48) 3,(2b) al(ia) a](b)]
Y,(48) Y,(Ab) a)(ia) a)(Ab)
SS I,(48) 1,(Ab) a,(4a) a,(Ab)
K,(1a) K,(1b) ar*f(ﬂa) ar*f(lb)_
aUa) al(b) p e+ 1bv Roa) pl Y 3 ()
alGa) al(b) pYua+EY Y)Y an+t ”ymm
F_F | | | 1 v
an(da) an(db) By (la)+ (2a)  fa(Ab)+ 7n(Ab)
ay (A2) a) (Ab) ﬂ#(zanl’T”ynKua) i (ﬂb)+Tyn (Ab)
Table 2. Spurious eigenequations for the annular plate.
[S)n ] B.C. of the simply-connected plate
0.6 3n(2b)  1,(2b) U_O 00
Egs.(2) and (3) A(3}(Ab))  A(1(2b)) T
um J,(Ab) 1,(1a) u=0. m=0
Egs.(2) and (4) a)(Ab) al(Ab) o B
" J,(Ab) I, (Ab) o o
Eqs(2) and (5) 2oy A1) L9 0mn 1o+ E22 71 o) u=90, v=
6. m 234(Ab) Al (4a) B B
Eqgs(3) and (4) [a; (1b) a,'](lb)} =0 m=0
oy 23! (Ab) 21! (a)
Egs(3) and (5) 20+ 2200 1300y + 822 1) =0, v=0
my a) (Ab) a, (Ab)
Eas(4) and (5) 15! ub>+(1 Y o 1+ 80 ) m=0 v=0
where o (1a) = 2°X; (1a) + V[é/m'n (Aa) - (g)ZNn (2a)],
ﬁn‘“(/la):ﬂ3?<!(/la)+\4222NQ(/1&)*(2)2N;(23) — AN, (2a) + ( Z)N (4]
v canbe Y, J,K,I.

. 1
ad ) = onN, () + %N'(ﬂa)] ,
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C-C annular plate
— u, 0 complex-vauled formulation
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frequency parameter ¢

Figure1.(a) DetfSM *] v.s. A (C-Cannular plate)
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Figure 1.(d) SVD updating term (F-F annular plate)
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Figure1.(b) Det[SM*] v.s. A (S-Sannular plate)
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Figure 1.(c) Det[SM ] vs. 4 (F-Fannular plate)
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Figure 1.(e) The Burton & Miller method (F-F annular plate)
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Figure 1.(f) The CHIEF method (F-F annular plate)
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